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 This paper details a case study on the implementation of dynamic line rating 
(DLR) to enhance the ampacity rating of Malaysia’s grid. Utilizing heat 

balance equations endorsed by the Institute of Electrical and Electronics 

Engineering (IEEE 738) and the International Council on Large Electric 

Systems (CIGRE technical brochure 601), the ampacity rating of a Zebra-
type aluminum cable steel reinforced (ACSR) conductor on a 275 kV 

transmission line has been assessed. Real-time weather conditions and 

conductor temperatures, measured hourly by the DLR sensor over the course 

of a year, were incorporated into the ampacity calculation to determine the 
available margin. The weather parameters were analyzed based on the 

monsoon seasons. A comparative analysis between various methods outlined 

in the standards and the estimated ampacity rating derived from both 

standards is presented. According to both standards, the findings indicate 
that DLR surpasses static line rating (SLR), highlighting the presence of 

untapped ampacity for grid optimization. Remarkably, CIGRE TB 601 

exhibits a higher ampacity rating margin than the IEEE 738 standard, with a 

percentage difference of 16.20%. The study concludes that the conductor is 
underutilized and proposes optimization through the integration of real-time 

weather conditions data into the heat balance equations. 
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1. INTRODUCTION 

The overhead line (OHL) conductor is vital for reliable and uninterrupted electricity transmission 

from generation sources to end users. To ensure optimal performance, the conductor is subject to a line rating 

that defines the maximum allowable temperature without compromising safety and causing premature ageing 

[1]–[3]. The line rating is essential to maintain proper ground clearance and prevent excessive line sagging, 

which can lead to arcing and faults [3], [4]. 

Traditionally, line ratings have been determined using a conservative approach known as the static 

line rating (SLR) [5]. This approach is based on the conductor’s heat balance equation and worst-case 

conditions [6]. The SLR accurately calculates the line rating by considering conservative weather conditions, 

conductor properties, and load current [1], [3], [4], [7]. The conservative weather conditions, such as low 

wind speeds (0.446 m/s), full solar radiation (850 W/m2) and high ambient temperature (35 ℃) were 
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assumed for SLR. However, the reliance on conservative weather conditions leads to underutilizing of the 

line’s current carrying capacity (ampacity) potential [8]. The SLR is becoming less relevant since it fails to 

consider climate change, integrating renewable energy sources [9], [10], fast-growing demand [11] and 

conductor ageing, which can increase the risk of forced blackouts. The dynamic line rating (DLR) concept 

has emerged as a key solution to address these limitations. DLR utilizes real-time weather conditions to 

determine the line ampacity to optimize the conductor’s transfer capability and improve the flexibility of the 

power system. DLR is also vital in facilitating the energy transition by optimizing grid transfer capacity and 

integrating renewable energy sources. By accurately assessing the current thermal limits of OHL conductors, 

DLR empowers grid operators to safely and effectively increase load transfer capacity [12]. This capability is 

critical in accommodating the intermittent pattern of renewable energy sources like solar and wind power. 

DLR can also help alleviate congestion issues in the transmission network, where power generation plants are 

concentrated and far from the main load centres [13], [14]. 

DLR technology has existed for over two decades, but its recent integration into the grid has become 

feasible due to technological advancement [3]. Several transmission utilities are implementing DLR, 

including Oncor electric delivery (United States), Amprion (Germany) [15], Terna (Italy), RTE (France) [16], 

Elia (Belgium) [3], [17], [18] and Vattenfall (Sweden) [19]. Other countries also have conducted several case 

studies to demonstrate the performance and reliability of DLR systems. In Canada, it analyzed the DLR 

system for a wind installation and showed an average 22% capacity increase over SLR 76% of the time [20]. 

According to case studies in the United Kingdom (UK), DLR integration on all major circuits in England and 

Wales resulted in a capacity increase of up to 30% [18], [21]. Another study reported that the DLR system in 

Ireland increased by 0.2 PU rating between 75% and 95% of the time for individual lines [22]. Based on the 

international experience in Europe, DLR provides capacity increment between 5% to 70% higher than SLR 

depending on location, due to different weather conditions [21], [23]. It is worth noting that weather 

conditions in Southeast Asia differ significantly from those in western nations. Therefore, the result of DLR 

system implementation in Southeast Asia may differ. However, the lack of comprehensive research on DLR 

implementation in Southeast Asia presents a significant concern, especially given the region’s distinct 

weather patterns during the monsoon season. Only Vietnam [24] and Malaysia [13], [25] have conducted 

case studies on DLR in Southeast Asia, but these efforts are still in the early stages. 

