
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 33, No. 2, February 2024, pp. 1116~1125

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v33.i2.pp1116-1125 1116

Journal homepage: http://ijeecs.iaescore.com

Ontology learning from object-relational mapping metadata

and relational database

Agus Sutejo1,2, Rachmat Gernowo1, Michael Andreas Purwoadi2
1School of Postgraduate Studies, Universitas Diponegoro (UNDIP), Semarang, Indonesia

2National Research and Innovation Agency Republic of Indonesia (BRIN), Jakarta, Indonesia

Article Info ABSTRACT

Article history:

Received Oct 4, 2023

Revised Nov 27, 2023

Accepted Dec 13, 2023

 Ontologies play an important role in representing the semantics of data

sources. Building an ontology as a representation of domain knowledge from

available data sources is not a simple process, particularly when dealing with

relational data, which remains prevalent in existing knowledge systems. In

this study, we create an ontology from a relational database using object-

relational mapping (ORM) metadata as additional rules for mapping. Our

method comprises two main phases: ontology schema construction using

ORM metadata and the generation of ontology instances from the relational

database. During the initial phase, we analyzed the ORM metadata to map it

to an resource description framework schema (RDF(S))-OWL representation

of the ontology. In the subsequent phase, we applied mapping rules to

convert the relational database (RDB) data into ontological instances, which

are then represented as RDF triples. Using ORM metadata, we enhance the

accuracy of the resulting ontology, particularly in terms of extracting

concepts and hierarchical relationships. This study contributes to the field of

ontology learning by showcasing a novel approach that leverages ORM

metadata to create ontologies from relational databases.

Keywords:

Ontology

Ontology learning

ORM metadata

RDF

Relational database

Web ontology language

This is an open access article under the CC BY-SA license.

Corresponding Author:

Agus Sutejo

School of Postgraduate Studies, Universitas Diponegoro (UNDIP)

50241 Semarang, Indonesia

Email: agussutejo@students.undip.ac.id

1. INTRODUCTION

Today, a widely used knowledge source is dynamic web content, where the information displayed

originates from relational databases. Information systems within organizations also rely on relational

databases to store data. Despite their inherent shortcomings, the enduring popularity of relational database

management systems (RDBMS) can be attributed to extensive investments in applications built on these

systems, their consistency and reliability for business data, and the existing skill sets of employees [1].

Building an ontology as a representation of domain knowledge from available data sources is not a

simple process; however, most data in existing knowledge systems are still stored in relational form. The

ontology development process based on the available data sources can be categorized into manual and

automatic/semi-automatic methods. Manual methods involve manually performing each phase of the

development, which is time-consuming and prone to errors [2]. On the other hand, semi-automatic or

automatic methods perform almost all steps automatically, a process often referred to as ontology learning.

A relational database (RDB) is structured on the basis of a relational model, employing tables to depict data

and its relationships. The relational model is a conceptual framework for organizing and manipulating data.

It is based on the principle of representing data as relations or tables. Each table in an RDB consists of rows

and columns, with rows representing individual records or instances and columns representing attributes or

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Ontology learning from object-relational mapping metadata and relational database (Agus Sutejo)

1117

properties [3]. Relational databases are a common way to structure domain data, and their schemas reflect

domain characteristics [4]. Generating an ontology from such a database offers an advantage by effectively

expressing domain characteristics, as database tables align with domain data concepts. This process becomes

crucial in the context of the semantic web, a vital field in recent research enabling computers to process web

information and transform it into a medium for data sharing, understanding, and automation [5].

Ontology, a key technology in the semantic web, provides a structured framework for defining and

representing concepts, relationships, and categories of entities. This structured representation serves as the

backbone for enhanced comprehension and processing of information across diverse domains. The world

wide web consortium (W3C) recommends formats such as resource description framework (RDF), RDF

schema (RDFS), and web ontology language (OWL) to formally describe concepts, terms, and relationships,

facilitating automated reasoning within specific domains.

