
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 33, No. 2, February 2024, pp. 1150~1168 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v33.i2.pp1150-1168      1150 

 

Journal homepage: http://ijeecs.iaescore.com 

Enhancing fault tolerance: dual Q-learning with dynamic 

scheduling 

 

 

Chetankumar Kalaskar, Thangam Somasundaram 
Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetam, Bangalore, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Oct 7, 2023 

Revised Nov 4, 2023 

Accepted Dec 8, 2023 

 

 Cloud computing has revolutionized IT delivery by offering scalable on-

demand internet services encompassing software, platforms, and 

infrastructure. However, cloud services face significant performance 

challenges due to their susceptibility to failures given their vast operational 

scale. Implementing fault tolerance in dynamic cloud services is a key 

challenge, with complex configurations and dependencies complicating 

deployment. This paper introduces an innovative approach that combines 

double deep Q-learning (DDQL) with a dynamic fault-tolerant real-time 

scheduling algorithm (DFTRTSA) to enhance fault tolerance in real-time 

systems. DDQL, an extension of deep Q-learning, optimizes the fault-

tolerance decision-making process. The algorithm adjusts scheduling 

strategies dynamically based on system conditions and errors. The fusion of 

DDQL and DFTRTSA aims to create a resilient and adaptive fault-tolerant 

mechanism, ensuring uninterrupted operation while meeting real-time 

requirements. This adaptive approach efficiently manages resources, meets 

deadlines, and gracefully handles errors, as demonstrated through 

experiments. Our DDQL-DFTRTSA method outperforms conventional 

fault-tolerant mechanisms in defect tolerance, energy efficiency, downtime 

reduction, and system dependability. It proves to be an ideal solution for 

real-time systems in dynamic and unpredictable environments. 

Keywords: 

Adaptive system 

Cloud computing 

Double deep Q-learning 

Dynamic scheduling algorithm 

Fault tolerance 

Real-time systems 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Chetankumar Kalaskar 

Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa 

Vidyapeetam, Bangalore, India 

Email: k_chetankumar@blr.amrita.edu 

 

 

1. INTRODUCTION 

Due to the popularity of cloud computing, there is an increasing demand for immediate allocation of 

computing resources to serve applications that are dynamic [1], [2]. Scalability and cost-effectiveness can be 

achieved by running programs on virtual resources, particularly virtual computers [3]. Cloud computing can 

efficiently address the needs of high-performance computing for specific scientific applications.  

The difficulties faced by cloud computing have been exacerbated by the large-scale systems’ increasing 

complexity, with resource failure emerging as a significant worry. There will reportedly be one daily failure 

for a cloud of 10,000 servers with an extraordinarily long mean time between failures (MTBF) of 30 years. 

Furthermore, approximately 5% of disk drives fail yearly, and servers crash at least twice. Worse, data 

centres usually use low-cost commodity technology due to low production costs, increasing the likelihood of 

resource failure. Fault tolerance must, therefore, be offered in the cloud, especially for real-time applications. 

The scheduling aspect of fault tolerance is most important for real-time applications. 

Fault tolerance scheduling links tasks to computing instances to ensure that activities are on time 

even when hardware and software fail. Replication and resubmission are two fundamental scheduling 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Enhancing fault tolerance: dual Q-learning with dynamic scheduling (Chetankumar Kalaskar) 

1151 

algorithms currently employed extensively in handling failures in distribution systems. The flexibility and 

complexity of scheduling are increased by the cloud’s distinctive qualities, which set it apart from 

conventional distributed systems. There are generally three fundamental difficulties: (1) multiple computing 

instances (such as virtual machines (VMs)) will fail if the host crashes; (2) task operation times are very 

variable, and (3) the trade-off between replication and resubmission should be taken into account to reduce 

resource consumption while maintaining task reliability. 

To increase the fault tolerance of real-time systems, this paper examines the combination of two 

complex techniques, double deep Q-learning (DDQL) and dynamic fault-tolerant real-time scheduling 

algorithm (DFTRTSA). DDQL is a reinforcement learning approach with extraordinary performance in 

tackling complicated decision-making problems. DFTRTSA, on the other hand, is a real-time scheduling 

algorithm that adapts dynamically to changing fault circumstances in the system. The fundamental goal of 

this research is to investigate the synergistic effects of integrating DDQL with DFTRTSA in real-time 

systems. This paper intends to design a novel approach that not only identifies and mitigates faults but also 

optimizes task scheduling to maintain system performance and reliability under fault situations by leveraging 

the learning capabilities of DDQL and the adaptability of DFTRTSA. 

This study will delve into the theoretical foundations of DDQL and DFTRTSA, explain their 

respective contributions to fault tolerance, and show how their combination can lead to a more robust and 

trustworthy real-time system. Furthermore, we will offer experimental data and case studies to demonstrate 

our proposed approach’s practical applicability and effectiveness. The ultimate goal is to give insights and 

tools to assist engineers and researchers in building and implementing highly fault-tolerant real-time systems, 

assuring the continuing operation of essential applications in the face of adversity. The essential contributions 

of this work are summarized as follows: 

− To develop a novel approach for enhancing fault tolerance in real-time systems, we combine DDQL with 

a DFTRTSA. DDQL, an extension of DQL, serves to model and optimize the decision-making process of 

the fault-tolerance mechanism. 

− Our approach dynamically adapts the scheduling strategy based on the operational state of the real-time 

system and the occurrence of errors. The fusion of DDQL and DFTRTSA aims to establish a robust and 

adaptive fault-tolerant mechanism that improves the system’s resilience to failures while meeting real-

time performance requirements. 

− This adaptive approach empowers the system to efficiently manage resources, meet deadlines, and 

gracefully handle errors and disruptions, ensuring uninterrupted operation in the face of adversity. 

− This research presents experimental evidence showcasing the superiority of our DDQL-DFTRTSA 

method over conventional fault-tolerant mechanisms. The results illustrate the proposed algorithm's 

exceptional performance in defect tolerance, energy efficiency, downtime reduction, and system 

dependability, making it an ideal solution for real-time systems operating in dynamic and unpredictable 

environments. 

− Experimental results demonstrate that DDQP not only surpasses the state-of-the-art method by 95.66% 

and achieves a 97.44% higher acceptance ratio under the guarantee ratio and task acceptance ratio. 

According to Jin and Zhang [4], the cost-benefit analysis support platform developed for cloud 

computing accounting services focuses primarily on analysing the intermediate data fault tolerance 

technique. The development of an organizational-specific cloud computing accounting service platform is the 

primary goal of this project. A thorough cost-benefit analysis of business transactions is carried out on this 

platform. Compared to already used application approaches, the research uses an enterprise’s transaction cost 

within the accounting service platform to validate and evaluate its effectiveness. With a noteworthy data 

availability probability of 0.98, this approach significantly displays robust data availability even after fault-

tolerant processing. This level of dependability guarantees that users will successfully engage with  

the platform. 

Ahmad et al. [5] presented cluster-based, fault-tolerant, data-intensive (CFD) scheduling for cloud-

based scientific applications. Due to the data-intensive nature of scientific operations, CFD leverages cluster-

based, fault-tolerant technology to address this problem. The minimum completion time (MCT), max-min, 

and min-min heuristic scheduling policies were compared to the CFD approach. The scientific method used 

by montage is a simulation. Simulations demonstrate that compared to the other three strategies, CFD 

reduced make-span by 14.28%, 20.37%, and 11.77%. The CFD reduces execution costs by 1.27%, 5.3%, and 

2.2% compared to the other three strategies. Current restrictions frequently violate the Service level 

agreement (SLA), but due to time and money limits, the CFD technique does not. 

The proactively coordinated fault tolerance (PCFT) solution introduced by Liu et al. [6] takes into 

account VM coordination for concurrent application execution in the cloud while reducing network resource 

demand and energy consumption. PCFT, however, is only suitable for parallel applications and is ineffective 

for processes. To put it another way, the check pointing system can manage momentary resource failures but 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1150-1168 

1152 

not high pass filter (HPF) or other long-term resource failures. Yao et al. [7] proposed the imbalance 

characteristic for fault-tolerant workflow scheduling (ICFWS) technique, which breaks the overall workflow 

deadline into several sub-deadlines at the sub-task level. Individual sub-tasks inside scientific workflows then 

choose appropriate fault-tolerant solutions from a pool of redundancy and rescheduling options driven by 

these previously specified sub-deadlines. Spot instances are the VMs supplied under the dynamic pricing 

mechanism cloud computing companies use. Spot instances are more affordable when compared to the VMs 

offered under the static pricing plan. 

Yuan et al. [8] performed to optimize the goals. However, there are a few things that could be better. 

They would squander many resources and be unable to provide an entirely reliable service. Additionally, its 

performance could be better due to its inability to handle real-time demands. A practical solution is urgently 

needed for concurrent and flexible scheduling of active and standby instances. Long et al. [9] unique fault-

tolerant scheduling method is explicitly designed for cooperative edge-IoT operations. This method starts 

with a thorough examination of work distribution based on dependencies. It then uses a primary/backup (PB) 

technique to deal with job failures at the edge nodes. The approach also uses a deep Q-learning algorithm to 

identify the ideal work scheduling strategy. This study uses thorough simulative case studies that include a 

variety of randomly generated workflows and real records describing the locations of edge-internet of things 

(IoT) servers. The outcomes show that our suggested solution outperforms even the most technologically 

sophisticated rivals regarding essential criteria like job completion ratio, server active time, and resource 

consumption. 

