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 Recent issues related to human health in the world have shown the importance 

of telemedicine considering necessities to perform the remote monitoring of 

patients. In this study, using a patient smart monitoring system (PSMS), we 

collected 5,000 samples of heart rate and blood saturation vital signs from 4 

volunteers and tried to find better correlation algorithms to develop a module 

to predict what these vital signs will be in the next 60 seconds. The following 

regression algorithms recurrent neural network (long short-term memory) 

(RNN(LSTM)), autorregresive integrated moving average (ARIMA), value-

added reseller vector autoregression (VAR) were used to forecast the patient's 

state of health in the next 60 seconds. Further, the support vector machine 

(SVM) and Naive Bayes classification algorithms use the data forecasted by 

the regression algorithms as input to predict the health status of the patients. 

When comparing algorithms, we focused on the F measure, a metric used to 

evaluate the performance of machine learning algorithms. As a result, 

RNN(LSTM) and SVM showed the performance score value of machine 

learning algorithms F 0.84, RNN(LSTM) and Naive Bayes 0.81, VAR and 

SVM 0.82, and VAR and Naive Bayes 0.75. Compared to them, the 

correlation of ARIMA regression algorithms and SVM classification showed a 

better F score of 0.86 for machine learning algorithms than the others. 
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1. INTRODUCTION  

One of the latest advances in digital health is telemedicine [1]. With the help of mHealth and 

internet of things (IoT) technologies, patients are monitored remotely at home [2]. Many diseases require 

long-term monitoring of the patient during treatment, such as chronic diseases, and heart diseases. In such 

cases, the IoT device must be able to effectively perform real-time monitoring [3]. In addition, the module, 

which predicts the physiological data of patients using machine learning algorithms, reduces the high number 

of deaths due to diseases such as cardiovascular diseases and chronic respiratory diseases [4]. Heart rate and 

blood oxygen saturation are the main fundamental data when assessing the condition of such patients [5].  

Until now, several technologies have been used to remotely monitor these two patient parameters and 

predict their values. Oscillometer sensors are the most commonly used type of sensor for remote monitoring of 
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blood pressure (BP). These sensors use the oscillations caused by the pulsations of blood flow to measure 

systolic and diastolic BP [6]. Oscillometer sensors are non-invasive and are typically worn on the wrist or 

upper arm. They are easy to use and provide accurate readings, making them a popular choice for remote 

monitoring of BP in patients with cardiovascular disease (CVD). Plethysmography sensors used for remote 

monitoring of blood pressure. These sensors use light to measure the volume changes in blood vessels, which 

are caused by the pulsations of blood flow. Plethysmography sensors are typically worn on the finger or 

earlobe and are considered to be more accurate than oscillometer sensors [7]. However, they are expensive 

and may be less convenient for patients to use. 

The measurement of SpO2 is important as it provides insight into the oxygenation status of the 

body, which is critical for the management of CVD. Pulse oximetry is the most commonly used method for 

measuring SpO2 in patients with CVD. Pulse oximetry sensors consist of a light-emitting diode (LED) and a 

photodetector, which are placed on the patient's finger or earlobe [8]. The LED emits light of different 

wavelengths, and the photodetector measures the amount of light absorbed by the patient's tissue. The sensor 

then calculates the SpO2 based on the ab-sorption of light at different wavelengths. A study by Xu et al. [9] 

compared the accuracy of pulse oximetry sensors placed on the finger and earlobe in patients with CVD. The 

study found that the sensors placed on the earlobe were more accurate than those placed on the finger. The 

authors also found that the accuracy of the sensors was not affected by the patient's age or gender. 

The literature details several machine learning algorithms that have been used to predict future 

values of the above physiological data. Recurrent neural network (RNN) with long short-term memory 

(LSTM) is a type of neural network that can model the time dependence of subsequent data. They widely 

apply time series forecasting, including market investment forecasting and energy consumption forecasting [10]. 

LSTM networks also detect anomalies in time series data [11]. However, the limitation of LSTM networks is 

their high computational cost and involves large amounts of data for training. Autorregresive integrated 

moving average (ARIMA) is a classic statistical approach that models a time series as a combination of its 

past values, differences, and lagging forecast errors. ARIMA is widely used in various applications such as 

electricity load forecasting and traffic flow forecasting [12]. However, ARIMA assumes that the data is 

stationary, which may not always be the case in real scenarios. Also, ARIMA may not be well suited for 

long-term forecasting. Vector autoregression (VAR) is a statistical model that generalizes ARIMA to 

multiple time series variables. It models relationships between variables and uses the lagging values of each 

variable as predictors. VAR has been used to predict macro-economic variables [13]. However, like ARIMA, 

VAR assumes that the data is stationary and can be poorly used for long-term forecasting. 