In various sectors such as healthcare, education, and tourism, ontology plays a crucial role as a

foundational element supporting custom solutions. Numerous studies have underscored the significant impact

of ontology on improving predictive models and personalized suggestions. For instance, in healthcare,

ontology enhances the accuracy of predicting Covid-19 symptoms, surpassing the capabilities of machine

learning algorithms [6]. In education, ontology-powered adaptive learning systems can effectively customize

educational materials to suit individual learner conditions, encompassing mental states and social contexts [7].

Similarly, in the tourism domain, integrating ontological knowledge bases with supervised learning models

enhances the performance of recommendation systems, enabling seamless cooperation between domain

expertise and machine learning for more efficient suggestions [8].

Ontology learning from relational databases can be categorized into three main methods: reverse

engineering, mapping, and machine learning. Reverse engineering involves transforming the logical model of

an RDB into a richer conceptual model. Mapping methods include rule-based, graph-based, and similarity-

based approaches. Machine learning for ontology learning is a more recent development with various

algorithms and tools, although it has been predominantly used for text-based ontology learning [9].

Several studies have investigated methodologies for mapping relational databases to semantic web

ontologies using various approaches. Hazber et al. [10] proposed a two-phase method involving the

construction of an ontology schema based on the RDB schema and the extraction of ontology instances from

RDB data using mapping rules. An and Park [11] introduced an approach to generate an ontology model

from database metadata, translating it into database tuples, particularly handling multiple individuals within

the ontology.

Fabro et al. [12] emphasized the use of logical database metadata and schema mapping rules to

enhance ontology readability and naming conventions. Lakzaei and Shmasfard [2] expanded schema

mapping rules by incorporating extraction from stored procedures, user-defined functions, and views in their

ontology generation process. Mahria et al. [13] proposed a comprehensive lifecycle for ontology learning

with stages such as discovery, preparation, and development, introducing transformation rules such as check

constraints and inheritance increment constraints.

Kaulins and Borisov [14] introduced a methodology based on mapping rules for ontology

construction, not constrained by a particular database system, as it adheres to internationally recognized

standards for data management, specifically SQL99. Lin et al. [15] employed reverse engineering techniques

to automate OWL ontology creation from relational databases, focusing on conceptual correspondences

between the RDB schema and the OWL-description logic (OWL-DL) ontology. Bouougada et al. [16]

presented a model-driven engineering approach to transform traditional web applications into semantic ones,

involving phases such as generating input models from structured query language (SQL) databases and

converting them into ontologies.

Aggoune [17] outlined an automated process for ontology learning and evolution from relational

databases, encompassing key steps such as generating classes, datatype properties, and object properties

based on table relationships. Louhdi and Behja [18] proposed methods to convert recursive relationships in

relational databases to OWL2 ontology components using transitivity for object properties or creating a class

hierarchy based on table occurrences. Dadjoo and Kheirkhah [19] introduced a method that employs a

transition system and graph theory to transform relational databases into OWL-based ontology models,

ensuring semantic richness and independence from the physical structure of the database.

The studies mentioned primarily rely on pure RDB sources, overlooking the prevalent adoption of

object-relational mapping (ORM) in modern business applications. RDB structures often result from ORM

tool generation, leading to a loss of certain semantic details. ORM tools abstract the database structure,

potentially altering or simplifying the underlying relational schema, which could impact the fidelity of

information and the representation of relationships between entities in the database.

In contemporary computer science, two prominent paradigms coexist: object-oriented programming

(OOP) and RDBMS. OOP is based on principles such as encapsulation, abstraction, inheritance, and

polymorphism, which are not fully supported by the tabular and relational nature of DBMSs. While

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1116-1125

1118

association and aggregation can be directly mapped to relational concepts, the mapping of inheritance is more

complex. Various strategies have been documented for implementing the semantics of inheritance

relationships in relational databases [20]–[23]. This fundamental difference leads to challenges when using

both approaches together. To bridge this gap, modern applications often employ ORM layers, which

automate the mapping process and abstract technical details.

ORM is a comprehensive term that encompasses the principles and procedures employed to

establish connections between object-oriented programming language classes and relational database tables

[24]. The use of an ORM provides convenience and speeds up application development without having to

worry about how objects are persistently stored in the database. It has become popular in system applications.