Zhang et al. [10] proposed the online fault detection algorithm support vector machines (SVM) grid. 

This process is critical for cloud stability. The author suggests using different failure detection models to 

understand the cloud system’s fundamental structure. Traditional SVM models are the most popular. 

However, they need higher accuracy. SVM-grid-based online fault detection has been presented to address 

this issue. SVM-grid predicts cloud difficulties. Grid technique fine-tuned the model’s input parameter for 

better prediction accuracy. We have also created a refined prediction algorithm and an improved FT approach 

designed for sample databases to improve fault prediction accuracy while simultaneously lowering time-

related costs. Google2 application cluster datasets were used for simulations. The proposed method was 

compared to back propagation, learning vector quantization (LVQ), and standard SVM. The experimental 

findings demonstrated that the innovative model performed better in accuracy and time than BP, LVQ, and 

standard SVM. 

Rehman et al. [11] substantial foundation on cloud computing supports readers in obtaining a 

thorough understanding of the problem from beginner to expert level. Before developing cloud computing 

fault-tolerance requirements and applications, focus on fault-tolerance components and system-level 

measurements. Discuss modern proactive and reactive fault-tolerance strategies for cloud computing.  

This paper organizes and discusses fault-tolerance ideas and frameworks for cloud computing. This lecture 

discusses potential future directions for cloud computing fault-tolerance research. 

Nirmala et al. [12] proposed employing replication strategies based on an unsupervised model in 

conjunction with weight-synchronized checkpointing to improve process completion effectiveness. 

Unfortunately, previous research fell short in addressing the fault tolerance dilemma because it needed to 

consider the unique aspects of the edge-IoT environment while orchestrating operations. One significant 

difference between the earlier studies and ours is that they should have been regarded as proximity 

restrictions in edge-IoT scenarios. In our study, we provide a novel fault-tolerant scheduling algorithm 

(FTAW) created exclusively for cooperative edge-IoT operations. With the DQN method, task overlap 

reduction, and PB-based replication, we aim to increase workflow scheduling’s fault tolerance for potential 

edge server failures. 

The fault-tolerant adaptive scheduling mechanism with dynamic QoS-awareness (FASDQ), 

developed by Wang et al. [13], is a fault-tolerant adaptive scheduling system with dynamic quality of service 

awareness that extends the PB paradigm. To reduce latency and ensure dependable service for tasks, the 

approach adjusts the execution periods of the task copies. A container resource-adaptive adjustment 

technique is also suggested by this work, which modifies resource scheduling when available resources are 

insufficient to fulfil task copy requirements. To assess the performance differences between FASDQ and 

other approaches, this study presents the findings of simulation tests performed on the EdgeCloudSim 

platform. The results show that this mechanism performs better than competing techniques in dependability 

and total resource consumption while also speeding up the execution of duplicated activities. 

Zhang et al. [14] efficient priority and relative distance (EPRD) algorithm is proposed as a means to 

reduce task scheduling length without violating the end-to-end deadline limitation for precedence-constrained 

workflow applications. There are two processes in this algorithm. A task priority queue is created first.  

The suggested method optimizes resource allocation by assigning a VM to a job based on its relative 

distance, improving scheduling and VM utilization performance. The resource reduction rate and scheduling 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Enhancing fault tolerance: dual Q-learning with dynamic scheduling (Chetankumar Kalaskar) 

1153 

length of the EPRD method significantly outperform those of earlier algorithms, according to several 

extensive experiments utilizing both randomly generated and real-world workflow applications. Poola et al. 

[15] thorough overview of the fault-tolerant methods used in various workflow management systems 

(WFMS) is available online. They also comprehensively taxonomy the different fault tolerance approaches 

used in distributed contexts. The study also examines various measures for calculating fault tolerance. 

Ding et al. [16] the authors propose a fault-tolerant elastic scheduling algorithm designed to 

efficiently manage workflows in cloud systems. Workflow scheduling is a crucial task in cloud computing, 

where multiple tasks or jobs need to be executed on a distributed set of resources. Ensuring fault tolerance is 

especially important in cloud environments to maintain the reliability and availability of services. 

Yan et al. [17] “dynamic fault-tolerant elastic scheduling for tasks (DEFT) with uncertain runtime in cloud,” 

focuses on addressing the challenges posed by tasks with uncertain runtime in cloud computing 

environments. The authors introduce a novel approach called DEFT, which stands for DEFT. This approach 

aims to optimize the allocation of cloud resources for tasks with varying and uncertain execution times. 

Wang et al. [18] the authors introduce a novel approach called DDQP, which stands for DDQL to 

tackle the challenges associated with online SFC placement. This technique leverages reinforcement learning 

and deep learning principles to make intelligent decisions regarding the placement of service functions in a 

network while ensuring fault tolerance. By utilizing a DDQL framework, the approach aims to optimize SFC 

placement dynamically in response to changing network conditions and service requirements. 

Thangam et al. [19] propose architecture for service selection based on consumer feedback in a 

service-oriented environment. Panwar and Supriya [20] introduce dynamic resource provisioning for cloud 

applications through bayesian learning. Prakash et al. [21] explore smart city video surveillance using fog 

computing, while Prakash et al. [22] delve into the issues and future directions of fog computing.  

Singh et al. [23] present a hardware setup for vehicle-to-vehicle communication under foggy conditions. 

Deepika and Prakash [24] focus on power consumption prediction in cloud data centers using machine 

learning techniques. Sandeep and Thangam [25] propose a hybrid cloud approach for efficient data storage 

and security. Iyer [26] provides a comprehensive study on evolutionary games in cloud, fog, and edge 

computing. These studies collectively contribute to a deeper understanding of modern computing paradigms 

and their applications. 

− Real-time systems frequently function in resource-constrained contexts, such as entrenched systems or 

IoT devices. Improving fault tolerance can be complex when processor power, memory, and energy usage 

are limited. 

− Fault tolerance methods frequently include expectations about the types of failures that must be 

addressed. If these assumptions do not match the actual fault characteristics of the system, the fault 

tolerance approach’s practicality can be at risk. 

− As the system evolves or new defects are detected, fault tolerance methods may need to be updated or 

modified. It can be difficult to manage these updates without interfering with system operation. 

− In embedded systems, achieving fault tolerance frequently necessitates trade-offs with other system 

attributes such as power consumption, size, and weight. Selecting the best compromises for an exact 

application can be a challenging problem. 

− Real-time systems must be deterministic to satisfy rigorous timing deadlines. Using fault tolerance events 

may result in non-deterministic behaviour, making it difficult to ensure timely responses. 

In addressing the identified challenges in fault tolerance within real-time systems, our work 

endeavors to present a comprehensive solution. Our proposed approach incorporates double deep Q-learning 

(DDQL) alongside a dynamic scheduling algorithm to fortify fault tolerance: 

− Real-time systems have severe timing limitations, with tasks having to be completed within predefined 

timeframes. Using fault tolerance methods such as redundancy and error recovery should not violate these 

temporal requirements. Complementary fault tolerance with low-latency execution is a problematic task. 

− Many real-time systems run on resource-limited platforms, such as embedded systems or IoT plans. 

Implementing fault tolerance frequently necessitates using extra resources, such as redundant components 

or specialized technology, which might be challenging given the limited resources available. 

− The scale of real-time systems varies from minor embedded devices to large-scale distributed systems. 

Creating fault tolerance systems that are scalable and applicable across various system sizes and 

complexities is a severe challenge. 

− Real-time systems frequently operate in dynamic and unpredictable environments, with the system’s 

requirements and attributes changing over time. Fault tolerance techniques should be able to adapt to 

these changes while still providing adequate protection. 

− Ensuring fault tolerance techniques are successful in real-time systems might be challenging. Complete 

testing and validation procedures are required to ensure fault tolerance mechanisms function correctly 

without risking system performance or safety. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1150-1168 

1154 

Section 2 serves as an introduction to our proposed approach, providing a comprehensive overview 

of the methodologies and frameworks adopted to bolster fault tolerance. This section delves into the 

intricacies of the strategy, highlighting its core principles and how it aims to enhance system reliability.  

In Section 3, we detail the experimental setup, offering a thorough explanation of the parameters, scenarios, 

and data collection methods employed to validate our approach. Here, we present the findings, drawing 

connections between the experimental results and the efficacy of the proposed model. Lastly, Section 4 

encapsulates the study, summarizing the key takeaways, implications, and potential avenues for future 

research. This conclusive section ties together the insights gleaned, reinforcing the significance of the 

proposed approach in the domain of fault-tolerant systems. 

 

 

2. PROPOSED SYSTEM 

This section explores the usage of DDQL and a DFTRTSA. DQL models and optimizes the fault-

tolerance mechanism’s decision-making process. The suggested technique dynamically adapts the scheduling 

strategy depending on real-time system operation and failures. DDQL and DFTRTSA produce a robust and 

adaptive fault-tolerant mechanism that improves system resilience and real-time performance. This adaptive 

method helps the system manage resources, fulfil deadlines, and gracefully handle mistakes and disruptions, 

assuring uninterrupted functioning in adversity. Additionally, we provide experimental proof that our DDQL-

DFTRTSA technique outperforms standard fault-tolerant systems. 

