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ABSTRACT

Healthcare telemonitoring has emerged as a promising approach to remotely
monitor patients remotely, enabling timely intervention and personalized care.
Internet of things (IoT) device-generated patient data necessitates innovative
solutions for intelligent healthcare decision-making, as current methods strug-
gle to provide timely, context-aware, and data-driven recommendations, re-
sulting in suboptimal patient care. This study aims to develop an intelli-
gent decision-making framework for healthcare telemonitoring by leveraging
forward-backward chaining and IoT technology. The research focuses on a sys-
tem using forward-backward chaining algorithms to analyze real-time patient
data from IoT devices. It utilizes machine learning models to adapt to chang-
ing conditions and refine decision-making, demonstrating its ability to provide
real-time context-aware recommendations. Temperature, blood pressure, oxy-
gen level, and heart rate measurement errors are 2.01%, 1.74 to 2.13%, 0.61%,
and 1.45%, respectively. The success rate of early disease diagnosis using an
expert system is 81%, with an average application interface responsiveness time
of 4.978 s. The integration of IoT data with intelligent decision-making al-
gorithms in healthcare telemonitoring has the potential to revolutionize patient
care. However, future work should focus on scalability and interoperability for
diverse healthcare settings.
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1. INTRODUCTION
The convergence of cutting-edge technologies, such as the internet of things (IoT) and advanced data

analytics with the healthcare industry [1], [2]. It has opened up new horizons in patient care and monitoring.
Healthcare telemonitoring characterized by remote patient data tracking, presents an opportunity to address the
evolving healthcare landscape and ensure timely, personalized, and efficient care [3]–[5]. However, the flood
of real-time patient data generated by IoT devices presents a formidable challenge and need for intelligent
decision-making to transform this data into actionable insights.

Healthcare telemonitoring has gained substantial traction in recent years due to its potential to enhance
patient outcomes, reduce healthcare costs, and improve overall quality of care [6], [7]. IoT devices, ranging
from wearable sensors to intelligent medical equipment, facilitate the continuous collection of vital patient
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data. While this technology shows great potential, it also introduces unparalleled difficulties to the health-
care industry, including translating substantial quantities of real-time patient data into well-informed decisions
considering the context. Such decisions should enable healthcare providers to deliver optimal care.

The dynamic and heterogeneous nature of IoT-generated patient data, combined with the ever-evolving
body of clinical knowledge and guidelines, makes it increasingly difficult for healthcare providers to make
timely and well-informed decisions. Inaccurate or delayed decisions can significantly impact patient out-
comes, resource allocation, and the efficiency of the healthcare system. The system aims to enhance healthcare
decision-making by providing real-time, context-aware recommendations derived from IoT-generated data and
improve healthcare telemonitoring quality by implementing forward-backward chaining algorithms [8].

The proposed solution is a system utilizing real-time patient data from IoT devices, historical records,
clinical guidelines, and specialist knowledge. It refines decision-making and adapts to changing patient condi-
tions using machine learning models. The system’s objective is to augment the quality of patient care, optimize
resource allocation, and decrease response times for healthcare providers. The design and implementation of a
proposed system will be examined in this paper, with an emphasis on the integration of IoT-generated data and
the utilization of forward-backward chaining algorithms.

The rest of this paper is structured as follows. Section 2 provides a detailed description of the proposed
framework, including its components. Section 3 presents the system’s testing and analyzes the implementation
results. Finally, we conclude the paper in section 4 and discuss future work.

2. METHOD
2.1. Forward-backward chaining

Forward-backward chaining is an essential concept in the telemonitoring of healthcare patients in
community settings. Forward chaining is a reasoning method that begins with the initial data and applies rules
to reach conclusions which is shown in Algorithm 1 [9].