Malaysia is characterized by uniform high ambient temperatures with consistent seasonal variations 

in wind speed and direction, which are influenced by the monsoon. The monsoon in Malaysia is categorized 

into four seasons, namely, the southwest monsoon (May-September), the northeast monsoon (November-

March), and two shorter periods of inter-monsoon seasons (March-April and October-November). Southwest 

monsoon (SW) is known as drier weather with minimal monthly rainfall and prevailing wind flow below  

7.7 m/s in most Malaysian states. During SW, the wind originates from the southern Indian ocean and the 

region between Indonesia and Australia. In contrast, the northeast monsoon (NE) season has heavy rainfall 

with lower ambient temperatures. The wind speed range during the NE season is between 5.2 to 10.3 m/s. 

The wind comes from Siberia and China’s coast towards Malaysia during NE. The inter-monsoon phases in 

October and April represent transitional periods indicated by light and variable winds. These periods 

experience the highest average monthly rainfall due to the formation of afternoon thunderstorms aided by 

clear skies in the morning. The range of solar radiation in Malaysia is between 4.7-6.5 kWh/m2 [26]–[29]. 

This paper presents a comprehensive analysis of the heat balance equation proposed by IEEE-738 [30] 

and CIGRE TB-601 [31], focusing on Malaysia’s unique weather conditions. The primary objective is to 

highlight the available ampacity margin of the 275 kV transmission line by employing the DLR system in the 

grid. This study investigates the opportunity of using the DLR system in Malaysia during monsoon seasons 

for grid optimization. 

 

 

2. METHOD 

The overall framework of this study comprises two main standards to determine the OHL 

conductor’s ampacity rating (𝐼𝑚𝑎𝑥⁡), as illustrated in Figure 1. The calculated 𝐼𝑚𝑎𝑥 values were validated 

through comparison with the 𝐼𝑚𝑎𝑥 value obtained from the DLR sensor. Four parameters need to be acquired 

to determine the 𝐼𝑚𝑎𝑥 at its temperature limit (𝑇𝐶𝑚𝑎𝑥). These parameters were based on the heat balance 

equation, which consists of convective cooling (𝑞𝐶  and 𝑃𝑐), radiative cooling (𝑞𝑟 and 𝑃𝑟), solar heating  

(𝑞𝑠 and 𝑃𝑠), and electrical resistance (𝑅𝐴𝐶). 𝐼𝑚𝑎𝑥 was determined based on (1) and (2), referencing the IEEE 

738 and CIGRE TB 601 standards, respectively. 

 

𝐼𝑚𝑎𝑥 = √
𝑞𝑐+𝑞𝑟−𝑞𝑠

𝑅𝐴𝐶(𝑇𝐶𝑚𝑎𝑥)
 (1) 
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𝐼𝑚𝑎𝑥 = √
𝑃𝑐+𝑃𝑟−𝑃𝑠

𝑅𝐴𝐶(𝑇𝐶𝑚𝑎𝑥)
 (2) 

 

 

 
 

Figure 1. Flowchart for the conductor’s 𝐼𝑚𝑎𝑥 calculation algorithm 

 

 

2.1.  Convective cooling 

𝑞𝐶  and 𝑃𝑐 are the main cooling mechanism of the conductor and relies on the participation of wind. 

𝑞𝐶  and 𝑃𝑐 were determined based on (3) to (7), as shown in Table 1. Both IEEE 738 and CIGRE TB 601 

standards acknowledge that 𝑞𝐶  and 𝑃𝑐 can be divided into forced (qc1, qc2 and Pcf) and natural convective 

cooling (qcn and Pcn). 
 

 

Table 1. Convective cooling equations as per IEEE 738 and CIGRE 601 
Standard Convective cooling Wind speed, 𝑉𝑤 Equation  

IEEE 738 Forced Low, qc1 Kangle⁡. [1.01 + 1.35⁡. NRe0.52]. kf. (Ts − Ta) (3) 

High, qc2 Kangle⁡. [0.754⁡. NRe0.6]. kf. (Ts − Ta) (4) 

Natural Zero, qcn 3.645⁡. ρf 0.5. Do0.75. (Ts − Ta)
1.25 (5) 

CIGRE TB 601 Forced High, Pcf π. λf. (Ts − Ta).Nuδ (6) 

Natural Zero, Pcn π. λf. (Ts − Ta).Nuβ (7) 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Dynamic line rating for grid transfer capability optimization in Malaysia (Nurul Husniyah Abas) 

699 

Based on the IEEE 738 standard, five variables need to be acquired to calculate forced convective 

cooling at low (qc1) and high wind speeds (qc2)⁡as shown in (3) and (4), respectively. Kangle is the wind 

direction factor, NRe is the Reynolds number, and kf is the thermal conductivity of air at the average 

temperature of the boundary layer. The conductor surface temperature (Ts) was set to 75 ℃ as it is the 

maximum allowable temperature for Zebra-type aluminum cable steel reinforced (ACSR) conductors.  