 

2.1.  Architecture of the system 

A schematic representation of our approach is presented in Figure 1. The data centre’s hosts can 

each offer several VMs or computer instances. Users’ task flows have been queued and are ready to be sent 

to the data centre’s computing instances. A work scheduler plus a performance monitor makes up the system 

scheduler. On the monitor, the system’s performance is currently displayed. The task scheduler DDQL 

assigns tasks depending on input from the presentation monitor. This system uses a star architecture for 

communication between the performance monitor, task scheduler and data centre. Without sacrificing 

generality, the data center connectivity delay can be ignored. 

 

2.2.  Model of the system 

This paper assume that the data centre has n physical hosts available or 𝐻𝑜𝑠𝑡 = {𝐻1, 𝐻2 , … , 𝐻𝑛}. 

Cloud data canters are generally part of heterogeneous clusters, with the VM serving as the core computing 

entity. On a single host, several VMs can be created. For ease of use, let’s call the j-th VM on this host 𝐻𝑘. In 

the meanwhile, all VMs can be categorized under a heading we’ll name 𝑉𝐶𝑖 = 𝑉𝐶𝑘,𝑗. For instance, 𝑉𝐶 =

{𝑉𝐶1, 𝑉𝐶2, … , 𝑉𝐶𝑚} denotes that 𝐻𝑘 on this host is the i-th VM in the collection. This paper focuses on 

computationally intensive jobs heavily influenced by processing capability. The processing power of the host 

and the VM 𝑉𝐶𝑖 is designated as 𝑃𝐻𝑖 𝑎𝑛𝑑 𝑃𝑉𝑖. To device processing power, millions of instructions per 

second are utilized. 𝑇𝑎𝑠𝑘 = {𝑇1, 𝑇2, … , 𝑇||𝑇𝑎𝑠𝑘||} denotes a real-time task set made up of T non-preemptive 

and independent tasks. A job 𝑇𝑖  is described as ‖𝑇𝑎𝑠𝑘‖ = (𝐴𝑖 , 𝐷𝑖 , 𝑆𝑖), Ai, Di, and Si are the arrival time, 

deadline, and task size quantified in millions of instructions. Both replication and resubmission are 

thoroughly discussed in this study. The PB model is used for replication. Each task 𝑇𝑖  has two copies, a 

primary copy 𝑇𝑖
𝑝
 and a backup copy 𝑇𝑖

𝐵, each of which is assigned to a different VMS on another host.  

The assignment is then re-submitted to the system if a problem develops with the task’s initially assigned 

host. The mathematic explanation is simplified by expressing the first submission task as 𝑇𝑖
𝑝
 and the 

subsequent submission task as 𝑇𝑖
𝐵. Resubmission delays sending to the system 𝑇𝑖

𝐵 until the initial task has 

failed 𝑇𝑖
𝑝
, in contrast to replication. 𝑅𝑖,𝑘 denotes the moment when VM 𝑉𝐶𝑘 was prepared to start working. 

 

2.3.  Runtime estimation 

Usually, the job size and the system’s performance influence how long a task takes to complete. 

Estimating the execution time for a specific job is challenging due to the dynamic demand that affects both 

the cloud’s hardware and software performance. Because of this, past work has heavily relied on static 

estimation of task runtime to lessen problem complexity [16]. The discrepancy between expected length and 

actual required time significantly impacts task scheduling accuracy. By taking into account the following 

factors, we provide an efficient runtime estimation method for job 𝐻𝑖  executing on VM 𝑉𝐶𝑘: 

− Factor 1: static processing is possible using 𝑃𝑘. It is the average processing power of 𝑉𝐶𝑘. Thus, we can 

calculate the static runtime of task 𝑇𝑖  as 𝑇𝑆𝑖,𝑘 =
𝑆𝑖

𝑃𝑘
, where 𝑆𝑖 is the task size. 

i T 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Enhancing fault tolerance: dual Q-learning with dynamic scheduling (Chetankumar Kalaskar) 

1155 

− Factor 2: 𝑇𝑉𝑖,𝑘stands for runtime execution variation. In fact, it is closely related to the static runtime 

𝑇𝑆𝑖,𝑘. As a result, we define −𝑎𝑖𝑇𝑆𝑖,𝑘 ≤ 𝑇𝑉𝑖,𝑘 ≤ 𝑎𝑖𝑇𝑆𝑖,𝑘(0 ≤ 𝑎𝑖 < 1), where i indicate task runtime 

uncertainty.  

− Factor 3: 𝑇𝐷𝑖,𝑘 is the domain of runtime estimate. The static runtime and the uncertainty lead to 𝑇𝐷𝑖,𝑘 =

𝑇𝑆𝑖,𝑘 + 𝑇𝑉𝑖,𝑘. Consequently, the following phrase provides 𝑇𝐷𝑖,𝑘:  

 

𝑇𝐷𝑖,𝑘 ∈ [(1 − 𝑎)𝑇𝑆𝑖,𝑘, (1 + 𝑎)𝑇𝑆𝑖,𝑘] (1) 

 

⌊𝑇𝐷𝑖,𝑘⌋ = (1 − 𝑎𝑖)𝑇𝑆𝑖,𝑘 𝑎𝑛𝑑 ⌊𝑇𝐷𝑖,𝑘⌋ = (1 + 𝑎𝑖)𝑇𝑆𝑖,𝑘 are the lower and higher bounds of the predicted job 

runtime, respectively. 

− Factor 4: we assume 𝑇𝐷𝑖,𝑘is the sample space of all possible actual runtimes, and 𝑇𝑅𝑖,𝑘is one of the 

sample points. We assume that the job runtime is distributed uniformly. The probability density function 

for 𝑇𝑅𝑖,𝑘 is expressed as (2). 

 

𝑓(𝑇𝑅𝑖,𝑘) = {

1

2𝑎𝑖𝑇𝑆𝑖,𝑘
, ⌊𝑇𝐷𝑖,𝑘⌋ < 𝑇𝑅𝑖,𝑘 > ⌈𝑇𝐷𝑖,𝑘⌉

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
 (2) 

 

 

 
 

Figure 1. An overview of our proposed method 

 

 

2.4.  Fault model 

A typical failure interval for computer systems is roughly 75 minutes. Nevertheless, the time needed 

to complete a cloud task is less than 3 minutes. So, in the case of a host failure, we anticipate that the tasks 

currently running on that host will be completed appropriately by their backup copies (or re-submitted 

copies) before another host encounters a problem. Additionally, we assume that the cloud infrastructure has 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1150-1168 

1156 

methods for failure detection, such as acceptance tests and fail signals [17]. A host’s failure is discovered 

right away. We presume that each host failure is distinct from the others. It is important to note that by 

classifying hosts into different groups, our fault-tolerant technique can be utilized to resolve various host 

problems. 

 

2.5.  Task scheduling algorithm 

Ensuring resource distributions adhere to fault-tolerant requirements while allocating jobs to the 

proper VMs is the key problem with fault tolerance. The main problem and delay of a single job should, 

when using the replication strategy, be distributed among VMs on different hosts for fault tolerance since the 

failure of one host results in the failure of all VMs on it. A different host should always be chosen when a 

work is resubmitted after being abandoned due to host failure.  

In this section, we consider scheduling alternatives for fitting new work inside time limitations, after 

which we examine task allocation ceilings when replication and resubmission are used. We assume N active 

VMs to maintain generality. We will first provide an overview of the three definitions below to help analyse 

scheduling strategies. 

Definition 1. 𝐸𝑆𝑖,𝑘
𝑝

: earliest start time the 𝐸𝑆𝑖,𝑘
𝑝

 of a task 𝑇𝑖  primary task on 𝑉𝐶𝑘 is defined the ES 

when 𝑇𝑖
𝑝
 can primary execution if 𝑇𝑖

𝑝
 assigned to the kth VM, as indicated by the equation: 

 

𝐸𝑆𝑖,𝑘
𝑝

= 𝑀𝐴𝑋 {𝑅𝑖,𝑘
𝑝

, 𝐴𝑖}, 𝑘 ∈  {1, 2, … , 𝑁} (3) 

 

initial time of finish 𝐸𝐹𝑖,𝑘
𝑝

 bottom and upper bounds can be determined by calculating task runtime estimates 

as follows: 

 

⌊𝐸𝐹𝑖,𝑘
𝑝

⌋ =  𝐸𝑆𝑖,𝑘
𝑝

+ ⌊𝑇𝐷𝑖,𝑘
𝑝

⌋, 𝑘 ∈ {1, 2, … , 𝑁} (4) 

 

⌊𝐸𝐹𝑖,𝑘
𝑝

⌋ =  𝑆𝑖,𝑘
𝑝

+ ⌊𝑇𝐷𝑖,𝑘
𝑝

⌋, 𝑘 ∈ {1, 2, … , 𝑁} (5) 

 

Definition 2. Latest start time 𝐿𝑆𝑖,𝑗
𝐵 : the backup (or resubmitted) task’s 𝐿𝑆𝑖,𝑗

𝐵  is defined as the LS at 

which 𝑇𝑅𝑖,𝑗
𝐵  must backup execution if 𝑇𝑖

𝐵 is allotted to the jth VM if the real runtime 𝑇𝑅𝑖,𝑗
𝐵  can be retrieved in 

development, which is resolute by the following expression: 

 

𝐿𝑆𝑖,𝑗
𝐵 = 𝐷𝑖 − 𝑇𝑅𝑖,𝑗

𝐵 , 𝑗 ∈ {1, 2, … , 𝑁} (6) 

 

the area of 𝑇𝑅𝑖,𝑗
𝐵  is used to provide specified lower and upper boundaries that limit the latest start time; 

 