Algorithm 1 Forward chaining algorithm (Input: Γ, α) // α is a query, Γ is knowledge base
1: while True do
2: new = {}
3: for each sentence s ∈ Γ do
4: Convert s into the format p1 ∧ p2 ∧ · · · ∧ pn → q
5: for each substitution θ such that (p

′
1 ∧ p

′
2 ∧ · · · p

′
n)← (p1 ∧ p2 ∧ · · · ∧ pn) θ for some p

′
is ∈ Γ do

6: q
′ ← qθ

7: new � new ∪ {q′}
8: α← unify(q

′
, α)

9: if λ is not null then
10: return λ
11: end if
12: end for
13: Γ← Γ ∪ new . add new inferences in knowledge base
14: end for
15: end while
16: Return Fail

This approach integrates the benefits of forward and backward chaining methodologies to monitor
and oversee remote patient health effectively. Healthcare providers can remotely monitor and address individ-
uals’ well-being by applying forward-backward chaining principles. Telemonitoring in community healthcare
enables continuous monitoring of patient’s vital signs, symptoms, and medication adherence. This proactive
approach allows healthcare providers to identify potential health issues early and intervene promptly, improving
patient outcomes and decreasing hospital readmissions. Expert systems utilize forward and backward chaining
as reasoning techniques to emulate human intelligence. These techniques derive inferences and reach conclu-
sions by utilizing the existing data.

On the other hand, backward chaining is a reasoning method that starts with the desired goal and
works backward to identify the necessary data. Expert systems employ reasoning techniques to offer valuable
insights and recommendations to healthcare providers, thereby enhancing their decision-making process [10].
Backward chaining is a problem-solving method that starts with the desired goal and works backward to deter-
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mine the essential facts that need to be established in order to achieve the goal. Expert systems often employ
this technique to address intricate problems and arrive at well-informed decisions. Backward chaining is a
problem-solving approach that begins with the desired goal which is shown in Algorithm 2 [9]. This method
eliminates unnecessary steps and focuses only on the information required to achieve the goal, resulting in a
more focused and efficient process. Backward chaining is especially valuable in healthcare environments due
to the urgency of time and the criticality of precise decision-making for patient care [11].

Algorithm 2 Backward chaining algorithm (Input: Γ, α, θ) // α is a query, Γ is knowledge base, θ current
substitution(initially empty), λ represent substitution set for the query to be satisfied (initially empty)
1: θ = {}, λ = {}
2: q

′ ← αθ

3: for each sentence s ∈ Γ, where s = p1 ∧ p2 ∧ · · · ∧ pn → q and γ ← unify(q, q
′
) 6= null do

4: αnew ← (p1 ∧ p2 ∧ · · · ∧ pn)

5: θ ← θγ

6: λ← backward-chaining (Γ, αnew, θ) ∪ λ
7: end for
8: return λ

The data used in the forward-backward chaining system is shown in Tables 1–3. The responses to
questionnaires distributed to several respondents and the outcomes of interviews with medical personnel pro-
vided the information for Tables 1–3. The community has five prevalent diseases: hypertension, diabetes,
heart failure, bronchitis, and diarrhea [12]–[16]. These diseases have been extensively studied, and their symp-
toms, risk factors, and treatment options are well documented. The data in Table 1 provides a comprehensive
overview of the prevalence and characteristics of these suspected diseases (SD) within the community.

Table 1. Suspected disease data
Code Suspected disease
SD1 High blood pressure (hypertension)
SD2 Diabetes
SD3 Heart failure
SD4 Bronchitis
SD5 Diarrhea

Table 2 displays 32 prevalent disease symptoms (DS) for five predetermined diseases [17]–[19], it
does not provide information on the risk factors or treatment options for these diseases. Therefore, additional
research may be necessary to fully understand the implications of these symptoms and how they relate to the
prevalent diseases in the community. Table 3 provides information on the 24 preventive and assistance actions
required for the five diseases [20], [21]. By implementing these preventive and assistance actions, communities
can take proactive steps towards reducing the burden of these prevalent diseases and promoting overall health
and well-being.