According to our research, the disadvantage of previous studies is the lack of an integrated system to 

monitor and predict patients' physiological data in real time. In addition, finding the best correlation of 

regression and classification algorithms for predicting the next value of physiological parameters and 

dividing these predicted values into classes depending on the health status of patients is still an unsolved 

problem. In this work, IoT hardware and software technologies were combined to create a complete system 

to collect important physiological data of patients-heart rate and blood saturation using a unique device and 

predict the future value of these data. To the best of our knowledge, this is the first system that can monitor 

patients' physiological data in real time and predict their future value. 

The purpose of this work is to improve the quality of patient care by creating an integrated system 

for predicting and monitoring vital signs. By presenting patients' potential health trajectories in a timely 

manner, this system eases pressure on acute care facilities and strengthens disease prevention strategies. In 

the following sections of this article, we aim to provide a comprehensive review of our methods and results. 

 

 

2. METHOD  

In this work, we used the technique of remote patient monitoring as shown in Figure 1. The 

monitoring system's data flow diagram (DFD) is displayed in Figure 2. Patient smart monitoring system 

(PSMS) is based on two parties communicating with one another. There are two more databases at DFD. One 

is for patient and health data, and the other is for information on the doctor. The connection and data 

processing are the main goals of the PSMS process. The two main data flows in DFD are from entities to 

databases. They are patient health information and patient/doctor information. The PSMS process uses 

"PatientDB" to collect data on patient health (heart rate and saturation) and information (full name, phone 

number, address, e-mail), as well as doctor information (full name, position, and address). The PSMS process 

is divided into "AI monitoring" and "Data processing," as well as another entity known as "Ambulance 

service." The addition of a new entity is what led to the emergence of three data flows, called "Call" and 

"Notification" to inform "Ambulance service" and "Help" entities led to demonstrate the functioning of an 

ambulance, respectively. PSMS is a "doctor" and a "AI monitoring" system that uses data that has been 

processed and warned as feedback from a doctor or as basic health data with some recommendations. Figure 3 

shows the materials used in the device for collecting vital signs data of patients. A device was created based 
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on ESP32 and a mobile application using Flutter framework in Dart language. Figure 4 shows the mobile 

application prototypes. Since the ESP32 has a built-in Bluetooth module, communication with a mobile 

application written in Dart using the Flutter framework was implemented. If there is no Wi-Fi connection, the 

app will be offline and will only show data from your phone. When connected to Wi-Fi, the app is online, 

thus sending data to the firebase server. Thus, we collected such vital signs data using heart beat and SpO2 

sensors. For experiments based on disease prediction system, we obtain vital signs data from PSMS. The 

dataset contains heart rate and SpO2 vitals for 4 different volunteer-based case studies (the dataset is pre-

filtered to check for any outliers (i.e., low heart rate (HR), low SpO2, and high HR) processed). The proposed 

model aims to predict vital signs sixty seconds into the future. The vital signs prediction system is 

implemented using separate regression and classification models (i.e., to predict vital signs within the next 60 

seconds) and different ranges or levels: low, normal and high to indicate the patient's condition. For 

classification, we use a combination of different ranges (or levels) of vital signs to assign a unique marker or 

class of patient status based on the advice and recommendation of a healthcare professionals. The prediction 

model first predicts a vital sign for a specific time period (i.e., 60 seconds). Additionally, these predicted vital 

signs are fed into a classification model (a machine learning-based model) that classifies the patient's 

condition into one of the 7 classes. The class sign provides the general condition of the patient and helps 

cardiovascular disease to know the cause of the patient's condition (vital sign). This early detection helps 

explain abnormal vital signs (i.e., low HR, high HR, and low SpO2). 
 
 

 
 

Figure 1. Proposed methodology for predicting vital signs 
 

 

 
 

Figure 2. Data flow diagram of the PSMS 
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We divide the dataset into two parts to train and test the machine learning model. To train the 

regression models (to forecast vital signs), we used 5,000 samples of vital signs at 10 millisecond intervals. 