Enterprise applications typically use object-oriented technologies with relational databases for persistence.

ORM layers or middleware automate the mapping between objects and tables, simplifying data type and

relationship mapping [25].

This study focuses on the central theme of ontology learning from relational databases, with a

particular focus on harnessing ORM metadata to enhance the accuracy and comprehensiveness of the

resulting ontologies. Our goal is to bridge the gap between the OOP paradigm and relational databases by

leveraging ORM metadata to generate RDF graphs. This approach not only seeks to overcome the challenges

arising from the differing data paradigms but also aims to facilitate a more seamless integration between

object-oriented structures and the RDB model through the enriched representation provided by ORM

metadata. We analyze and design schema mapping rules using ORM metadata and develop software to

generate RDF graphs. To measure accuracy, the resulting ontology is compared to a reference ontology

created in consultation with domain experts. This method evaluates the generated ontology by measuring its

accuracy, recall, and F-measure against the reference ontology.

In the subsequent sections, we will delve into the methodology of our study, which includes schema

mapping rules using ORM metadata. We will also detail the software development process for generating

RDF graphs. Importantly, we will measure the accuracy of the resulting ontology and compare it to a

reference ontology, providing a quantitative assessment of the effectiveness of our approach.

2. METHOD

We present an approach for the automated creation of an ontology from an RDB, relying on ORM

metadata. Figure 1 illustrates this approach using ORM definition files and a relational database as inputs.

We leverage ORM metadata as a source for ontology schema extraction to mitigate the semantic loss caused

by databases which are generated outputs from ORM tools. Our methodology comprises three major steps:

construction and analysis of the abstract syntax tree (AST), extraction of OWL-ontology components, and

extraction of instances from the RDB.

Figure 1. Stages of ontology learning using ORM metadata and RDB

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Ontology learning from object-relational mapping metadata and relational database (Agus Sutejo)

1119

For the experimentation, we used the source code of the SIMRAL Application written in PHP.

Our approach was implemented using the programming language PHP and a MySQL database. We use

Protégé, a free and open-source ontology editor developed by Stanford University, to view and edit the

generated ontology.

2.1. Construction and analysis of the AST

The initial step involves constructing an AST from the provided ORM definition files. A parser

dissects these files to form a structured AST, capturing essential information such as class names, attributes,

and associated annotations. Annotations provide basic information about the mapping of classes and

attributes to database tables. The source code of the application, which is available for experimentation, is

written in the PHP programming language and utilizes doctrine ORM. We employed nikic/PHP-Parser [26]

to parse the source code into an AST, represented in the form of an array or JSON. This parser offers the

ability to traverse the AST, simplifying the analysis of its structure and content.

After the formation of the AST, a content analysis is performed using the traverse method of the

parser. In the context of ontological schema creation, we focus on nodes categorized as 'Stmt_Class' and their

corresponding sub-nodes labeled as 'Stmt_Property'. To streamline subsequent stages, we extract and store

information from these specific node types into two tables. From the 'Stmt_Class' nodes, relevant data, such

as class names, parent classes, and comments in the form of docblock annotations, are captured and stored.

Similarly, the information extracted from 'Stmt_Property' nodes contains property names along with

docblock annotations. This approach serves as a foundational step for our next stages.

2.2. Extraction of the OWL-ontology elements

In contrast to other methods that use database schemes as their mapping source, our approach

involves the development of mapping from ORM metadata. This metadata can be retrieved from the AST to

map to ontology components. Doctrine ORM offers various methods for specifying metadata, including

attributes, XML, PHP code, docblock annotations, and YAML [27]. Our source code for experimentation

using docblock annotations will serve as the foundation for exploring the mapping rules in the following

subsection. At this stage, docblock annotations associated with class and property statements are analyzed.

We parse the docblock annotations to extract the metadata required for mapping to the OWL ontology using

the data stored in the tables from the previous phase. In the following subsection, the mapping rules for this

process are elaborated.