Figure 1 shows the design of the expert system used in the health monitoring system in this study.
Figure 1(a) depicts a disease inference engine using the forward chaining method. This figure explain the for-
ward chaining technique for determining the disease from data on disease symptoms. The probability method
will be used to determine the most significant percentage of the symptoms of the disease to determine the initial
diagnosis of the user’s disease. This inference engine can be a valuable tool in healthcare settings as it allows
for early detection and prompt treatment of diseases. By accurately identifying the initial diagnosis, healthcare
professionals can provide appropriate interventions and improve patient outcomes. This technology can also
aid in disease surveillance and monitoring at the community level, enabling timely public health interventions
to prevent disease outbreaks and promote overall well-being.

In addition, refer to Figure 1(b) to determine the necessary actions for the emerging diseases. This
figure explains the preventive/assistance inference engine utilizing the backward chaining technique. After de-
termining the disease that arises, several appropriate preventive and assistance actions will be performed. These
actions may include providing vaccinations, implementing quarantine measures, conducting contact tracing,
and distributing educational materials on disease prevention. By utilizing the backward chaining technique,
public health officials can efficiently respond to emerging diseases and mitigate their impact on the community.
This approach ensures a proactive and targeted approach to disease prevention and control.
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Table 2. Disease symptom data

Code
Disease

symptoms
Code

Disease
symptoms

Code
Disease

symptoms
DS1 High blood pressure DS12 Chest pain DS23 Coughing continuously

DS2 Low blood pressure DS13 Feeling anxious DS24
Excess fluid buildup
(edema)

DS3
Rapid and irregular
heartbeat

DS14 Frequent urination DS25
Dry cough followed by
cough with phlegm

DS4 Low oxygen levels DS15 Feeling hungry DS26 Sore throat
DS5 Unstable body temperature DS16 Feeling thirsty DS27 Low-grade fever
DS6 High body temperature DS17 Weight management DS28 Weakness

DS7
Headache, especially in the
back of the head

DS18 Feeling tired DS29 Dizziness

DS8 Vertigo DS19 Dry skin DS30 Liquid/loose stool

DS9
Buzzing or hissing in
the ears

DS20
Wounds difficult
to heal

DS31
Blood appears in the
stool

DS10 Nausea/vomiting DS21
Shortness of breath
(dyspnea)

DS32 Flatulence and heartburn

DS11 Vision problems DS22 Swelling of the legs

Table 3. Preventive/assistance action data

Code
Preventive

actions
Code

Preventive
actions

Code
Preventive

actions

PA1 Reduce salt intake PA9
Control blood
sugar levels

PA17 Take adequate rest

PA2 No smoking PA10 Consult a doctor PA18 Steam inhalation

PA3 Exercise regularly PA11
Call the nearest
hospital

PA19 Taking medication

PA4 Avoid stress PA12
Take the patient
to a safer place

PA20

Avoid triggering factors
(cigarette smoke, air
pollution and other
chemicals)

PA5
Avoid alcohol
consumption

PA13
Loosen the patient’s
clothes

PA21
Consume easily
digestible foods

PA6 Give sugary drinks PA14
Do not panic
excessively

PA22
Take natural diarrhea
medication such as
chamonile tea

PA7 Take glucose tablets PA15
Provide basic
life support (CPR)
if needed

PA23
Take oral rehydration
solution (ORS)

PA8 Treat diabetic wounds PA16 Drink enough water PA24

Seek medical attention
if diarrhea persists or is
accompanied by other
symptoms

(a) (b)

Figure 1. Expert system on health telemonitoring (a) diseases inference engine with forward chaining method
and (b) preventive/assistance inference engine with backward chaining method
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2.2. Development method
The research will explore the development of hardware and software platforms for health telemon-

itoring systems. It will begin with a literature review on materials for improving manufacturing and design
processes, including sensors and signal conditioning. The platform will be conceptualized, focusing on me-
chanical and electrical aspects. The design process will involve a comprehensive arrangement and design of
the system, aiming for ergonomic and efficient design. The assembly process will involve the sequential in-
stallation of mechanical components and the integration of electrical circuitry. Platform testing will assess the
system’s effectiveness and suitability for alternative measurement devices. The instrument’s input block con-
tains several sensors, including the MLX90614, MPX5500DP, ADS1115, and MAX30100 sensors, as shown
in Figure 2.