⌊𝐿𝑆𝑖,𝑗
𝐵 ⌋ 

 

⌊𝐿𝑆𝑖,𝑗
𝐵 ⌋ =  𝐷𝑖 − ⌊𝑇𝑅𝑖,𝑗

𝐵 ⌋, 𝑗 ∈ {1, 2, … , 𝑁} (7) 

 

⌈𝐿𝑆𝑖,𝑗
𝐵 ⌉ =  𝐷𝑖 − ⌈𝑇𝑅𝑖,𝑗

𝐵 ⌉, 𝑘 ∈ {1, 2, … , 𝑁} (8) 

 

Definition 3. Task 𝑇𝑖  dynamic time is defined by the dynamic time definition 𝐷𝑇𝑖,𝑘as follows: 

 

𝐷𝑇𝑖,𝑘 = 𝐷𝑖 − 𝐸𝐹𝑖,𝑘
𝑝

, 𝑘 ∈ {1, 2, … , 𝑁} (9) 

 

the lower and higher constraints shown below confine the dynamic time 𝐷𝑇𝑖,𝑘: 

 

⌊𝐷𝑇𝑖,𝑘⌋ =  𝐷𝑖 − ⌊𝐸𝐹𝑖,𝑘
𝑝

⌋, 𝑘 ∈ {1, 2, … , 𝑁} (10) 

 

⌈𝐷𝑇𝑖,𝑘⌉ =  𝐷𝑖 − ⌈𝐸𝐹𝑖,𝑘
𝑝

⌉, 𝑘 ∈ {1, 2, … , 𝑁} (11) 

 

three different scheduling scenarios are connected to fault tolerance. 

Case 1. Non-fault tolerance (NFT): if the task’s deadline 𝑇𝑖  is less than its earliest EF time, and the 

task cannot be finished before the deadline on 𝑉𝐶𝑘 probably, the scheduling approach for the kth VM is NFT. 

Figure 2 depicts an example of NFT. If task 𝑇𝑖  is assigned to 𝑉𝐶𝑘, the lower certain of the earliest completion 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Enhancing fault tolerance: dual Q-learning with dynamic scheduling (Chetankumar Kalaskar) 

1157 

time 𝐸𝐹𝑖,𝑘
𝑝

 will exceed the deadline 𝐷𝑖 , implying that the task can only be complete after the deadline.  

As a result, we refer to this as the NFT case. 

 

 

 
 

Figure 2. A sample of NFT 

 

 

Case 2. Weak fault tolerance (WFT): if the task’s deadline falls within the 𝐸𝐹𝑖,𝑘
𝑝

 domain and the task 

can or cannot be capable to appearance by its deadline on 𝑉𝐶𝑘, the scheduling technique for the kth VM 𝑇𝑖  is 

WFT. Figure 3 demonstrates an example of WFT. When a task 𝑇𝑖  is assigned to 𝑉𝐶𝑘, it is possible to 

determine that the deadline 𝐷𝑖  is larger than but less than the 𝐸𝐹𝑖,𝑘
𝑝

. This means that there is a greater than 0% 

but less than 100% chance that the project will be completed on time. As a result, this is known as the WFT 

condition. 

 

 

 
 

Figure 3. A sample of WFT 

 

 

Case 3. Strong fault tolerance (SFT): if a task 𝑇𝑖  can continuously be performed before its deadline 

on 𝑉𝐶𝑘, the scheduling approach for the kth VM is SFT. Figure 4 depicts an example of SFT. While task 𝑇𝑖  is 

assigned to the 𝑉𝐶𝑘, the higher certain of the earliest completion time 𝐸𝐹𝑖,𝑘
𝑝

 is less than the deadline 𝐷𝑖 , 

implying that the possibility of finishing the work before the deadline is 1. As a result, assign this scenario 

the SFT rating. 

 

 

 
 

Figure 4. A sample of SFT 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1150-1168 

1158 

Corollary 1. ∀𝑇𝑖 ∈ 𝑇𝑎𝑠𝑘, 𝑖𝑓⌈𝐷𝑇𝑖,𝑘⌉ ≤ 0, then scheduling the task 𝑇𝑖  to 𝑉𝐶𝑘 is NFT. Proof. 

According to (10) and (11), the dynamic time 𝐷𝑇𝑖,𝑘 reflects the comparative value amongst the earliest finish 

time 𝐸𝐹𝑖,𝑘
𝑝

 and the deadline 𝐷𝑖 . If 𝐷𝑇𝑖,𝑘 is less than zero, 𝐸𝐹𝑖,𝑘
𝑝

 will exceed the 𝐷𝑖  deadline. As a result, this 

scenario falls under NFT. Corollary 2. If ∀𝑇𝑖 ∈ 𝑇𝑎𝑠𝑘, 𝑖𝑓⌈𝐷𝑇𝑖,𝑘⌉ > 0 𝑎𝑛𝑑⌊𝐷𝑇𝑖,𝑘⌋, then scheduling task 𝑇𝑖  to 

VM 𝑉𝐶𝑘 is WFT. Proof. The following deductions are proven by (10) and (11); (1) if ⌈𝐷𝑇𝑖,𝑘⌉ > 0 is 

produced, then ⌈𝐸𝐹𝑖,𝑘
𝑝

⌉ ≥ 𝐷𝑖 is established; (2) if ⌈𝐷𝑇𝑖,𝑘⌉ ≤ 0 is formed, then ⌈𝐸𝐹𝑖,𝑘
𝑝

⌉ ≤ 𝐷𝑖 is deduced. As a 

result of WFT, the task can or cannot be completed by its deadline. Corollary 3. When the task ∀𝑇𝑖 ∈

𝑇𝑎𝑠𝑘, 𝑖𝑓⌈𝐷𝑇𝑖,𝑘⌉ is scheduled, SFT is obtained if 𝑇𝑖  to VM 𝑉𝐶𝑘. Proof. We can deduce that ⌈𝐸𝐹𝑖,𝑘
𝑝

⌉ < 𝐷 is 

produced from (10). SFT ensures the task is consistently finished ahead of schedule. 

 

2.5.1. The fundamental scheduling approach for fault tolerance 

Scheduling approaches should be varied because tasks and VMs are heterogeneous. Based on the 

activity’s temporal characteristics, the scheduling method is examined. The task cannot be scheduled for the 

VM 𝑉𝐶𝑘 if task 𝑇𝑖  on that VM is non-fault tolerant. If task 𝑇𝑖  has non-fault tolerance across all VMs in the 

cloud, the scheduler would reject the job or create a new VM to complete it. The following sections 

investigate suitable scheduling options for weak and robust fault tolerance. 

i. If task 𝑇𝑖  is of WFT on VM 𝑉𝐶𝑘 

Weak fault tolerance 𝐷𝑖  suggests that task 𝑇𝑖  might be completed earlier than expected.  

The possibility of final the job 𝑇𝑖on 𝑉𝐶𝑘 before the deadline is what is meant by the likelihood 𝑃𝑘(𝑇𝑖). 

 

𝑃𝑘(𝑇𝑖) =
⌈𝐷𝑇𝑖,𝑘⌉

⌈𝐸𝐹
𝑖,𝑘
𝑝

⌉−⌈𝐸𝐹
𝑖,𝑘
𝑝

⌉
 (12) 

 

Numerous VMs running on a cloud architecture could create a fault tolerance risk. 𝑇𝑖  global 

optimum scheduling method’s main goal is to determine the maximum 𝑃𝑘(𝑇𝑖) value for each 𝑉𝐶𝑘 while 

providing reliable fault tolerance. The formal definition of this value is 𝑃𝑚𝑎𝑥(𝑇𝑖) = 𝑀𝐴𝑋{𝑃𝑘(𝑇𝑖)}, ∀𝑉𝐶𝑘 ∈
𝑉𝑀𝑠. However, it is incredibly unlikely that the work will be finished before the deadline if 𝑃𝑘(𝑇𝑖) is low. 

Scheduling the work on 𝑉𝐶𝑘 could waste resources and have an adverse effect on how the subsequent actions 

are carried out. We use a threshold 𝑇𝑎𝑠𝑘𝑖
𝑤 , 0 <  𝑇𝑎𝑠𝑘𝑖

𝑤 ≤ 1 to regulate the scheduling strategy choice. 

ii. If task 𝑇𝑖  VM 𝑉𝐶𝑘displays high fault tolerance 

This situation allows task 𝑇𝑖  to be routinely completed before its due date 𝐷𝑖 . Determining when to 

use the resubmission method and when to employ the replication mechanism is a significant challenge 

regarding overall resource optimization. Corollary 4 is introduced here. 

Corollary 4. ∀𝑇𝑖 ∈ 𝑇𝑎𝑠𝑘, the replication mechanism must be used if 𝑖𝑓⌈𝐸𝐹𝑖,𝑘
𝑝

⌉ ≥ ⌊𝐿𝑆𝑖,𝑗
𝐵 ⌋. Proof.  

If ⌈𝐸𝐹𝑖,𝑘
𝑝

⌉ ≥ ⌊𝐿𝑆𝑖,𝑗
𝐵 ⌋, then the initial job 𝑇𝑖

𝑝
 and the resubmission task 𝑇𝑖

𝐵 will overlap in time. If the 

resubmission is used, there is not sufficient time to complete the work to be finished by its deadline 

⌈𝐿𝑆𝑖,𝑗
𝐵 ⌉when the first job fails after 𝐷𝑖 . As a result, a replication technique must be used to achieve effective 

fault tolerance.  