2.2.1. Extracting concepts

Every class definition in the ORM will be mapped as an OWL-Class. Doctrine ORM defines each

object that will be stored in the database as an ‘Entity’. As depicted in Table 1, PHP class definitions marked

as Entity will be mapped as OWL-classes. Additionally, in Table 2, we illustrate the extraction of ORM

Entity to the OWL representation.

Table 1. Mapping doctrine annotation to OWL elements
Doctrine ORM annotation OWL Element

Entity OWL class
Column DataType property

OneToOne Object property

OneToMany Object property
ManyToOne Object property

ManyToMany Object property

Table 2. Extraction of the ORM entity to OWL
Doctrine ORM annotation OWL

Entity <owl:Class

rdf:about="http://www.simral.id/rapbd#RapbdRapbd">

 <rdfs:label>RapbdRapbd</rdfs:label>

</owl:Class>

2.2.2. Extracting hierarchies

Information regarding the hierarchy among classes can be obtained by combining two methods:

analyzing the AST and leveraging doctrine ORM metadata within the class definition. The first method

provides insights into the structure and organization of classes within the codebase. Furthermore, doctrine

ORM metadata, comprising annotations such as InheritanceType reveals the employed inheritance mapping

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1116-1125

1120

strategy, whether single-table or class-table inheritance. Table 3 illustrates the hierarchy extraction process

mapped to OWL representation.

Table 3. Hirarchie extraction to OWL
AST token OWL

Extends <owl:Class rdf:about="http://www.simral.id/rapbd#RkaSkpd">

 <rdfs:label>RkaSkpd</rdfs:label>

 <rdfs:subClassOf

rdf:resource="http://www.simral.id/rapbd#RkaRka"/>

</owl:Class>

2.2.3. Extracting the object properties

The OWL ontology has two types of properties: object properties and data type properties. Object

properties represent relationships between individuals (objects), whereas datatype properties are used to

assign literal values with specific data types, such as numbers or strings, to individuals. This distinction is

fundamental for accurately modeling ontology concepts and their relationships.

The doctrine annotations employed for mapping object properties include OneToOne, OneToMany,

ManyToOne, and ManyToMany, as outlined in Table 1. These annotations are mapped to the OWL ontology

to define the cardinality of the relationship between concepts. Table 4 illustrates the extraction of ORM

relations to OWL, exemplifying how specific relationships, like 'OneToMany,' are mapped as OWL Object

Properties. As seen here, utilizing ORM metadata makes it easier to identify many-to-many relationships

compared to having to detect intermediary tables within such relationships.

Table 4. Extraction object properties from the ORM to OWL
Doctrine ORM

annotation

OWL

Column,
OneToMany

<owl:ObjectProperty rdf:about="http://www.simral.id/has.RkaMataAnggaran">

 <rdfs:label>has.RkaMataAnggaran</rdfs:label>

 <rdfs:range rdf:resource="http://www.simral.id/rapbd#RkaMataAnggaran"/>

 <rdfs:domain rdf:resource="http://www.simral.id/rapbd#RkaRka"/>

</owl:ObjectProperty>

<owl:Restriction>

 <owl:onProperty

rdf:resource="http://www.simral.id/has.RkaMataAnggaran"/>

 <owl:someValuesFrom

rdf:resource="http://www.simral.id/rapbd#RkaMataAnggaran"/>

</owl:Restriction>

2.2.4. Extracting the datatype properties

Each doctrine annotation, represented as a 'Column' as shown in Table 1, is mapped as a datatype

property in the OWL ontology. Datatype mapping involves translating doctrine datatypes into XML schema

definition (XSD) datatypes, as illustrated in Table 5. The mapping shows the conversion of Doctrine

datatypes such as string to String, integer to Integer, and others to their respective XSD counterparts. Table 6

illustrates the process of transferring ORM columns into the OWL ontology, showcasing the mapping of

individual columns as OWL datatype properties.