The ambient air temperature (Ta) is based on the real-time measurement from the DLR sensor. The density of 

air (ρf) was computed for qcn calculation. The outer diameter of the conductor (Do) was set to 0.02862 m [32]. 

The Pcf and Pcn were determined based on (6) and (7) for high (Pcf) and zero wind speed (Pcn), respectively, 

where λf is the thermal conductivity of air at the average temperature of the boundary layer and Nu is the 

nusselt number. 

 

2.2.  Radiative cooling 

qr ⁡and⁡Pr are through radiation to the surroundings, ground and sky when the conductor’s 

temperature is higher than the Ta. qr⁡and⁡Pr were determined based on (8) and (9), as summarized in Table 2. 

Both standards used the same formula to determine the radiative cooling. qr⁡and⁡Pr are influenced by four 

main parameters, which consist of DO, emissivity (ε), TS and Ta. The constant 17.8 in IEEE 738 is the 

product of Stefan-Boltzmann law (σB) and Pi (π). The ε value was set to 0.5 in this paper.  

 

 

Table 2. Radiative cooling equations as per IEEE 738 and CIGRE 601 
Standard Equation  

IEEE 738 17.8⁡. DO. ε⁡. [⁡(
Ts + 273

100
)
4

−⁡(
Ta + 273

100
)
4

] 
(8) 

CIGRE TB 601 π. DO. σB. εs. [(TS + 273)4 −⁡(Ta + 273)4 (9) (9) 

 

 

2.3.  Solar heating 

qs⁡and⁡Ps occur when the conductor gains heat energy through exposure to solar radiation. 

Therefore, the critical variable in solar heating is the value of the conductor’s absorptivity (α) which was set 

to 0.5 as recommended by utilities in Malaysia. qs by IEEE-738 standard was determined based on (10), 

where Qse is the total radiated heat intensity corrected for elevation, θ is the effective angle of incidence of 

the sun’s rays and A′ is the projected conductor area. In this paper, A′ was assumed to be 0.02862 m. In (11) 

was used to determine the Ps, where IT is the global solar radiation. qs⁡and⁡Ps were determined based on (10) 

and (11), as summarized in Table 3. 

 

 

Table 3. Solar heating equations as per IEEE 738 and CIGRE 601 
Standard Equation  

IEEE 738 α⁡. Qse⁡. sin(θ) . A′  (10) (10) 

CIGRE TB 601 α. IT. D (11) (11) 

 

 

2.4.  Conductor electrical resistance 

𝑅𝐴𝐶  was determined based on (12). The resistance at high temperature (𝑇ℎ𝑖𝑔ℎ) and low temperature 

(𝑇𝑙𝑜𝑤) were set to 8.193−5⁡Ω/m and 6.872−5⁡Ω/𝑚 respectively. 𝑇ℎ𝑖𝑔ℎ, 𝑇𝑙𝑜𝑤 average temperature (𝑇𝑎𝑣𝑔) were 

fixed to 75 ℃, 25 ℃ and 100 ℃ respectively. Based on (12), the computed 𝑅𝐴𝐶(𝑇𝑎𝑣𝑔) was 8.8535−5⁡Ω/𝑚. 

 

𝑅𝐴𝐶(𝑇𝑎𝑣𝑔) = [
𝑅(𝑇ℎ𝑖𝑔ℎ)−𝑅(𝑇𝑙𝑜𝑤)

𝑇ℎ𝑖𝑔ℎ−𝑇𝑙𝑜𝑤
] . (𝑇𝑎𝑣𝑔 − 𝑇𝑙𝑜𝑤) + 𝑅(𝑇𝑙𝑜𝑤) (12) 

 

 

