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 Autonomous robots have gained significant attention in research due to their 

ability to facilitate human work. Navigation systems, particularly 

localization, present a challenge in autonomous robots. The inertial 

navigation system is a localization system that uses inertial sensors and a 

wheel odometer to estimate the robot’s relative position to the initial 

position. However, the system is susceptible to continuous error 

accumulation over time due to factors like sensor noise and wheel slip.  

To address these issues, external sensors are required to measure the robot’s 

position in the environment. The extended Kalman filter (EKF) method is 

utilized to estimate the robot’s position based on wheel odometer and light 

detection and ranging (LIDAR) sensor measurements. In the prediction 

stage, the input to the EKF is the position measurement from the wheel 

odometer, while the LIDAR sensor’s position measurement is used in the 

update stage to improve the prediction stage results. The test results reveal 

that the EKF’s estimated position has a lower average error compared to the 

position measurement using the wheel odometer. Therefore, it can be 

concluded that the EKF technique is effectively applied to the robot and can 

correct the wheel odometer's cumulative error with the assistance of the 

LIDAR sensor. 
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1. INTRODUCTION 

The rapid advancement of technology has led to a significant increase in the development of mobile 

autonomous robots. One crucial aspect of these robots is navigation, which remains a widely studied subject 

due to various obstacles, such as robot localization or positioning. Precise localization of navigation systems 

in autonomous robots is vital for their accurate and efficient task performance. Numerous research studies 

have focused on addressing the challenges of mobile robot localization and navigation, including path-

planning strategies, probabilistic approaches, and evolutionary approaches [1][3]. Another research area that 

poses a challenge is the planning and control of autonomous mobile robots for intralogistics [4]. Achieving 

successful navigation relies on excelling in four key components: locomotion, perception, cognition, and 

https://creativecommons.org/licenses/by-sa/4.0/
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navigation [5]. The challenges in the field of robotics encompass navigating unexplored environments, 

controlling multiple diverse robots, adapting coordination, interfacing, and utilizing multiple resources, as 

well as sharing information from various data sources with varying reliability and accuracy. 

There are limitations related to the utilization of error correction in the extended Kalman filter 

(EKF) algorithm when applied to multi-sensor localization models. Error rectification is a distributed 

process, which increases the system’s vulnerability to sensor failure. Errors propagating from a single sensor 

can impact the entire network. Furthermore, careful design considerations are necessary due to the 

complexity associated with the implementation and maintenance of a distributed error correction mechanism 

for the EKF algorithm [6]. Adaptive fuzzy EKF-based inertial navigation system (INS) and global 

positioning systems (GPS) sensor fusion is a potent method for enhancing navigation precision through the 

integration of data from INS and GPS sensors. Nevertheless, its primary drawback is its susceptibility to 

interference, which presents challenges in environments that are dynamic and unpredictable. Adaptive fuzzy 

EKFs encounter challenges in promptly adjusting their parameters to dynamic conditions, which may result 

in inadequate performance in the face of unforeseen disruptions. Difficulties exist in precisely characterizing 

disturbances, and imprecise EKF estimation errors may result from the sensitivity of these disturbances to 

alterations in the navigation state. Due to the close connection between the efficiency of the EKF method and 

the adjustment of fuzzy logic parameters, it is necessary to exercise caution and make appropriate 

adjustments to guarantee optimal performance amidst disturbances [7]. Certain drawbacks are associated 

with the comparison between the EKF and silicon artificial neural network (Si-ANN) for sensorless speed 

control of DC motors. An essential constraint of Si-ANN is its reliance on training data sets, which are 

notoriously challenging to acquire and impede the accurate recognition of intricate motor movements.  

The operational parameters of the DC motor and the caliber of the training data have a substantial impact on 

the performance of Si-ANN. When deciding between EKF and Si-ANN for sensorless speed control, 

application-specific requirements, trade-offs between computational complexity and accuracy, and the 

method's adaptability to dynamic and changing operating conditions must all be carefully considered.  

The implementation of EKF and Si-ANN for sensorless speed regulation of a DC motor [8]. 

The use of modeling in the EKF process includes kinematic and dynamic models [9], [10]. 