Table 5. Mapping doctrine datatypes to XSD datatypes
Doctrine datatype XSD datatype

String String

Integer Integer

Smallint Short

Bigint Long

Boolean Boolean

Decimal Decimal

Date Date

Time Time

Datetime DateTime

Text String

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Ontology learning from object-relational mapping metadata and relational database (Agus Sutejo)

1121

Table 6. Extraction of ORM column to OWL
Doctrine ORM

annotation
OWL

Column <owl:DatatypeProperty rdf:about="http://www.simral.id/RkaRka.no_rka">

 <rdfs:label>RkaRka.no_rka</rdfs:label>

 <rdfs:domain rdf:resource="http://www.simral.id/rapbd#RkaRka"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <orm:column>no_rka</orm:column>

</owl:DatatypeProperty>

2.3. Extracting instances from the database

After the ontology schema is extracted, the next step is to transform the data from the relational

database according to the above-mentioned mapping rules. The aim is to extract instances from rows in the

relational database tables. Based on the ORM metadata, a mapping is derived that identifies where the data of

a class persists within the database table and which columns will be extracted as the values of data properties.

Subsequently, RDF triples are formed for each class and properties derived from the database tables

to represent the data in a structured format. These triples consist of subject-predicate-object components,

where the subject denotes the class or entity, the predicate signifies the property, and the object represents the

specific value in the database. This process aligns with the conversion of the relational database content into

a linked data format, ensuring that each piece of information is organized and represented according to the

RDF data model.

Figure 2 is the application used in the experiment, as depicted in Figure 2(a), we developed an

application to execute the aforementioned three major processes. The main input of this application is the

folder containing the ORM definition files and the database connection string. The resulting ontology output

can be exported to a file using the XML/RDF syntax. To visualize and validate the generated ontology, we

imported this file into the Protégé application, as shown in Figure 2(b).

(a) (b)

Figure 2. Application used in the experimentation to (a) extract ontology and (b) visualize ontology

3. RESULTS AND DISCUSSION

We have implemented our methodology to extract an ontology from the SIMRAL application,

which supports regional budgeting and financial processes in Indonesia. The development of this application

followed an object-oriented design approach and used the doctrine ORM. The database structure was

deployed using doctrine’s migration tools. To enhance performance, the application employs single-table

inheritance for mapping. However, this choice can present challenges when attempting to extract class

properties in the absence of ORM metadata assistance.

Within the SIMRAL application, there are over 100 ORM definition files; however, for our

experimentation, we specifically focused on extracting data from the budgeting module. We chose to

concentrate solely on this module because of the extensive resources required for creating the reference

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1116-1125

1122

ontology. For our analysis, we narrowed down our scope to 25 ORM definition files, each representing a

distinct class within the budgeting module. The database tables used in this module are shown in Figure 3.

Figure 3. Relational database schema used in the experiments

The resulting ontology contains 25 concepts/classes, 29 object properties, 162 datatype properties,

and 193 axioms. Visualization of this ontology is shown in Figure 4. The visualization highlighted a clear

taxonomy of classes and relationships, providing a visual confirmation of the accuracy and interlinkages

derived from the ORM metadata. For instance, it visually showcased the inheritance hierarchies that would

have been otherwise challenging to infer solely from the data comparison.

3.1. Comparison

We compared our method with existing methods by assessing ontology elements such as concepts,

hierarchical and non-hierarchical relationships, axioms, and instances. Additionally, we compared the input

data utilized and the syntax of the resulting ontology, whether it is in RDF or OWL format [2]. Table 7 lists

the results of this comparison.

3.2. Evaluation

To evaluate the generated ontologies, we employ a gold standard, which is a reference ontology

crafted by a knowledge engineer. The resulting ontology was measured against the reference ontology using

three metrics: precision, recall, and the F-measure [28]. Precision is quantified as the ratio of the number of

true positives (|R∩A|) to the total number of correspondences retrieved (|A|).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐴, 𝑅) =
|𝑅 ⋂ 𝐴|

|𝐴|
 (1)

Recall is specified as the ratio of the number of true positives (|R∩A|) and those to be retrieved (|R|).