These sampling units are based on 10-minute (50,000 samples at 10-millisecond intervals) patient 

monitoring. For a critically ill patient, the first 60 seconds are usually critical and require immediate 

assistance from caregivers or medical experts. That's why we focus on predicting vital signs within the next 

60 seconds to provide timely patient care. To predict 60-second vital signs, we first performed training of a 

machine learning predictor using 50,000 samples. For evaluation purposes, several benchmarks are used to 

evaluate the performance of each algorithm. These standard measures include F-measure, recall, precision, 

mean square error (MSE). After applying these metrics, the results are explained in detail in chapter 4. 

Malasinghe's research used correlation of binomial, trinomial, quadratic polynomial regression, and 

Naive Bayes, support vector machine (SVM) classification algorithms and the University of Queensland vital 

signs dataset [14]. Their study gave the best F value of 0.83 due to the correlation between quadratic 

polynomial and SVM algorithms. The scientific novelty of our study is that we collected vital signs data 

using our own PSMS device and used RNN(LSTM), ARIMA, VAR regression and Naive Bayes and SVM 

classification algorithms. As a result, the best F-score of 0.86 was achieved due to the correlation of ARIMA 

and SVM algorithms of this indicator. 

This work has scientific and theoretical significance due to a thorough study of the mathematical 

foundations of algorithms for RNN(LSTM), ARIMA and VAR. They were used to create a predictive 

module for predicting heart rate and blood saturation for the next 60 seconds. The practical significance 

arises from the translation of this theoretical framework into a real application using Python, which allows 

you to carefully compare these algorithms and determine the most appropriate one. Moreover, the integration 

of these predicted results with SVMs and Naive Bayes algorithms for classification highlights the practical 

usefulness of the study, offering a universal set of tools for both accurate regression and informative classification 

of vital signs, thereby speeding up the medical decision-making process. and improving patient care. 

A clever combination of cutting-edge algorithms, such as RNNs(LSTM), ARIMA, and VAR, is 

used in this study to forecast vital signs within the next 60 seconds. This method provides a thorough grasp of 

the data's temporal dynamics. On the basis of this, the study employs SVM and Naive Bayes algorithms, 

employing the projected values as input, boosting the prediction capabilities for classification tasks. The 

study's unique contribution is the discovery of correlations between regression and classification methods, 

which represents substantial advancement. Regression and classification are linked in this interconnected 

approach, demonstrating a novel methodology that offers more accurate analysis of medical data and makes 

room for broader applications. 

 

 

 
 

Figure 3. Devices used in PSMS 

 
 

Figure 4. Mobile application prototypes 

 

 

2.1.  Data collection 

The first step is to collect the vital sign data. We used the data obtained by the PSMS device.  

The dataset contains heart rate and blood oxygen vital signs. The dataset contains 5 hours data of different 

volunteers. The details about dataset attribute and patients records in millisecond with 10-millisecond interval 

are mentioned in Table 1. 
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Table 1. List of vital signs and volunteers’ records 
Index Vital signs Volunteers file name Number of samples (with 10 ms interval) 

1 Time Case01 5465 
2 Relative time (MS) Case02 5222 
3 HR Case03 5252 

4 SpO2 Case04 5850 

 

 

2.2.  Preprocessing and normalization 

Data normalization is associated with the removal of redundant (duplicate) and partial data.  

we merge different patient files into one file. After that, we delete irrelevant vital signs from these files (it 

can be seen in Table 2). The dataset contain 5,789 samples for all 4 patients. After pre-processing, we apply 

normalization of the relevant vital signs. Remove all unnecessary (duplicate) data and the missing values as 

shown in Table 3. After preprocessing up to 10% of data is removed. 

 

 

Table 2. Sample raw data of a volunteer 
Index Vital signs Volunteers file name Number of samples (with 10 ms interval) 

1 Time Case01 5,465 
2 Relative time (MS) Case02 5,222 

3 HR Case03 5,252 

4 SpO2 Case04 5,850 

 

 

Table 3. Sample preprocessed and normalized data 
Time Relative time (MS) HR (BPM) SpO2(%) 

00:00:00_000 0 78 98 

00:00:00_010 10 85 94 
00:00:00_020 20 79 82 

00:00:00_030 30 89 83 

00:00:00_040 40 86 97 
00:00:00_050 50 85 78 

 

 

2.3.  Vital signs and classes 

To label data with actual classes representing the patient's situation, global vital sign ranges are used 

with the advice of a medical professional. The three patient status classes (or labels) are presented as high, 

normal, and low, along with a specific vital sign. Normal, low and high ranges of vital signs for both diseases 

are shown in Table 4. 