3. CASE STUDY 

A Zebra-type ACSR conductor at 275 kV transmission line with a basic span of 365 m was selected 

in this paper to study the available line ampacity of the conductor. The transmission line was 3 phases,  

a 50 Hz double circuit with a height of 50 m from the ground. The line direction was 3° to the North. The site 

for this case study is situated at coordinates 4.350467° latitude and 100.766050° longitude, where the critical 

line was detected [13]. The configuration and specifications of the conductors used in this case study are 

shown in Figure 2 and Table 4. 
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Figure 2. Configuration of Zebra type ACSR conductor 
 

 

Table 4. Specification of Zebra-type ACSR conductor 
Description (symbol) Value (unit) 

DC resistance @20 ℃ 0.06740 (Ω) 

Outer diameter 0.02862 (m) 

Inner diameter 0.00954 (m) 

Aluminum wire diameter 0.00318 (m) 

Steel core wire diameter 0.00318 (m) 

Aluminum wire layers 3 

 

 

The weather data from the DLR sensor was taken for one year, from January 2021 to January 2022. 

The line ampacity was analyzed using hourly resolutions. Four weather parameters, namely ambient 

temperature, solar irradiance, wind speed and wind direction, were considered in this study. The same 

weather data collected as one-hour average values by the DLR sensor is used in the estimated ampacity 

calculations performed by MATLAB. An independent comparison was made with DLR calculations 

performed by the DLR sensor to validate the estimated calculations. 
 

 

4. RESULT AND DISCUSSION 

The additional ampacity of transmission estimate by DLR based on IEEE 738 and CIGRE TB 601 

can be seen in Figure 3. The estimated ampacity based on the DLR method is higher than the SLR, indicating 

a significant margin between both methods. It is expected since the weather-dependent spare capacity is 

available, and the worst weather conditions assumed by SLR rarely occur [5]. Figure 3 clearly illustrates that 

the DLR system can increase transmission line ampacity for over 97% of the operational time and remain 

within the acceptable range. The estimated DLR by both standards surpasses the SLR by less than 2% of the 

operational time. It implies that the conductor may reach its maximum temperature due to higher loads and 

escalates the risk of line congestion. The CIGRE TB 601 exhibit a larger margin than IEEE 738. The 

percentage difference between both standards is 16.20%. These differences are due to distinct ways to 

calculate solar heat gain and convective cooling. Previous studies indicated that IEEE 738 calculated a lower 

ampacity rating for conductor sizes less than 1,750 kcmil [33]. The correspondence between the two methods 

is relatively strong, with acceptable percentage differences. Thus, both approaches are acceptable for the 

DLR algorithm. 
 

 

 
 

Figure 3. Available ampacity and the SLR OHL for Zebra-type ACSR conductor 

Aluminum 

Steel core 
Inner 

diameter

Outer 

diameter
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The comparison of estimated ampacity rating between MATLAB and DLR sensor can be seen in 

Figures 4 and 5. The figures show that the load current (purple line) consistently stays below the SLR 

throughout the performance period. This phenomenon indicates a safe margin between the actual load current 

and the line’s maximum capacity. The percentage differences between the load current with the estimated 

DLR by IEEE 738 and CIGRE TB 601 are 59.74% and 60.08%, respectively. However, there are specific 

dates during the year when estimated DLR (orange and blue lines) have approached and exceeded SLR. This 

situation highlights the importance of monitoring and managing line capacity during these periods to ensure 

reliable power transmission. The results show that the DLR sensor validates the estimated ampacity rating by 

DLR by MATLAB as the percentage difference is less than 20% for both approaches. Since the DLR sensor 

uses the IEEE 738 standard to calculate the DLR, it has a lower percentage difference (6.98%) than CIGRE 

TB 601 (15.59%). 
 

 

 
 

Figure 4. Estimated DLR by IEEE 738 compared to SLR and load current variation throughout the year 
 

 

 
 

Figure 5. Estimated DLR by CIGRE 601 compared to SLR and load current variation throughout the year 
 

 

4.1.  Wind speed frequency distribution 

The wind speed distribution for each monsoon season can be seen in Figure 6. According to the 

Malaysian Meteorological Department (MET), the wind speed during the SW and NE monsoon is below  

7.7 m/s and 10.3 m/s, respectively. During the inter-monsoon seasons, the winds are generally light [27]. The 

figure presents three ranges of wind speed at the selected transmission line, including low (0.5 m/s), medium 

(1 to 3 m/s), and medium-high range (3.0 to 4.5 m/s). The medium range has the highest frequency 

distribution, with more than 40% in all seasons except in the second monsoon. The medium-high wind speed 

seems insignificant with a frequency distribution less than 5% for all seasons. The range of frequency 
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distribution for low wind speed is between 8 and 15%, but the value is higher than the assumption made by 

SLR (0.446 m/s). 
 