𝑅𝑒𝑐𝑎𝑙𝑙(𝐴, 𝑅) =
|𝑅 ⋂ 𝐴|

|𝑅|
 (2)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Ontology learning from object-relational mapping metadata and relational database (Agus Sutejo)

1123

The F-measure is a metric that strikes a balance between precision and recall and provides a single value that

summarizes the overall performance of a classification or matching system.

𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝐴, 𝑅) = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

Compared with the reference ontology, we obtained the results depicted in Figure 5. It is evident

that the generated ontology exhibits an F-measure of 0.91 for concept extraction and 0.9 for hierarchy

extraction, despite the database storing data for object inheritance using a one-table strategy, which would

pose challenges for other methods.

Our methodology encountered challenges due to the application’s use of single-table inheritance for

mapping within the doctrine ORM. While this strategy optimizes performance within the SIMRAL

application, it presents hurdles during the ontology extraction process. Specifically, when attempting to

extract class properties from the database without direct assistance from ORM metadata, the process became

intricate and required meticulous analysis.

For instance, consider the class inheritance structure, where ORM’s single-table inheritance leads to

multifaceted relationships between entities. In these cases, the extraction process necessitated additional

scrutiny to accurately define the hierarchy and relationships among various classes. This complexity

highlights the importance of leveraging ORM metadata for a more streamlined and precise ontology

generation process.

Figure 4. Visualization of the generated ontology using WebVOWL

Table 7. Comparative assessment of our approach and other existing approaches
Approaches Ontology

language

Data source Learning elements

Concepts Hierarchical

relations

Non-hierarchical

relations

Axioms Instances

Hazber et al.
[10]

RDF RDB √ - √ √ √

Fabro et al.

[12]

OWL RDB √ √ √ √ √

Kaulins and

Borisov [14]

OWL RDB √ √ √ √ √

Lin et al. [15] OWL RDB √ √ √ √ -
Our approach OWL RDB and ORM

source code

√ √ √ √ √

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 1116-1125

1124

Figure 5. Ontology learning performance measurement

4. CONCLUSION

This research aims to propose a new method for ontology learning by leveraging ORM metadata as

a complement alongside RDB. Due to the gap between object-based and relational data paradigms, the

extraction of concepts or classes and their inheritance poses a huge challenge without the assistance of an

ORM. This synergy between ORM metadata and RDB structures not only resolves the complexities inherent

in class extraction but also enhances the accuracy of the resultant ontology, crucial for robust knowledge

representation. Although this method has the limitation of requiring access to the application’s source code, it

holds promise for enhancing the accuracy of ontology learning from RDB. Moreover, this method can be

applied to extract ontologies from in-house developed applications or open-source applications. Future

research directions could focus on exploring the adaptability of this method to various application

architectures and ORM tools would broaden its applicability. Practically, our proposed methodology holds

immense promise in domains requiring highly accurate ontologies, such as healthcare or finance, where

precise representation of domain knowledge is critical. For instance, in finance applications such as

SIMRAL, where the accuracy of financial processes relies on well-defined concepts and relationships, our

methodology proves its strength. Similarly, in healthcare or scientific domains requiring meticulous

ontological representations, leveraging ORM metadata could significantly enhance the accuracy and

comprehensiveness of extracted knowledge.

REFERENCES
[1] P. Atzeni, C. S. Jensen, G. Orsi, S. Ram, L. Tanca, and R. Torlone, “The relational model is dead, SQL is dead, and i don’t feel so

good myself,” ACM SIGMOD Record, vol. 42, no. 2, pp. 64–68, Jun. 2013, doi: 10.1145/2503792.2503808.

[2] B. Lakzaei and M. Shamsfard, “Ontology learning from relational databases,” Information Sciences, vol. 577, pp. 280–297, Oct.
2021, doi: 10.1016/j.ins.2021.06.074.

[3] E. F. Codd, “A relational model of data for large shared data banks,” Communications of the ACM, vol. 13, no. 6, pp. 377–387,

Jun. 1970, doi: 10.1145/362384.362685.
[4] S. L. Osborn and T. E. Heaven, “The design of a relational database system with abstract data types for domains,” ACM

Transactions on Database Systems, vol. 11, no. 3, pp. 357–373, Aug. 1986, doi: 10.1145/6314.6461.
[5] J. G. Breslin, D. O’Sullivan, A. Passant, and L. Vasiliu, “Semantic web computing in industry,” Computers in Industry, vol. 61,

no. 8, pp. 729–741, Oct. 2010, doi: 10.1016/j.compind.2010.05.002.