There can be no time-overlapping if ⌊𝐸𝐹𝑖,𝑘
𝑝

⌋ < ⌈𝐿𝑆𝑖,𝑗
𝐵 ⌉, therefore the resubmission procedure is 

possible. However, if ⌈𝐿𝑆𝑖,𝑗
𝐵 ⌉ is just slightly greater than ⌊𝐸𝐹𝑖,𝑘

𝑝
⌋, as shown in Figure 5, there may need to be 

more time to complete the re-submitted assignment. If the initial job 𝑇𝑖
𝑝
 fails at the 𝑇𝑓𝑎𝑖𝑙 ≥  ⌈𝐿𝑆𝑖,𝑗

𝐵 ⌉ donated 

like the arrow in this example, the resubmitted work cannot be completed. 

 

 

 
 

Figure 5. An example of ineffective resubmission fault tolerance 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Enhancing fault tolerance: dual Q-learning with dynamic scheduling (Chetankumar Kalaskar) 

1159 

2.6.  Enhanced scheduling method for high fault tolerance 

Resubmission and replication are covered in this section, along with their availability and effects on 

task scheduling. Due to oscillations in task runtime, task scheduling can adopt resubmission. Resubmission 

comes in a variety of forms that fall into two categories. Task scheduling is efficiently allocating and 

managing computational tasks across a system’s resources to maximize throughput, minimize latency, and 

ensure the successful execution of tasks. In the context of SFT and replication, task scheduling has added 

significance as it must consider the redundancy and distribution of tasks to ensure uninterrupted operation in 

the face of failures. 

Definition 4. Time of intersection 𝐼𝑆𝑇𝑘,𝑗(𝑇𝑖) the time window during which the implementation of 

𝑇𝑖
𝑝
 and 𝑇𝑖

𝐵 might coincide is known as the intersection time of a task 𝑇𝑖 . 𝐼𝑆𝑇𝑘,𝑗(𝑇𝑖) mathematical expression 

is as (13).  

 

𝐼𝑆𝑇𝑘,𝑗(𝑇𝑖) = ⌈𝐸𝐹𝑖,𝑘
𝑝

⌉ − ⌊𝐿𝑆𝑖,𝑗
𝐵 ⌋ (13) 

 

2.7.  DDQL 

DDQL is an innovative method that can transform fault tolerance in real-time systems. DDQL uses 

deep reinforcement learning to improve systems’ resilience in time-critical contexts. This sophisticated 

technique combines deep learning with reinforcement learning to enable systems to react to errors and 

proactively prevent possible failures, dramatically enhancing fault tolerance. This paper explores the 

fascinating topic of using DDQL to improve fault tolerance in real-time systems. We look into the 

fundamental principles of DDQL, practical uses, and its potential to alter how we see and handle fault 

tolerance problems in critical systems. DDQL presents a viable road ahead in reaching improved levels of 

dependability and resilience in real-time systems, ultimately leading to safer and more efficient operations 

across a wide range of disciplines. Join us as we investigate systems DDQL and its potential to revolutionize 

the field of fault tolerance. 

 

2.7.1. DQN framework 

The Q-learning (QL) parameter’t’ is modified following the action. If the reward ‘Rt’ has caused the 

state ‘St’ to change, then; 

 

𝜃𝑡+1 = 𝜃 + 𝛽 (𝑋𝑡
𝑄 − 𝑄(𝑆, 𝛼1; 𝜃𝑡)) ∇𝜃𝑡𝑄(𝑆, 𝛼𝑡; 𝜃𝑡) (14) 

 

where β is the step size and  is the aim, expressed as; 

 

𝑋𝑡
𝑄 = 𝑅 + 𝛾 𝑚𝑎𝑥𝛼𝑄(𝑆𝑡 , 𝑎; 𝜃𝑡) (15) 

 

Where γ is the discount factor, stochastic gradient descent is used to update the current value 𝑄(𝑆𝑡 , 𝐴𝑡; 𝜃𝑡) in 

the direction of the goal value 𝑋𝑡
𝑄

. A DQL is a multi-layered neural network that generates a network 

parameter and an action vector of 𝑄(𝑆𝑡 , . ; 𝜃) for a state that is described by 𝑆𝑡. The neural network’s 𝑛 

function is built for state spaces with n dimensions and action domains with m activities. Consequently, 

DQN’s purpose is to. 

 

𝑋𝑡
𝐷𝑄𝑁 = 𝑅 + 𝛾𝑚𝑎𝑥𝛼𝑄(𝑆𝑡 , 𝑎; 𝜃𝑡

−) (16) 

 

where 𝜏 the settings are reset after each step, so that 𝜃𝑡
− = 𝜃𝑡. 

As previously mentioned, the max operator, as stated in (17) and (18), is used by both QL and DQN, 

which selects and evaluates actions using the same values. Because of this similarity, DQN has a problem 

that causes unduly optimistic value estimates. In the context of DDQL, experiences are allocated at random 

to update one of two different value functions, creating two sets of weights (selectors and evaluators).  

As a result, (7) goal value can be written as follows: 

 

𝑋𝑡
𝑄 = 𝑅 + 𝛾𝑄(𝑆𝑡 , arg 𝑚𝑎𝑥𝑎𝑄(𝑆𝑡 , 𝑎; 𝜃𝑡); 𝜃𝑡) (17) 

 

the QL mistake twice as (18). 

 

𝑋𝑡
𝐷𝑜𝑢𝑏𝑙𝑒𝑄 = 𝑅 + 𝛾𝑄(𝑆𝑡 , 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑆𝑡 , 𝑎; 𝜃𝑡)𝜃𝑡

′) (18) 

 

Q

tX



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1150-1168 

1160 

2.7.2. DDQN based training procedure 

A prominent value-based DRL technique that can experience overestimation is DQN (deep Q-

networks) [18]. Maximizing the Q-Learning technique leads to overestimation, which happens when the 

estimated value function exceeds the real value function? We use DDQN to compute the Q-network 𝑄∅  

(S, a) of the candidate’s actions to directly maximize the quality of SFC deployment to solve this problem. 

Learning the parameter that will enable Q-network 𝑄∅ (S, a) to approach Q-function 𝑄𝜋 (S, a) is the aim of 

DDQN. A training episode, a time slot, includes many MDP state transitions. These state changes are 

buffered and used for training from the start of each episode until the end. The following is an outline of the 

target function: 

 

𝑋 = 𝑅 + 𝛾𝑄(𝑆𝑡 , 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑆𝑡 , 𝑎; 𝜃𝑡); 𝜃−) (19) 

 

in this case, θ stands for the weights of the original Q-function Q and θ for the consequences of the intended 

Q-function Q. The rewards given as feedback are denoted by R. In contrast, the state at the following time 

step is represented by St. A fully connected neural network with five layers and 50 neurons per hidden layer 

makes up the proposed DQL architecture. Tanh is the hidden neurons’ activation function, while a linear 

activation layer is the output. The DDQL algorithm’s structure is shown in Figure 6. 

 

 

 
 

Figure 6. Structure of DDQL 

 

 

Algorithm 1 describes the DDQN-based training technique. We set up the Q network infrastructure 

in each episode. With each MDP state transition, the agent improves fault tolerance in real-time systems and 

earns a reward Rt. To be more specific, to balance policy exploitation with environmental research, we use 

the -greedy technique for selecting actions. Additionally, we train functions Q and Q with different parameter 

values using the double method, which significantly decreases the problem of overestimation and yields 

outstanding results. 

 

Algorithm 1. Double deep Q networkbased training procedure 

Step 1: Begin: Initialize replay memory D to capacity N  

Step 2: Initialize Q-function Q with random weights θ 

Step 3: Initialize target Q-function �̂� with weights θ – = θ 

Step 4: for episode         1, M do  

Step 5: Initialize the Q network environment and let state S          S1 and preprocessed sequence 𝜙1= 𝜙(S1) 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Enhancing fault tolerance: dual Q-learning with dynamic scheduling (Chetankumar Kalaskar) 

1161 

Step 6: for t         1, T do  

Step 7: Select an action at randomly with the probability €, otherwise select action at = max Q (St, a; θ)  

Step 8: Execute action at and observe reward Rt  

Step 9: Transfer the state to S and preprocess (ϕ, at, Rt, ϕt+1)  

Step 10: Store transition (φt, at, rt, φt+1) in D  

Step 11: Sample random minibatch of transitions (ϕj, aj, Rj, ϕj+1) from D  

Step 12: If episode terminates at step j + 1 then  

Step 13: Set xj = Rj 

Step 14: else 

Step 15: Set a’=argmax a’, Q (ϕj+1, a, θ) 

Step 16: Set xj=Rj, + γ �̂�(ϕj+1, a’; θ–) 

Step 17: end if  

Step 18: Perform a gradient descent step on (xi, -Q (ϕj, aj, θ))2 with respect to the network parameters θ 

Step 19: Every C steps reset �̂�= Q 

Step 20: end for  

Step 21: end for 

 

2.8.  Advantages of proposed method 

− DFTRTSA’s capacity to tolerate defects in real-time systems is one of its key advantages. It can adapt 

and recover from unforeseen failures by incorporating fault tolerance methods into the scheduling 

algorithm, ensuring the system’s stability. 

− DFTRTSA is intended to maximize the use of available resources such as CPU time and memory.  

It guarantees that vital jobs are efficiently scheduled, eliminating resource waste. 