 

 

Table 4. Vital sign value range 
Vital signs Normal ranges Low ranges High ranges 

HR 60 AND 100 Less than 60 Greater than 100 

SpO2 94 AND 100 Less than 94 Greater than 100 

 

 

We combine these ranges with vital signs to determine the output classes. If all relevant vital signs 

are in low values/ranges, then the corresponding output class will show Low (low means the patient is in a 

critical condition and requires urgent attention), which corresponds to the patient's situation. If one vital sign 

is in the low range as mentioned in Table 4 and the other is in the normal range as mentioned in Table 4, then 

the output class will refer to the low vital sign as the keyword Low (i.e., low heart rate) and ignore the normal 

vital sign sign. The same applies to the high range (high range means critical patient condition and urgent 

need, mentioned in Table 4) of vital signs. We also labeled the combination of high and low vital signs with 

the keywords "Low" and "High" (i.e. "Low HR", "High spO2"). Table 5 provides details related to 

cardiovascular disease. These classes of patients were determined in consultation with medical experts. 

 

 

Table 5. Cardiovascular diseases classification model of 7 output classes 
Class ID 1 2 3 4 5 6 7 

Class Low Normal High Low Low High High 

Label    HR SpO2 HR SpO2 
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2.4.  Regression model 

RNN(LSTM), ARIMA, and VAR are used to predict the next 60-second vital signs because the 

literature review showed that they are powerful methods for modeling and forecasting time series data. RNNs 

are designed to handle sequential data, making them well-suited for time series forecasting. They can 

effectively capture patterns and dependencies in the historical data, which can help to improve the accuracy 

of predictions [15]. 

ARIMA is a statistical method that models a time series as a combination of past values, trends, and 

random noise. This method is often used for univariate time series forecasting, such as vital signs, because it 

can effectively capture trends and seasonality in the data [16]. VAR is a statistical model that considers the 

relationship between multiple time series variables. It can be used to forecast vital signs by taking into 

account the relationship between the vital signs and other relevant variables, such as patient demographics, 

medical history, and other patient data [17]. 

 

2.5.  Classifiers studies 

Different researchers have used different methodologies ranging from linear regression to neural 

networks for forecasting vital signs [18]. Many authors have compared various data mining methods in the 

field of medicine for predicting various diseases. Thus, after reviewing the publications of different authors, 

we found that SVM and Naive Bayes have high predictive accuracy in the medical field for various diseases. 

Therefore, for our experimental study, we choose the SVM and the Bayes algorithm [19]. 

The SVM is employed for a classification task. Based on the classification error and the distance 

between classes, the method modifies the weight vector (w) and bias term (b) throughout the training phase. 

The weights are changed to move a data point farther away from the margin if its margin is less than 1, 

indicating that it is within a "margin buffer zone." The learnt weights and bias for each test instance are used 

to determine the decision score during the classification phase. The method predicts one class if the score is 

positive; if not, it predicts the other class [20]. SVM seeks to identify a hyperplane that maximizes the margin 

between the classes while best separating them. This description adequately conveys [21]. 

Based on instance counts and conditional probabilities for features given each class, it calculates 

prior probabilities for each class during training [22]. In classification, it multiplies prior probabilities with 

matching likelihoods for its features for each test occurrence. The prediction is made for the class with the 

highest product [23]. The algorithm takes into account class-level feature independence. While the main steps 

are covered in this description, real implementation necessitates resolving problems like zero probabilities 

and various feature kinds. 

 

2.6.  Evaluation 

To evaluate the proposed methodology, some standard metrics are applied to assess the performance 

of each algorithm. These metrics are precision, recall, F-measure, MSE [24]. precision (P): precision 

measures the proportion of true positive predictions among all positive predictions made by the model. 

 

𝑃 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (1) 

 

where: 

TP=true positives (correctly predicted positive instances) 

FP=false positives (incorrectly predicted positive instances) 

Recall (R): recall calculates the proportion of true positive predictions among all actual positive instances. 

 

𝑅 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁) (2) 

 

where: 

TP=true positives (correctly predicted positive instances) 

FN=false negatives (actual positive instances missed by the predictions) 

F-measure (F1 score): The F-measure combines precision and recall into a single metric, providing a balance 

between the two. 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙) / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙) (3) 

 

MSE: MSE calculates the average of the squared differences between predicted and actual values. 