[6] H. El Massari, N. Gherabi, S. Mhammedi, H. Ghandi, F. Qanouni, and M. Bahaj, “Integration of ontology with machine learning
to predict the presence of covid-19 based on symptoms,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 5,

pp. 2805–2816, Oct. 2022, doi: 10.11591/eei.v11i5.4392.

[7] A. Ouatiq, K. ElGuemmat, K. Mansouri, and M. Qbadou, “A design of a multi-agent recommendation system using ontologies
and rule-based reasoning: pandemic context,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12,

no. 1, pp. 515–523, Feb. 2022, doi: 10.11591/ijece.v12i1.pp515-523.

[8] H. Q. Dung, L. T. Quynh Le, N. H. H. Tho, T. Q. Truong, and C. H. Nguyen-Dinh, “A novel ontology framework supporting
model-based tourism recommender,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 4,

pp. 1060–1068, Dec. 2021, doi: 10.11591/ijai.v10.i4.pp1060-1068.

[9] C. Ma and B. Molnár, “Ontology learning from relational database: opportunities for semantic information integration,” Vietnam
Journal of Computer Science, vol. 09, no. 01, pp. 31–57, Feb. 2022, doi: 10.1142/S219688882150024X.

[10] M. A. G. Hazber, R. Li, X. Gu, and G. Xu, “Integration mapping rules: transforming relational database to semantic web

ontology,” Applied Mathematics & Information Sciences, vol. 10, no. 3, pp. 881–901, May 2016, doi: 10.18576/amis/100307.
[11] J. An and Y. B. Park, “Methodology for automatic ontology generation using database schema information,” Mobile Information

Systems, vol. 2018, pp. 1–13, 2018, doi: 10.1155/2018/1359174.

[12] M. D. D. Fabro, L. M. Peres, H. Tissot, and C. A. G. Huve, “Exploring logical and hierarchical information to map relational
databases into ontologies,” International Journal of Metadata, Semantics and Ontologies, vol. 13, no. 3, p. 191, 2019, doi:

10.1504/IJMSO.2019.10021447.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Ontology learning from object-relational mapping metadata and relational database (Agus Sutejo)

1125

[13] B. Ben Mahria, I. Chaker, and A. Zahi, “A novel approach for learning ontology from relational database: from the construction to
the evaluation,” Journal of Big Data, vol. 8, no. 1, p. 25, Dec. 2021, doi: 10.1186/s40537-021-00412-2.

[14] A. Kaulins and A. Borisov, “Building ontology from relational database/ ontoloģiju izveide no relāciju datubāzes/ Построение

онтологии по реляционной базе данных,” Information Technology and Management Science, vol. 17, no. 1, Jan. 2014,
doi: 10.1515/itms-2014-0006.

[15] L. Lin, Z. Xu, and Y. Ding, “OWL ontology extraction from relational databases via database reverse engineering,” Journal of

Software, vol. 8, no. 11, pp. 2749–2760, Nov. 2013, doi: 10.4304/jsw.8.11.2749-2760.
[16] B. Bouougada et al., “Mapping relational database to OWL ontology based on MDE Settings,” Revue d’Intelligence Artificielle,

vol. 35, no. 3, pp. 217–222, Jun. 2021, doi: 10.18280/ria.350305.

[17] A. Aggoune, “Automatic Ontology learning from heterogeneous relational databases: application in alimentation risks field,”
2018, pp. 199–210.

[18] M. R. C. Louhdi and H. Behja, “Ontology Learning from relational databases: transforming recursive relationships to OWL2

components,” International Journal of Advanced Computer Science and Applications, vol. 10, no. 10, 2019,
doi: 10.14569/IJACSA.2019.0101037.