Kinematic models represent movement without considering the causes of that movement, while dynamic 

models take into account the forces acting on the system. A study presented a motion-predictive EKF for 

autonomous underwater vehicles (AUVs) using a simplified dynamic model, which showed good prediction 

accuracy for the dynamic filter [11]. Another study proposed a modified kinematic model for track geometry 

based on tangential and normal curves [12]. The design and configuration of the automaton employed have 

no bearing on the kinematic model, allowing for a more straightforward description of motion. Kinematic 

modeling is a versatile tool for describing movement because it is not dependent on the particular shape or 

class of the robot. This assertion finds support in robotics research, which has effectively implemented 

kinematic models across diverse robot configurations and type, such as continuum robots, skid-steered 

mobile robots, and track geometries [13], [14]. As a result, the kinematic model remains unaffected by the 

particular attributes of the robot’s form or category, enabling it to furnish a comprehensive and readily 

implementable depiction of motion. 

This study investigated the effects of navigation system utilizing the EKF method with a nonlinear 

model derived from the kinematic model. EKF has an advantage in terms of accuracy. So, it is suitable for  

3-wheeled omni-directional. The objective is to achieve efficient computation and independence from the 

specific type or configuration of the robot employed. The system is intended for implementation on a  

3-wheeled omni-directional robot operating with a kinematic model featuring 2 degrees of freedom (DoF). 

With this model, the navigation system remains viable even if alterations are made to the robot’s type or 

configuration. The study investigates error correction techniques to rectify cumulative errors in wheel 

odometry within an inertial navigation system, utilizing light detection and ranging (LIDAR) sensors and 

EKF localization in the context of three omni-directional robotics. The robot, shaped like an equilateral 

triangle, is outfitted with an omni drive wheel, enabling movement in any direction within a 2-dimensional 

plane. The methodology involves the integration of wheel odometry and LIDAR sensor data through the EKF 

method. Two sets of odometric data, obtained from the wheel odometry and LIDAR sensor, are utilized.  

The experiment concentrates on localizing the robot’s position and orientation along the x, y, and θ axes. 

 

 

2. THE PROPOSED METHOD 

The necessary mechanical system for the robot is a wheelbase designed to house the propulsion 

system and offer ample dimensions for accommodating other systems. The wheelbase, of the three-omni 

wheel type, features a wheel configuration with an angle of 120 degrees between them. The block diagram 

illustrating the interconnections among robot systems is depicted in Figure 1. The initial step preceding the 

design process involves conducting an analysis of system requirements. This analysis encompasses various 
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facets, such as localization systems, drive systems, hardware systems, and mechanical systems. To determine 

the robot's position accurately, it is imperative to utilize sensors capable of providing precise position data.  

In this study, positioning is accomplished through the incorporation of two types of sensors: internal sensors 

and external sensors. The internal sensor utilized to measure the robot's movement towards its initial position 

is the rotary encoder integrated within the DC motor. In contrast, the external sensor employed is LIDAR, 

which measures the distance between the robot and its surrounding environment. This system is composed of 

multiple printed circuit boards (PCBs), including a main PCB housing the primary microcontroller, a DC 

motor driver PCB, and a rotary encoder PCB. 

The block diagram depicting the robot localization system utilizing wheel odometry and LIDAR 

sensors is presented in Figure 2. These two types of sensors yield robot position data in the form of 

odometry, specifically data for x, y, and θ. To enhance accuracy, the EKF method is employed to combine 

and process the two sets of data, resulting in a more precise position estimate. 
 

 

 
 

Figure 1. Robot system block diagram 
 

 

 
 

Figure 2. Block diagram of localization system 

 

 

The illustration of the EKF algorithm is presented in Figure 3. By employing the EKF filter for 

position estimation, the cumulative error generated by the wheel odometer is intended to be corrected.  

To ascertain the location of the robot with respect to its environment, an external sensor is indispensable; this 

sensor happens to be the LIDAR. In the prediction phase, the EKF estimates the robot’s location at time  

k utilizing odometry data obtained from the wheel odometer. During the correction phase, the odometric data 

acquired from LIDAR is subsequently integrated into the EKF in an effort to improve the results achieved in 

the prediction phase that came before it. At time k+1, the input to the prognosis stage is the final result 

obtained during the correction phase. The Kalman filter (KF) is a technique utilized to estimate a value, 

specifically the linear least mean squares estimator (LLSME). It improves system performance by utilizing 

the statistical properties of noise and an accurate dynamic model of the system [15]. The EKF is a derivative 

of the KF designed to estimate the state of the system. On the contrary, the KF is regarded as the most 

effective linear estimator in cases where the noise that impacts both the process and the measurements has a 

white gaussian distribution. It is imperative to emphasize that the KF is solely applicable in situations where 

a linear equation can represent the state space model, specifically the state transition function. This suggests 

that the temporal progression of the system's state can be represented graphically as a linear trend [16]. The 