The formula for the mean squared error is MSE=Σ(yi−pi)2n, where yi is the ith observed value, pi is the 

corresponding predicted value for yi, and n is the number of observations. The Σ indicates that a summation 

is performed over all values of I [25]. These equations provide a quantitative way to assess the performance 

of each algorithm within the context of the remote patient management system [26]. 
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3. RESULTS AND DISCUSSION  

In this section, regression models (i.e., RNN(LSTM), ARIMA, and VAR) are trained on 5,000 

samples at 10 millisecond intervals for each vital sign (i.e., heart rate and SpO2) of heart failure. The trained 

models of each vital sign are then used to predict the next 60 seconds of the same vital sign. These vital sign 

predictions are used as input to the classification methods (such as SVM, Nave Bayes with output class) 

already described in section 3.4. Therefore, since this is a supervised learning method, we evaluated the 

results using data mining methods (i.e., the regression methods and classification methods used in this study) 

against the results of standard scoring measures (i.e., precision, recall, and f-measure. equal to 1 means that 

the prediction accuracy is high). 

The two-step algorithm for vital sign prediction and classification begins by forecasting the next 60 

seconds of vital sign measurements using time-series prediction models such as LSTM, VAR, or ARIMA. 

Initially, the data is split into training and testing subsets. Using the training data, the selected prediction 

model is trained and subsequently used to predict the next 60 seconds of measurements based on the test 

data. Following this, the predicted 60-second data is leveraged to extract pertinent features (mean and 

variance), which are then fed into a classification model SVM or Naive Bayes. This classifier, trained on the 

extracted features from the training data, then predicts into one of the seven classes, ranging from low to high 

vital sign levels. The outlined algorithm provides a structured approach to first forecast short-term vital sign 

changes and subsequently classify them into predefined categories, serving as a comprehensive method for 

vital sign monitoring and alerting. Further, we describe in detail the obtained results and compare different 

prediction methods used in the algorithm. 

 

3.1.  Classification using RNN(LSTM) 

In this section, the results of RNN(LSTM) and two classification methods are shown in Table 6 and 

Figure 5. In Table 6, the first column shows two types of classification algorithms (i.e. SVM, Naive Bayes) 

with heart failure vital signs. The second column shows the results of RNN estimation methods (LSTM) (i.e. 

MSE). A low MSE value means that the RNN(LSTM) predicts vital signs with a minimum error rate and 

high accuracy. The RNN(LSTM) values are repeated for each classification method to analyze classification 

performance for the same predictors (i.e. RNN predictors (LSTM) of vital signs). The third column presents 

the accepted classification methods (e.g. SVM, Naive Bayes) with precision, recall, and F-score. The third 

column presents those classification methods that predicted high accuracy. A high value (i.e., up to 1) for 

precision, recall, and F-score indicates that the classification method predicted heart failure with high 

accuracy. We focused on the results of F-measures for evaluating data mining methods. The results shown in 

Table 6 are also presented in chart form. These results are based on an RNN model (LSTM) that is trained on 

5,000 samples at 10 ms intervals to predict data for the next 60 seconds. The result shows that SpO2 gives a 

minimum error rate of up to 1.664, hence SpO2 has a high accuracy. In addition, HR showed the error rate of 

1,752 points. The performance score column in Table 6 contains three different types of evaluation methods 

(i.e. precision, recall, and F-score) for evaluating classification methods. According to the result in Table 6, 

SVM achieved a high prediction accuracy score of 0.84. Naive Bayes predicts heart failure by f-test with a 

predictive accuracy of up to 0.81, which is also satisfactory. 

 

 

Table 6. Classification of 60 seconds forecasted value by RNN(LSTM) of CVD 
Classifier RNN(LSTM) Performance metrics 

 Vital sign MSE Precision Recall F measure 

Naïve Bayes HR 1.919 0.76 0.88 0.81 

Spo2 1.878 

SVM HR 1.752 0.77 0.92 0.84 
 Spo2 1.664 

 

 

3.2.  Classification using ARIMA 

By applying the same process to the ARIMA predictive values, we achieved an improved result. The 

results of ARIMA and all two classification methods are shown in Figure 6 and in Table 7. By carefully 

monitoring the MSE, the ARIMA model predicts SpO2 with a minimum error estimate of up to 0.114, which 

is a satisfactory result. According to the result the SVM method achieved a high F-measure prediction 

accuracy score of up to 0.86. 
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Figure 5. Classification of 60 seconds forecasted value by RNN(LSTM) of CVD 