 

 
 

Figure 6. Wind speed distribution 
 

 

4.2.  Wind direction frequency distribution 

The wind direction distribution for each monsoon season can be seen in Figure 7. The wind 

direction is considered with respect to a 90° angle relative to the conductor since the optimal wind direction 

is 90°. The SW and NE seasons share a similar wind direction pattern, with a 6% frequency distribution 

between 40° to 60°. During these seasons, wind predominantly attacks the conductor at 80°. In the inter-

monsoon seasons, wind direction exhibits a variable pattern, particularly at an angle of more than 50°. This 

variable pattern is due to the changing direction of the wind direction. The first inter-monsoon has a higher 

frequency distribution for wind direction less than 40° and declines at wind direction beyond 50°. The second 

inter-monsoon has the lowest frequency distribution at wind direction between 20° and 60°. The wind 

direction parallel with the conductor (wind direction=0°) mostly occurs during inter-monsoon seasons. 
 

 

 
 

Figure 7. Wind direction distribution 

 

 

4.3.  Solar radiation frequency distribution 

The solar radiation distribution for each monsoon season is illustrated in Figure 8. Generally, the 

frequency distribution of solar radiation follows a pattern where it reaches its highest point at 100 W/m2 and 

then gradually decreases to zero. The conductor experiences the highest solar radiation of 1,000 W/m2, which 

is less than 1%. The lowest solar radiation which is 100 W/m2 is between 13% and 15%. The first-inter 

monsoon has the highest solar radiation, with a main distribution of around 600 W/m2 and a 1% frequency 
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distribution of 1,000 W/m2. Other seasons have the similar pattern of solar radiation with main distribution 

between 400 and 500 W/m2. The line experiences higher solar radiation than assumed solar radiation at SLR, 

850 W/m2, which is less than 2% for all seasons, except the first-inter-monsoon season which is less than 4%. 
 

 

 
 

Figure 8. Solar radiation distribution 
 

 

4.4.  Ambient temperature frequency distribution 

The ambient temperature distribution for each monsoon season can be seen in Figure 9. Throughout 

all seasons, the conductor experiences ambient temperatures ranging from 20 ℃ to 30 ℃. The frequency of 

conductor encounters with 30 ℃ ambient temperature is less than 20%. The highest frequency distribution is 

between 50% and 60% for the ambient temperature of 25°. The ambient temperature never reaches 35 ℃ as 

assumed by SLR as the worst-case condition. The NE season has the lowest ambient temperatures, with the 

highest frequency distribution at 20 ℃. In contrast, the first inter-monsoon season has the highest frequency 

distribution in the 25 ℃ to 30 ℃ compared to the other seasons. It is worth noting that the ambient 

temperature is relatively constant throughout the year, with less than a 10% percentage difference between 

the seasons. 
 

 

 
 

Figure 9. Ambient temperature distribution 

 

 

4.5.  Conductor temperature frequency distribution 

The conductor temperature throughout the year to ensure it operates comfortably within safe limits 

can be seen in Figure 10. The conductor temperature mainly falls within the range of 30 °C to 40 °C and 
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remains below the maximum allowable temperature for the Zebra-type ACSR conductor, whereby 75 °C. 

This result implies that the conductor temperature maintains a safe margin of over 40%. The second inter-

monsoon season has the highest frequency distribution for conductor temperature at 50 °C and operates at 

temperatures below 30 °C less frequently than other seasons. In contrast, the first inter-monsoon season 

exhibits a higher frequency distribution for conductor temperature at 50 °C. The southwest and northeast 

seasons show a similar pattern with slight differences in frequency distribution. Assessing the influence of 

weather conditions and conductor temperature is crucial in integrating the DLR system into the grid. 
 

 

 
 

Figure 10. Conductor temperature distribution 
 

 

5. CONCLUSION 

In conclusion, analysis of Malaysia’s 275 kV transmission line shows that DLR can optimize the 

grid capacity. According to estimated ampacity based on IEEE 738 and CIGRE TB 601 standards validated 

by the DLR sensor, the results demonstrate sufficient available capacity. The ampacity rating in CIGRE TB 

601 is 16.20% higher than in IEEE 738. The weather conditions, including wind speed, wind direction, solar 

radiation and ambient temperature, indicate that the transmission line operates comfortably according to the 

monsoon seasons. The conductor temperature consistently remains below 60 ℃ throughout the year, 

representing that the conductor is underutilized and can be optimized. 
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