− Because DFTRTSA is dynamic, it can adapt to changing situations in real-time systems. It can alter 

scheduling priorities and techniques based on the current condition and workload of the system to ensure 

optimal performance. 

− When DDQL and DFTRTSA are combined, the system can make proactive scheduling decisions that 

minimize downtime and maximize the availability of key services or tasks. 

− DFTRTSA can efficiently distribute resources to many tasks with varying priorities and requirements. 

This adaptability is critical in situations when duties vary in importance. 

 

 

3. RESULTS AND DISCUSSION 

This section primarily encompasses extensive simulations conducted for DDQL-DFTRTSA.  

We employed random workload generation; incorporated statistical task dispersion using various artificially 

generated datasets based on different distributions, and utilized real-time work logs from sources [27], [28]. 

To evaluate the performance of the DDQL-DFTRTSA scheduler, we conducted an extensive set of 

experiments utilizing the cloudsim [29] simulator. To begin our analysis, we initially employed various 

statistical data distributions to evaluate all relevant parameters. We generated datasets labeled as D01, D02, 

D03, and D04, which corresponded to uniform, normal, left-skewed, and right-skewed distributions, 

respectively. Following this, we calculated network lifetime using these datasets. Subsequently, we shifted 

our focus to real-time work logs, referred to as D05 and D06 throughout our research. The deliberate 

selection of these datasets for use in this simulation is noteworthy, as many previous authors have 

traditionally relied on randomly generated workloads. However, it is essential to recognize that the utilization 

of randomly generated workloads in addressing scheduling problems of this nature does not yield precise 

schedules. Therefore, we opted to create distinct distributions of datasets, specifically D01 through D04.  

In addition, to assess the energy consumption of the approach; we chose real-time work logs from both the 

HPC2N computing cluster and NASA work logs. This section encompasses various subsections, which cover 

configuration settings required for the simulation, the computation of throughput, energy consumption, end-

to-end delay, network lifetime, guarantee ratio, and the task acceptance ratio of VMs. A thorough discussion 

of the produced results and analysis is presented in a separate subsection. The experimental design for this 

investigation is detailed in subsection 3.1, followed by descriptions of the comparative methodologies in  

subsection 3.2 and the performance metrics in subsection 3.3. Finally, a detailed discussion of the generated 

results and analysis is presented in subsection 3.4. 

 

3.1.  Experimental setup 

This subsection provides a clear representation of the experimental setup and the standard 

configuration settings employed in our simulation. To assess the proposed DDQL-DFTRTSA, we conducted 

a comparative analysis with existing state-of-the-art approaches, namely ICFWS, PCFT, EPRD, and WFMS 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1150-1168 

1162 

are among the current approaches that have been contrasted utilizing the configuration settings obtained from 

[28]. Table 1 displays the configuration settings applied to the simulation for the proposed DDQL-

DFTRTSA. 

 

 

Table 1. Configuration settings for simulation 
Name Quantity 

No. tasks 1,000 

Length of tasks 900,000 
Processing elements 1,200 MIPS 

Hypervisor type Monolithic 

Physical host hard disk capacity 2 TB 
Processing elements 1,200 MIPS 

OS of physical host MAC 

Bandwidth of virtual resources 15 Mbps 
Bandwidth capacity of physical host 100 Mbps 

Memory of virtual host 2,048 MB 

Name of the hypervisor Xen 
Operating system of virtual host Linux 

Physical host memory 32 GB 

No. of datacenters 10 

 

 

3.2.  Comparative methods 

To validate the performance of our model, we compared our results with the following state-of-the-

art. ICFWS, PCFT, EPRD, and WFMS are among the current approaches that have been contrasted.  

PCFT [6]: PCFT, on the other hand, is only appropriate for parallel applications and is ineffective for 

processes. To put it another way, the check-pointing system can handle short-term resource failures, not long-

term ones like HPF. ICFWS [7]: the ICFWS method breaks down the overall workflow deadline into several 

smaller deadlines at the level of the individual subtasks. EPRD [14]: the EPRD algorithm is proposed to 

reduce task scheduling length without violating the end-to-end deadline limitation. WFMS [15]: online 

documentation for fault-tolerant approaches used in various WFMS is available. They also offer  

a comprehensive taxonomy of the different fault tolerance mechanisms utilized in distributed situations. 

 

3.3.  Performance evaluation 

In assessing our comprehensive approach's effectiveness in fortifying fault tolerance within real-

time systems, we've opted for various evaluation metrics. These metrics encompass throughput, energy 

consumption, end-to-end delay, network lifetime, guarantee ratio, and task acceptance ratio. Through the 

prism of these metrics, we aim to gauge the performance and resilience of our proposed approach. Each 

metric offers a distinct vantage point, enabling a multifaceted evaluation of the system's robustness. By 

leveraging these diverse metrics, we seek to provide a comprehensive analysis of how our approach impacts 

the various facets crucial to fault tolerance in real-time systems. 

 

3.3.1. Throughput analysis 

Throughput analysis refers to inspecting and assessing the system’s ability to maintain consistent 

and uninterrupted data processing and task execution in case of faults or failures. This study aids in the 

identification of potential bottlenecks and adjustments to ensure that the system can continue to satisfy its 

performance and timing requirements in the face of adversity. The throughput analysis of the DDQL-

DFTRTSA approach in comparison to the current techniques is shown in Table 2 and Figure 7. The node 

demonstrates unequivocally how superior in every way the recommended strategy is to the alternatives.  

The DDQL-DFTRTSA method, for instance, has a throughput of 1334.19 kbps with 100 nodes, compared to 

the throughputs of the other existing methods, such as PCFT, ICFWS, DEFT, and EPRD, which are, 

respectively, 934.34 kbps, 1189.87 kbps, 1098.14 kbps, and 1034.19 kbps. The suggested technique has a 

throughput of 1455.67 kbps with 500 nodes, compared to 999.78 kbps, 1245.98 kbps, 1187.98 kbps, and 

1156.87 kbps for the current methods, PCFT, ICFWS, DEFT, and EPRD respectively. This demonstrates the 

higher performance and higher throughput of the DDQL-DFTRTSA approach. 

 

3.3.2. Energy consumption analysis 

Energy consumption refers to the systematic examination and evaluation of power usage within real-

time computing systems to improve their ability to withstand and recover from faults or failures while 

optimizing energy efficiency. Table 3 and Figure 8 display the energy consumption analysis of the DDQL-

DFTRTSA method with existing methods. The proposed method consumes very little energy compared to 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Enhancing fault tolerance: dual Q-learning with dynamic scheduling (Chetankumar Kalaskar) 

1163 

the other techniques for any number of nodes. For example, with 100 nodes, the DDQL-DFTRTSA method 

consumes only 21.87J while the other methods like PCFT, ICFWS, DEFT, and EPRD consume 31.88J, 

36.76J, 26.88J, and 40.19J respectively. Similarly, with 500 nodes, the proposed DDQL-DFTRTSA method 

consumes only 25.55J, whereas the other methods, like PCFT, ICFWS, DEFT, and EPRD, consume 35.19J, 

39.12J, 30.13J, and 44.66J, respectively. The proposed method shows higher performance with less energy 

consumption. 

 

 

Table 2. Throughput analysis for DDQL-DFTRTSA method with existing systems 
Number of nodes PCFT ICFWS DEFT EPRD DDQL-DFTRTSA 

100 934.34 1189.87 1098.14 1034.19 1334.19 

200 936.91 1191.54 1099.96 1067.78 1345.23 

300 967.98 1195.87 1134.18 1112.87 1376.19 
400 989.99 1221.17 1176.77 1145.18 1412.19 

500 999.78 1245.98 1187.98 1156.87 1455.67 

 

 

 
 

Figure 7. Throughput analysis for DDQL-DFTRTSA method with existing systems 

 

 

Table 3. Energy consumption analysis for DDQL-DFTRTSA method with existing systems 
Number of nodes PCFT ICFWS DEFT EPRD DDQL-DFTRTSA 

100 31.88 36.76 26.88 40.19 21.87 
200 32.44 37.12 27.12 41.16 22.56 

300 33.98 38.88 28.88 42.33 23.76 

400 34.55 38.98 29.99 43.55 24.18 
500 35.19 39.12 30.13 44.66 25.55 

 

 

 
 

Figure 8. Energy consumption analysis for DDQL-DFTRTSA method with existing systems 
 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1150-1168 

1164 

3.3.3. Network lifetime analysis 

Network lifetime refers to evaluating and optimizing the durability and reliability of interconnected 

systems, particularly in real-time settings, to ensure continued operation even in the presence of faults or 

failures. This analysis includes examining the network’s lifespan and applying techniques to improve fault 

tolerance, thereby improving the system’s capacity to satisfy its performance objectives over a prolonged 

period. The suggested DDQL-DFTRTSA methodology’s network lifetime is contrasted with existing 

methods in Table 4 and Figure 9. The results determine unequivocally that the DDQL-DFTRTSA method 

outperformed all other techniques. The suggested DDQL-DFTRTSA approach, for example, took only 0.234 

sec as its network lifetime for 100 nodes. In contrast, other current methods such as PCFT, ICFWS, DEFT, 

and EPRD have taken 8.115sec, 6.113sec, 4.567sec, and 2.675sec, respectively. Similarly, the suggested 

DDQL-DFTRTSA approach takes 1.998sec as its network lifetime of 500 nodes, while existing techniques 

like PCFT, ICFWS, DEFT, and EPRD have taken 10.334sec, 8.456sec, 5.887sec, and 4.187sec, respectively. 