Figure 2. Block diagram of health telemonitoring system

The health telemonitoring system uses various sensors to measure physiological parameters such as
body temperature, blood pressure, oxygen levels, and heart rate. The MLX90614 sensor measures body tem-
perature, while the MPX5500DP sensor measures blood pressure. The ADS1115 is an external analog to digital
converter (ADC) that converts analog signals into digital ones. The MAX30100 sensor measures oxygen levels
and heart rate. The ESP32 microcontroller processes the data and displays it on a thin-film-transistor (TFT)
display. The data is then transmitted to a firebase database, which is stored for easy retrieval via the Kodular
application. The output block features a 2.8-inch TFT display, and the smartphone allows access to the Kodu-
lar application, which retrieves the data stored in the database. The health telemonitoring system uses various
sensors to evaluate physiological parameters.

2.3. Mechanical design system
The health telemonitoring system tool uses 3D printing technology, utilizing polylactic acid (PLA)

material as the primary substrate. The device measures 16.8×12.8×8 cm. Figure 3 shows the schematic
representation of the mechanical design of the health telemonitoring system. Figure 3(a) shows the arrangement
of components at the top of the apparatus, including a 2.8-inch TFT display screen, a MAX30100 sensor, an
MLX90614 sensor, and a push button. Figure 3(b) illustrates the components involved in the system, including
a printed circuit board (PCB), an air pump, a solenoid valve, and an MPX5500DP sensor.

2.4. Electrical design system
The device’s electronic system comprises three components: input, processing, and output. The input

system includes three sensors: the MLX90614 temperature sensor, the MAX30100 oxygen level and heart rate
sensor, and the MPX5500DP pressure sensor. The output system uses a TFT 2.8-inch display. The MLX90614
sensor is a non-contact temperature sensor that uses thermopile and infrared technology to measure objects’
temperature. The MAX30100 sensor uses infrared and red-light technology to measure vital physiological
parameters like heart rate and blood oxygen saturation. The MPX5500DP sensor uses piezoresistive technology
to measure pressure differences between two locations. The TFT display uses TFT technology to control pixels
on the screen, enhancing visual acuity, precision, and fidelity compared to traditional display systems. The
system uses the photoplethysmography (PPG) method to determine pulse rate and blood oxygen saturation
levels.
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(a) (b)

Figure 3. Mechanical design of health telemonitoring system from (a) upper view and (b) inside view

2.5. IoT device integration
The IoT is a wireless device network that collects, transmits, and stores data. It connects various

physical devices and facilitates data gathering and sharing [22], [23]. In the medical domain, it is often called
the internet of health things (IoHT) is shown in Figure 4.

IoHT can improve treatment effectiveness, mitigate risks, and support good health by monitoring
individuals in real time and providing better access to high-quality healthcare [24], [25]. IoT devices facilitate
the digital storage of personal health information for patients and establish connections with multiple databases.
IoT also facilitates cost-effective and secure real-time communication between healthcare institutions. IoT
has the potential to improve personalized medicine and remote health assessment. Advancements in other
technological domains can contribute to significant progress in biotelemetry. Overall, IoT has the potential
to enhance healthcare by providing efficient, secure, and cost-effective communication between healthcare
institutions.

Figure 4. An overview of the internet of things system

2.6. User interface design of health telemonitoring system
This study aims to implement an IoT based telemonitoring system to remotely monitor essential health

parameters such as oxygen levels, heart rate, blood pressure, and body temperature. The system effectively
integrates with a specialized application, facilitating the seamless real-time transmission and analysis of data.
This application is intended for Android and iOS smartphone users. The use of a database is necessary to
store and provide data on sensor measurements, including their value, status, and historical records. The
firebase database is recommended for this purpose. This program includes various functionalities such as
displaying database-retrieved data, implementing a user account login and registration system, transmitting
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data to the database, and facilitating data exchange via Bluetooth. Figure 5 illustrates the android design of
the telemonitoring system, displaying data on oxygen levels, heart rate, blood pressure, and body temperature
using IoT technology. The graphical user interface (GUI) of the health monitoring system consists of a login
page in Figure 5(a), a main page in Figure 5(b), a device configuration page in Figure 5(c), a history page in
Figure 5(d), the backward analysis page in Figure 5(e), and the forward analysis page in Figure 5(f).