 

 

Table 7. Classification of 60 seconds forecasted value by ARIMA of CVD 
Classifier ARIMA Performance metrics 

 Vital sign MSE Precision Recall F measure 

Naïve Bayes HR 1.729 0.77 0.86 0.82 

Spo2 1.688 

SVM HR 1.262 0.88 0.84 0.86 
Spo2 1.114 

 

 

 
 

Figure 6. Classification of 60 seconds forecasted value by ARIMA of CVD 

 

 

3.3.  Classification using VAR 

We also implemented the VAR model and evaluated its effectiveness. The results of VAR and all 

two classification methods (i.e. SVM, Naive Bayes) are shown in Figure 7 and in Table 8. If we take a close 

look at the MSE, the error results do not improve with the VAR model. The minimum MSE score is up to 

1.664 and the maximum is up to 1.919. In addition, you may notice that performance scores have not 

improved. 

 

 

Table 8. Classification of 60 seconds forecasted value by VAR of CVD 
Classifier ARIMA Performance metrics 

 Vital sign MSE Precision Recall F measure 

Naïve Bayes HR 1.529 0.75 0.77 0.75 
Spo2 1.623 

SVM HR 1.562 0.87 0.77 0.82 

Spo2 1.126 
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Figure 7. Classification of 60 seconds forecasted value by VAR of CVD 

 

 

3.4.  Comparison analysis 

Figure 8 shows a comparison of the above results in this paper. Here, the correlation between 

ARIMA and SVM algorithms shows a higher F value of 0.86 than the others. Therefore, it is effective to use 

the ARIMA algorithm to find the relationships of the data points and labels and to use the SVM algorithm to 

cluster these data. 

 

 

 
 

Figure 8. Algorithm correlation results 

 

 

Table 9 shows the comparison of our research results with the results of [27]. As can be seen in this 

table, in [27] used the correlation of polynomial degree two, three, four regression algorithms and Naive 

Bayes and SVM classification algorithms and the best F score was polynomial degree two and SVM 

algorithm as 0.83 [27]. In our study, a better F-measure of 0.86 was achieved in the correlation of ARIMA 

and SVM algorithms of this indicator. 

 

 

Table 9. Comparison results 
This paper (model name) F measure Reference paper (model name) F measure 

Naïve bayes using RNN(LSTM) 0.81 Naïve bayes using polynomial degree two 0.08 

SVM using RNN(LSTM) 0.84 SVM using polynomial degree two 0.83 
Naïve bayes using ARIMA 0.82 Naïve bayes using polynomial degree three 0.15 

SVM using ARIMA 0.86  SVM using polynomial degree three 0.1 

Naïve bayes using VAR 0.75 Naïve bayes using polynomial degree four 0.001 
SVM using VAR 0.82 SVM using polynomial degree four 0.001 
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4. CONCLUSION  

The results of this study indicate that a device based on ESP32 and a mobile application using 

Flutter framework in Dart language were able to effectively collect vital sign data using heart beat and SpO2 

sensors. As part of this study, a module was created that predicts what the heart rate and Spo2 vital signs will 

be in the next 60 seconds. For data mining, the Python programming language with NumPy, scikit-learn, 

StatsModels, and Matplotlib libraries were used. The following regression machine learning algorithms were 

used to predict the data: RNN(LSTM), ARIMA, and VAR. The results of these algorithms were used as input 

to the SVM and Naive Bayes algorithms used to classify vital signs into classes. Thus, the best correlation of 

the above regression and classification algorithms was found. The F-measure metric used to evaluate the 

performance of a machine learning model was chosen as the main measure when comparing algorithms. 

The results show that the RNN model (LSTM) had a low MSE, indicating high accuracy in 

predicting vital signs. The ARIMA model was able to achieve an improved result compared to RNN(LSTM) 

and predicts SpO2 with a minimum error estimate of up to 0.114. The Naïve Bayes method achieved a high 

f-measure prediction accuracy of up to 0.76 when used with the ARIMA model. The best F index of 0.86 was 

achieved in the correlation of SVM and ARIMA algorithms. It is important to note that the results of the 

study are based on a limited set of data and further studies are needed to confirm these results. 
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