 

 

Table 4. Network lifetime analysis for DDQL-DFTRTSA method with existing systems 
Number of nodes PCFT ICFWS DEFT EPRD DDQL-DFTRTSA 

100 8.115 6.113 4.567 2.675 0.234 

200 9.567 6.456 4.987 2.776 0.156 

300 9.178 7.543 5.112 3.443 0.786 
400 10.651 7.771 5.554 3.678 1.556 

500 10.334 8.456 5.887 4.187 1.998 

 

 

 
 

Figure 9. Network lifetime analysis for DDQL-DFTRTSA method with existing systems 

 

 

3.3.4. End to end delay analysis 

End-to-end delay analysis evaluates and optimizes the amount of time data or signals travel through 

a system to assure the system’s ability to tolerate errors and sustain dependable operation in real-time or 

time-sensitive applications. The suggested DDQL-DFTRTSA methodology’s end-to-end delay is contrasted 

with existing methods in Table 5 and Figure 10. The results determine unequivocally that the DDQL-

DFTRTSA method outperformed all other techniques. The suggested DDQL-DFTRTSA approach, for 

example, took only 1.345sec as its end-to-end delay with 100 nodes. In contrast, other current methods such 

as PCFT, ICFWS, DEFT, and EPRD have taken 10.234sec, 8.123sec, 6.789sec, and 4.156sec, respectively. 

Similarly, the suggested DDQL-DFTRTSA approach takes 3.987sec as its end-to-end delay with 500 nodes, 

while existing techniques like PCFT, ICFWS, DEFT, and EPRD have taken 12.987sec, 9.567sec, 7.998sec, 

and 6.177sec, respectively. 

 

 

Table 5. End to end delay analysis for DDQL-DFTRTSA method with existing systems 
Number of nodes PCFT ICFWS DEFT EPRD DDQL-DFTRTSA 

100 10.234 8.123 6.789 4.156 1.345 
200 10.987 8.456 6.998 4.987 1.987 

300 11.234 8.998 7.134 5.556 2.567 

400 12.765 9.145 7.897 5.987 2.667 
500 12.987 9.567 7.998 6.177 3.987 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Enhancing fault tolerance: dual Q-learning with dynamic scheduling (Chetankumar Kalaskar) 

1165 

 
 

Figure 10. End to end delay analysis for DDQL-DFTRTSA method with existing systems 

 

 

3.3.5. Guaranteed ratio analysis 

Guaranteed ratio is a methodology for assessing and optimizing the reliability and performance of 

real-time computer systems by analysing the ratio of guaranteed task completions to total task executions, 

thereby improving the system’s ability to withstand faults and disruptions while meeting critical timing 

requirements. A comparison of the DDQL-DFTRTSA strategy’s guarantee ratio to various existing methods 

is shown in Figure 11 and Table 6 The graph illustrates how the deep learning approach has an improved 

efficiency with the guaranteed ratio. In contrast to the guaranteed ratio values of 75.12%, 82.66%, 79.12%, 

and 87.45% for the PCFT, ICFWS, DEFT, and EPRD models, respectively, the DDQL-DFTRTSA model 

has a guaranteed ratio of 92.76% for 100 nodes. However, the DDQL-DFTRTSA model has performed better 

with various nodes. The DDQL-DFTRTSA model has a guaranteed ratio of 95.66% under 500 nodes, 

compared to the PCFT, ICFWS, DEFT, and EPRD models, which have guaranteed ratio values of 78.94%, 

86.77%, 81.87%, and 91.45%, respectively. 

 

 

Table 6. Guaranteed ratio analysis for DDQL-DFTRTSA method with existing systems 
Number of nodes PCFT ICFWS DEFT EPRD DDQL-DFTRTSA 

100 75.12 82.66 79.12 87.45 92.76 

200 76.66 83.44 80.78 88.98 93.87 

300 77.88 84.55 80.66 89.45 93.44 
400 78.34 85.66 81.23 90.17 94.55 

500 78.94 86.77 81.87 91.45 95.66 

 

 

 
 

Figure 11. Guaranteed ratio analysis for DDQL-DFTRTSA method with existing systems 

 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1150-1168 

1166 

3.3.6. Ratio of task accepted analysis 

The ratio of task accepted analysis is a metric that measures the percentage or proportion of tasks or 

requests that are successfully accepted or completed within a certain environment, it aids in assessing 

efficiency and performance by calculating the success rate in completing activities or assignments.  

A comparison of the DDQL-DFTRTSA strategy’s ratio of tasks accepted to various existing methods is 

shown in Figure 12 and Table 7. The graph illustrates how the deep learning approach has an improved 

efficiency with increase in ratio of tasks accepted. In contrast to the ratio of 69.45%, 78.98%, 73.87%, and 

87.88% for the SMANN, MS-LBP, FAGWO, OB-LBP, and DBN models, respectively, the DDQL-

DFTRTSA model has a ratio of of 93.44% for 100 nodes. However, the DDQL-DFTRTSA model has 

performed better with various data sizes. The DDQL-DFTRTSA model has a ratio of task accepted with 

97.44% under 500 nodes, compared to the SMANN, MS-LBP, FAGWO, OB-LBP, and DBN models, which 

have a ratio of 72.78%, 85.88%, 77.12%, and 92.67%, respectively. 

 

 

Table 7. Ratio of task accepted analysis for DDQL-DFTRTSA method with existing systems 
Number of nodes PCFT ICFWS DEFT EPRD DDQL-DFTRTSA 

100 69.45 78.98 73.87 87.88 93.44 

200 69.66 80.77 74.66 88.12 94.67 

300 70.45 82.77 75.89 89.67 95.55 
400 71.23 83.21 76.98 91.23 96.89 

500 72.78 85.88 77.12 92.67 97.44 

 

 

 
 

Figure 12. Ratio of task accepted analysis for DDQL-DFTRTSA method with existing systems 

 

 

3.4.  Analysis and result discussion 

This section provides a clear presentation of result analysis and discusses how the proposed DDQL-

DFTRTSA enhances scheduling while addressing parameters such as throughput, energy consumption, end-

to-end delay, network lifetime, guarantee ratio, and task acceptance ratio. We performed an extensive series 

of simulations utilizing cloudsim [31]. Initially, we generated datasets with various statistical distributions, 

labeled as D01, D02, D03, and D04. Subsequently, we evaluated DDQL-DFTRTSA using real-time work 

logs, namely HPC2N [29] and NASA, represented as D05 and D06. The suggested DDQL-DFTRTSA 

approach was compared to existing advanced methods, ICFWS, PCFT, EPRD, and WFMS. Table 2 

illustrates the improvement in throughput for DDQL-DFTRTSA compared to existing approaches, while 

Table 3 demonstrates the reduction in energy consumption. In Table 4, we observe the extension of network 

lifetime, and Table 5, the enhancement of end-to-end delay. Furthermore, Table 6 indicates an improvement 

in guarantee ratio, and Table 7 displays an increase in task acceptance ratio. Collectively, these results 

highlight the significant impact of the proposed DDQL-DFTRTSA in generating schedules and enhancing 

service level agreement-based trust metrics, ultimately improving the quality of service and fostering trust in 

the cloud provider. A key distinction between our approach and other methods lies in our consideration of 

task and VM priorities. DDQL-DFTRTSA outperforms existing approaches in terms of energy consumption, 

throughput, network lifetime, end-to-end delay, guarantee ratio, and task acceptance ratio. 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Enhancing fault tolerance: dual Q-learning with dynamic scheduling (Chetankumar Kalaskar) 

1167 

4. CONCLUSION 

In conclusion, combining DDQL and a DFTRTSA is a viable and new method for addressing real-

time system difficulties. This study demonstrated the utility of DDQL in optimizing task scheduling and 

resource allocation while combining DFTRTSA’s robustness and adaptability in the face of faults and 

uncertainty. The findings of this study reveal that DDQL, through its reinforcement learning capabilities, can 

effectively adapt to changing system conditions and optimize resource allocation, resulting in enhanced real-

time scheduling performance. When combined with DFTRTSA, the system becomes efficient and resilient, 

with the ability to mitigate the impact of faults and disruptions. Additionally, DDQL and DFTRTSA’s 

partnership has the potential to significantly increase the dependability and predictability of real-time systems 

across a range of industries, including aerospace, automotive, industrial automation, and more.  

The requirement for robust and adaptive real-time systems will only grow as technology advances, making 

integrating DDQL and DFTRTSA an appealing route for future study and practical implementation. 

According to the experimental results, the proposed work achieves a throughput of 1455.67kbps, a network 

lifetime of 1.998sec, an end delay of 3.987sec, energy consumption of 25.55J, a guaranteed ratio of 95.66%, 

a ratio of task accepted of 97.44%. It remains robust when compared to current methods. Developing the 

future of real-time systems provided increased performance and the resilience required to handle the 

challenges of a constantly evolving technological context. 

 

 

REFERENCES 
[1] A. Rista, J. Ajdari, and X. Zenuni, “Cloud computing virtualization: a comprehensive survey,” in 2020 43rd International 

Convention on Information, Communication and Electronic Technology, MIPRO 2020 - Proceedings, Sep. 2020, pp. 462–472, 

doi: 10.23919/MIPRO48935.2020.9245124. 
[2] J. Kumar, A. K. Singh, and R. Buyya, “Self directed learning based workload forecasting model for cloud resource management,” 

Information Sciences, vol. 543, pp. 345–366, Jan. 2021, doi: 10.1016/j.ins.2020.07.012. 