(a) (b) (c)

(d) (e) (f)

Figure 5. An illustrative GUI design for a health telemonitoring system: the application consists of: (a) a login
page, (b) a main page, (c) a device configuration page, (d) the history page, (e) the backward analysis page,

and (f) the forward analysis page

3. RESULTS AND DISCUSSION
3.1. Sensor testing for the measurement of four health vital signs

This section describes the results of sensor testing for four vital signs. The first test performed on the
sensor was comparing the MLX90614 temperature sensor to a calibrated thermometer. The test results revealed
a percentage inaccuracy of 2.014 and an average standard deviation of 0.127 is shown in Figure 6.

Based on these results, it appears that the sensitivity of the temperature sensor must be improved
by experimenting with more sensitive temperature sensors to acquire more precise measurements. Improving
the temperature sensor’s sensitivity is essential for accurate measurements, particularly in healthcare contexts
where precise monitoring is essential. By investigating alternative temperature sensors with greater sensitivity,
healthcare professionals can acquire more reliable and accurate data for patient health monitoring.

The subsequent test will compare the MPX5500DP sensor’s measurement results to those of a cal-
ibrated digital sphygmomanometer. The results of the three health vital signs measurements are shown in
Figure 7. The average errors of systole and diastole were 2.13 and 1.74, respectively, with standard deviations
of 3.090 and 2.164 for systole and diastole is shown in Figure 7(a). Compared to a calibrated digital sphyg-
momanometer, the MPX5500DP sensor provides relatively accurate measurements of systole and diastole.
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Additional analysis and testing are required to ascertain the overall reliability and consistency of the sensor’s
readings in various patient scenarios.

Two further tests were performed to assess the oxygen level and heart rate. This study conducted a
comparative analysis of the MAX30100 sensor and a calibrated oximeter is shown in Figure 7(b). The test
findings indicate that the average error in measuring oxygen level and heart rate is 0.61 and 1.45, respectively.
The standard deviation values for oxygen level and heart rate measurements were determined to be 1.023 and
1.515, respectively. The findings suggest that the measurements obtained from the MAX30100 sensor about
oxygen saturation and heart rate exhibited a moderate degree of inaccuracy on average, accompanied by a
reasonably slight standard deviation. Nevertheless, it is imperative to acknowledge that additional examination
and experimentation are required to ascertain the comprehensive dependability and uniformity of the sensor’s
measurements across different patient scenarios.

Figure 6. Test results for body temperature using the MLX90614 sensor

(a) (b)

Figure 7. Measurement results of three health vital signs (a) blood pressure (systole and diastole) using
MPX5500DP sensor and (b) oxygen levels and heart rate with MAX30100 sensor

3.2. Forward-backward chaining expert system testing
This section provides an overview of the testing process for the forward-backward chaining expert

system in the context of the user health telemonitoring system. Table 4 presents the results of expert system
testing, specifically employing forward-backward chaining, for early disease identification. A study was done
on 100 participants, who were subsequently separated into five distinct groups based on their suspected disor-
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ders. The health data of each participant was obtained and entered into the expert system, which subsequently
performed a sequence of commands to assess the data and ascertain potential disorders. The testing procedure
encompassed the execution of diverse scenarios and the assessment of the system’s diagnostic precision. The
findings shown in Table 4 offer significant insights into the efficacy of forward-backward chaining for early
disease detection in the user health telemonitoring system.