[19] M. Dadjoo and E. Kheirkhah, “An approach for transforming of relational databases to OWL Ontology,” International journal of

Web & Semantic Technology, vol. 6, no. 1, pp. 19–28, Jan. 2015, doi: 10.5121/ijwest.2015.6102.
[20] S. Holder, J. Buchan, and S. G. MacDonell, “Towards a metrics suite for object-relational mappings,” in Model-Based Software

and Data Integration, 2008, pp. 43–54, doi: 10.1007/978-3-540-78999-4_6.

[21] L. Cabibbo and A. Carosi, “Managing inheritance hierarchies in object/relational mapping tools,” in Advanced Information
Systems Engineering: 17th International Conference, CAiSE 2005, 2005, vol. 3520, pp. 135–150, doi: 10.1007/11431855_11.

[22] M. Fowler, Patterns of enterprise application architecture. MA, USA: Addison-Wesley Professional, 2002.

[23] A. Torres, R. Galante, M. S. Pimenta, and A. J. B. Martins, “Twenty years of object-relational mapping: a survey on patterns,
solutions, and their implications on application design,” Information and Software Technology, vol. 82, pp. 1–18, Feb. 2017,

doi: 10.1016/j.infsof.2016.09.009.

[24] M. Lorenz, G. Hesse, and J.-P. Rudolph, “Object-relational mapping revised - a guideline review and consolidation,” in
Proceedings of the 11th International Joint Conference on Software Technologies, 2016, pp. 157–168,

doi: 10.5220/0005974201570168.

[25] M. Lorenz, J.-P. Rudolph, G. Hesse, M. Uflacker, and H. Plattner, “Object-relational mapping revisited - a quantitative study on
the impact of database technology on O/R mapping strategies,” 2017, doi: 10.24251/HICSS.2017.592.

[26] N. Popov, “PHP-parser,” GitHub, 2023. https://github.com/nikic/PHP-Parser (accessed Sep. 14, 2023).

[27] “Welcome to doctrine 2 ORM’s documentation!,” doctrine-project.org. https://www.doctrine-project.org/projects/doctrine-
orm/en/2.16/index.html (accessed Sep. 14, 2023).

[28] M. Ehrig and J. Euzenat, “Relaxed precision and recall for ontology matching,” CEUR Workshop Proceedings, vol. 156, pp. 25–

32, 2005.

BIOGRAPHIES OF AUTHORS

Agus Sutejo is a postgraduate student at Diponegoro University, Indonesia and

researcher at the Research Center for Artificial Intelligence and Cyber Security at the National

Research and Innovation Agency in Indonesia. He has research experience in regional

government financial information systems, cloud computing, semantic web, and knowledge

management systems. His research interests include database management, semantic web,

blockchain, and IoT. He can be contacted at email: agussutejo@students.undip.ac.id.

Rahmat Gernowo is student in doctoral education at the Bandung Institute

Technology, Indonesia, majoring in Geo Physics in 2009. Research area in the field of geo

physics and atmosfer science, modelling hazard information system. He can be contacted at

email: gernowo@yahoo.com.

Michael Andreas Purwoadi is a principal engineer at the Research Center for

Electronics at the National Research and Innovation Agency in Indonesia. He has experience on

Information Systems for National Transportation, Information Systems for National General

Election, and on producing regulations on National Digital Government and National Artificial

Intelligent Strategy. His research interests include operational research, industrial automation,

power electronics and cable-based underwater information network. He can be contacted at:

michael.andreas.purwoadi@brin.go.id.

https://orcid.org/0009-0009-1867-9190
https://scholar.google.com/citations?user=V8UCuAYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57205419123
https://www.webofscience.com/wos/author/record/IVV-7845-2023
https://orcid.org/0000-0002-2409-7295
https://scholar.google.com/citations?user=KbDlKpsAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56433461600
https://www.webofscience.com/wos/author/record/2276789
https://orcid.org/0000-0002-0437-9148
https://scholar.google.com/citations?user=AXJe2ZEAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57194441528
https://www.webofscience.com/wos/author/record/HOO-5717-2023