[3] H. Raei and N. Yazdani, “Performability analysis of cloudlet in mobile cloud computing,” Information Sciences, vol. 388–389, 
pp. 99–117, May 2017, doi: 10.1016/j.ins.2017.01.030. 

[4] T. Jin and B. Zhang, “Intermediate data fault-tolerant method of cloud computing accounting service platform supporting cost-

benefit analysis,” Journal of Cloud Computing, vol. 12, no. 1, p. 2, Jan. 2023, doi: 10.1186/s13677-022-00385-4. 
[5] Z. Ahmad, A. I. Jehangiri, M. A. Ala’anzy, M. Othman, and A. I. Umar, “Fault-tolerant and data-intensive resource scheduling 

and management for scientific applications in cloud computing,” Sensors, vol. 21, no. 21, p. 7238, Oct. 2021, doi: 

10.3390/s21217238. 
[6] J. Liu, S. Wang, A. Zhou, S. A. P. Kumar, F. Yang, and R. Buyya, “Using proactive fault-tolerance approach to enhance cloud 

service reliability,” IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp. 1191–1202, Oct. 2018, doi: 

10.1109/TCC.2016.2567392. 
[7] G. Yao, Y. Ding, and K. Hao, “Using imbalance characteristic for fault-tolerant workflow scheduling in cloud systems,” IEEE 

Transactions on Parallel and Distributed Systems, vol. 28, no. 12, pp. 3671–3683, Dec. 2017, doi: 10.1109/TPDS.2017.2687923. 

[8] G. Yuan et al., “Fault tolerant placement of stateful VNFs and dynamic fault recovery in cloud networks,” Computer Networks, 
vol. 166, p. 106953, Jan. 2020, doi: 10.1016/j.comnet.2019.106953. 

[9] T. Long et al., “A novel fault-tolerant scheduling approach for collaborative workflows in an edge-IoT environment,” Digital 

Communications and Networks, vol. 8, no. 6, pp. 911–922, Dec. 2022, doi: 10.1016/j.dcan.2022.08.010. 
[10] P. Zhang, S. Shu, and M. Zhou, “An online fault detection model and strategies based on SVM-grid in clouds,” IEEE/CAA 

Journal of Automatica Sinica, vol. 5, no. 2, pp. 445–456, Mar. 2018, doi: 10.1109/JAS.2017.7510817. 
[11] A. U. Rehman, R. L. Aguiar, and J. P. Barraca, “Fault-tolerance in the scope of cloud computing,” IEEE Access, vol. 10, pp. 

63422–63441, 2022, doi: 10.1109/ACCESS.2022.3182211. 

[12] S. J. Nirmala, A. R. Setlur, H. S. Singh, and S. Khoriya, “An efficient fault tolerant workflow scheduling approach using 
replication heuristics and checkpointing in the cloud,” Journal of Parallel and Distributed Computing, vol. 136, pp. 14–28, Feb. 

2020, doi: 10.1016/j.jpdc.2019.09.004. 

[13] R. Wang, N. Chen, X. Yao, and L. Hu, “Fasdq: fault‐tolerant adaptive scheduling with dynamic qos‐awareness in edge containers 

for delay‐sensitive tasks,” Sensors, vol. 21, no. 9, p. 2973, Apr. 2021, doi: 10.3390/s21092973. 

[14] L. Zhang, L. Zhou, and A. Salah, “Efficient scientific workflow scheduling for deadline-constrained parallel tasks in cloud 

computing environments,” Information Sciences, vol. 531, pp. 31–46, Aug. 2020, doi: 10.1016/j.ins.2020.04.039. 
[15] D. Poola, M. A. Salehi, K. Ramamohanarao, and R. Buyya, “A taxonomy and survey of fault-tolerant workflow management 

systems in cloud and distributed computing environments,” in Software Architecture for Big Data and the Cloud, Elsevier, 2017, 

pp. 285–320. 
[16] Y. Ding, G. Yao, and K. Hao, “Fault-tolerant elastic scheduling algorithm for workflow in cloud systems,” Information Sciences, 

vol. 393, pp. 47–65, Jul. 2017, doi: 10.1016/j.ins.2017.01.035. 

[17] H. Yan, X. Zhu, H. Chen, H. Guo, W. Zhou, and W. Bao, “DEFT: dynamic fault-tolerant elastic scheduling for tasks with 
uncertain runtime in cloud,” Information Sciences, vol. 477, pp. 30–46, Mar. 2019, doi: 10.1016/j.ins.2018.10.020. 

[18] L. Wang, W. Mao, J. Zhao, and Y. Xu, “DDQP: a double deep q-learning approach to online fault-tolerant sfc placement,” IEEE 

Transactions on Network and Service Management, vol. 18, no. 1, pp. 118–132, Mar. 2021, doi: 10.1109/TNSM.2021.3049298. 
[19] S. Thangam, E. Kirubakaran, and J. William, “Architecture for service selection based on consumer feedback (FBSR) in service 

oriented architecture environment,” Asian Journal of Information Technology, vol. 13, no. 5, pp. 282–286, 2014, doi: 

10.3923/ajit.2014.282.286. 
[20] R. Panwar and M. Supriya, “Dynamic resource provisioning for service-based cloud applications: a bayesian learning approach,” 

Journal of Parallel and Distributed Computing, vol. 168, pp. 90–107, Oct. 2022, doi: 10.1016/j.jpdc.2022.06.001. 

[21] P. Prakash, R. Suresh, and P. N. D. Kumar, “Smart city video surveillance using fog computing,” International Journal of 
Enterprise Network Management, vol. 10, no. 3–4, pp. 389–399, 2019, doi: 10.1504/IJENM.2019.103165. 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1150-1168 

1168 

[22] P. Prakash, K. G. Darshaun, P. Yaazhlene, M. V. Ganesh, and B. Vasudha, “Fog computing: issues, challenges and future 

directions,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 6, pp. 3669–3673, Dec. 2017, doi: 
10.11591/ijece.v7i6.pp3669-3673. 

[23] M. P. Singh, K. Sangeeta, and B. Sreevidya, “Hardware setup for vlc based vehicle to vehicle communication under fog weather 

condition,” International Journal of Advanced Science and Technology, vol. 29, no. 3 Special Issue, pp. 145–152, 2020. 
[24] T. Deepika and P. Prakash, “Power consumption prediction in cloud data center using machine learning,” International Journal of 

Electrical and Computer Engineering (IJECE), vol. 10, no. 2, pp. 1524–1532, Apr. 2020, doi: 10.11591/ijece.v10i2.pp1524-1532. 

[25] H. R. Sandeep and S. Thangam, “A hybrid cloud approach for efficient data storage and security,” Proceedings of the 6th 
International Conference on Communication and Electronics Systems, ICCES 2021, pp. 1072–1076, 2021, doi: 

10.1109/ICCES51350.2021.9488938. 

[26] G. N. Iyer, “Evolutionary games for cloud, fog and edge computing-a comprehensive study,” in Advances in Intelligent Systems 
and Computing, vol. 990, 2020, pp. 299–309. 

[27] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “CloudSim: a toolkit for modeling and simulation of 

cloud computing environments and evaluation of resource provisioning algorithms,” Software - Practice and Experience, vol. 41, 
no. 1, pp. 23–50, Jan. 2011, doi: 10.1002/spe.995. 

[28] C. Santoro, F. Messina, F. D’Urso, and F. F. Santoro, “Wale: a dockerfile-based approach to deduplicate shared libraries in 

docker containers,” in Proceedings - IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 
IEEE 16th International Conference on Pervasive Intelligence and Computing, IEEE 4th International Conference on Big Data 

Intelligence and Computing and IEEE 3rd Cyber Science and Technology Congress, DASC-PICom-DataCom-CyberSciTec 2018, 

Aug. 2018, pp. 776–784, doi: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00135. 
[29] F. D’Urso, C. Santoro, and F. F. Santoro, “Wale: a solution to share libraries in docker containers,” Future Generation Computer 

Systems, vol. 100, pp. 513–522, Nov. 2019, doi: 10.1016/j.future.2019.03.049. 
 

 

BIOGRAPHIES OF AUTHORS 

 
 

 

Chetankumar Kalaskar     received the B.Eng. degree in Poojya Doddappa 

Appa College of engineering Karnataka India in 2009 and the Master of Technology 

Poojya Doddappa Appa College of Engineering Karnataka India 2012 Currently, he is an 

Assistant professor at the Department of Computer science Poojya Doddappa Appa College 

of Engineering. His research interests include deep learning, machine learning, and cloud 

computing. He can be contacted at email: k_chetankumar@blr.amrita.edu. 

 

 

Dr. Thangam Somasundaram     currently serves as an Assistant Professor 

(SG) in the department of computer science at the Amrita School of Computing Bengaluru 

Amrita Vishwa Vidyapeetham India. Her area of interest in research includes service-

oriented architecture, networks, data structures and cloud computing. She completed her 

Ph.D. in Computer Science and Engineering from Anna University, Chennai. India. She 

has 22 years of teaching experience. She has published her research works in 8 

international journals. She is a member of ISTE. She can be contacted at email: 

s_thangam@blr.amrita.edu. 

https://orcid.org/0009-0002-7829-1904
https://scholar.google.com/citations?user=iJSbWKIAAAAJ&hl=en
https://orcid.org/0000-0003-2251-3651
https://scholar.google.co.in/citations?user=88yzQt4AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=35173605500