Test group 1 exhibits the highest propensity for hypertension, as evidenced by 17 accurate diagnoses.
Test group 2 exhibits the highest chance of diabetes, achieving 15 accurate diagnoses. The third test group
demonstrates 16 accurate diagnoses of heart failure condition. Test group 4 shows 15 accurate diagnoses, with
the highest chance percentage observed in cases of bronchitis disease. In the fifth test group, 18 accurate diag-
noses were observed, with the most significant likelihood being attributed to identifying the Diarrhea condition.
Out of a sample size of 100 users, 81 accurate diagnoses were achieved, resulting in an 81% success rate for
early disease diagnosis using the expert system. The demonstrated high success rate serves as evidence for the
efficacy of the expert system in effectively diagnosing a range of ailments. The capacity to accurately detect and
anticipate illnesses in their first stages can significantly enhance patient outcomes and optimize the efficiency
of healthcare systems.

This healthcare telemonitoring system assists patients in self-care by: (i) enhancing behaviours that
promote emotional and physical well-being (self-care). This system is especially beneficial for patients who
rely on app-based education to ensure the ongoing delivery of educational programs that empower them to
manage respiratory exacerbations and maintain their emotional and physical well-being [26], (ii) employ self-
monitoring techniques to promptly identify signs and symptoms that signify a patient’s health condition de-
terioration. Indeed, this review has demonstrated that implementing telemonitoring with operator support or
patient reminders prevents acute stages, particularly in patients with decompensated diseases, and enables early
detection of health status deterioration [27], and (iii) enables all patients to implement lifestyle modifications
(self-management) expeditiously, mainly when app-based educational programs are utilized [28].

Table 4. Expert system testing (forward-backward chaining) on early diagnosis of diseases
Expert system

diagnosis result
Conventional

diagnosis result
Number of

correct diagnoses
/user

Expert system
diagnosis result

Conventional
diagnosis result

Number of
correct diagnoses

/user
Suspected

disease (SD)
%

Probability
Suspected

disease (SD)
%

Probability

SD1 57.14
High blood

pressure
(hypertension)

17/20 SD1 60.14 Bronchitis 15/20

SD2 15.33 SD2 15.73
SD3 12.5 SD3 12.5
SD4 9.74 SD4 6.34
SD5 5.29 SD5 5.29
SD1 60.14 Diabetes 15/20 SD1 53.54 Diarrhea 18/20
SD2 12.33 SD2 17.33
SD3 10.5 SD3 14.5
SD4 9.74 SD4 9.34
SD5 7.29 SD5 5.29
SD1 70 Heart failure 16/20
SD2 13.33
SD3 9.3
SD4 5.08
SD5 2.29

Total 81/100

3.3. Application interface responsiveness test
Application Interface interface responsiveness measures the time required to control the device through

the interface. The average time for the application interface responsiveness test is displayed in Table 5 as 4.978
seconds. The application is tested by issuing commands, such as tapping the on/off switch on each module
setting and calculating the time required for the device to respond. The internet network and/or prior device
commands affect the response time test results. It is essential to observe that the response time test results may
vary based on the stability and speed of the Internet network. Additionally, any preceding commands executed
on the device may affect the response time.
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Table 5. Application interface responsiveness test result
Data delivery no. Time (s)

1 6.32
2 4.23
3 6.36
4 3.98
5 7.19
6 5.46
7 2.16
8 6.75
9 5.8

10 1.53
Average time 4.978

4. CONCLUSION
The objective was to construct a sophisticated decision-making framework by integrating IoT data

and forward-backward chaining to enhance patient care quality, optimize resource distribution, and furnish
healthcare providers with the essential instruments to make well-informed and prompt judgments. According
to the research, our intelligent decision-making system can provide real-time, context-aware recommendations
in a simulated healthcare environment, thereby reducing response times, optimizing resource allocation, and
augmenting the quality of patient care. The early disease diagnosis expert system has a success rate of 81%
and an average application interface responsiveness time of 4.978 s. Potentially transforming patient care, this
data-driven decision support can generate enhanced outcomes and more streamlined healthcare systems. In the
future, additional supporting sensors and those with greater sensitivity can be added to this task. Additionally,
other artificial intelligence can be used to improve the success rate of early disease diagnosis.
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