EKF determines the state of the system by means of a feedback-integrated control mechanism. Typically, the 

EKF algorithm is divided into prediction and update phases. The prediction stage involves the utilization of 

control input to forecast the state of the system, as well as the covariance matrix [17], [18]. In order to adjust 

the state of the system, the Kalman gain is computed during the correction phase. A comprehensive 

explanation of the EKF algorithm for each process will be provided in Figure 3. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Accumulative error repair from wheel odometer of inertial navigation … (Silmi Ath Thahirah Al Azhima) 

881 

 
 

Figure 3. Estimation algorithm flow chart with EKF 
 

 

2.1.  Initialization 

Initialization is a prerequisite for the establishment of the initial value of the system state during the 

initial phase of the EKF procedure. Initialization for the initial state occurs at the preceding time, specifically 

k−1, assuming the current time is denoted by 𝑔. Given that the robot is initially situated at coordinates (0, 0). 

In addition to the state of the system, the input vector values are required to initiate the EKF during the initial 

iteration. In the absence of any input at this time, the input vector is specified using (1) and (2) [19]. 
 

�̂�𝑘−1|𝑘−1 = [

𝑥𝑘−1
𝑦𝑘−1
𝜃𝑘−1

] = [
0
0
0
] (1) 

 

𝑢𝑘−1 = [
𝑢𝑘−1
𝑤𝑘−1

] = [
0
0
] (2) 

 

2.2.  System state estimation prediction 

During this phase, it is essential to employ a state space model to forecast the system’s state at time 

𝑘, considering the state of the system and the input vector at the previous time 𝑘−1. The state space model 

equation for this purpose is represented by (3) [20]. Where �̂�𝑘|𝑘−1 is system state prediction estimation. 𝐴𝑘−1 

is represents the change in the system at time k-1 when no input vector is given. 𝑥𝑘−1 is the state vector of the 

system at k-1. 𝐵𝑘−1 is system changes when given an input vector. 𝑢𝑘−1 is input vector. And 𝑣𝑘−1 is noise. 
 

�̂�𝑘|𝑘−1 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘−1𝑢𝑘−1 + 𝑣𝑘−1 (3) 

 

2.3.  Covariance prediction from system state estimation 

In practical implementation, the EKF is used to estimate the state and state estimation error 

covariance values from real-time data [21]. Because the predictions from the estimation of the previous state 

of the system are not 100% accurate, we need a matrix 𝑃𝑘|𝑘−1 which represents the accuracy of these 

predictions using (4). Where 𝑃𝑘|𝑘−1 is prediction of the covariance matrix. 𝐹𝑘 is matrix A in the equation state 

space models. 𝐹𝑘
𝑇 is transpose matrix of 𝐹𝑘. 𝑃𝑘−1|𝑘−1 is covariance matrix at k-1. 𝑄𝑘 is the matrix that 

represents confidence in sensor measurement predictions. 
 

𝑃(𝑘|𝑘 − 1) = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘 (4) 

 

2.4.  Residue measurement 

The residue measurement in the EKF is addressed through the measurement update equations, 

which correct the state and covariance estimates using sensor measurements, measurement Jacobians, and 

measurement noise covariance [22], [23]. The measurement residue is the difference between the sensor’s 

actual observations and the sensor’s predicted observations. Residual measurements can be calculated using (5). 

Where �̅�𝑘 is measurement residue. 𝑧𝑘 is sensor measurement matrix. ℎ(𝑥𝑘|𝑘−1) is observation model. 
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�̅�𝑘 = 𝑧𝑘 − ℎ (𝑥(𝑘|𝑘 − 1)) (5) 

 

2.5.  Covariant residues 

Residual covariance is a matrix that represents the residuals from the covariance predictions of 

system measurements. The residual covariance can be calculated using (6). Where 𝑆𝑘 is covariant residue.  

𝐻𝑘 is measurement matrix. 𝐻𝑘
𝑇  is matrix transpose of matrix measurement. 𝑅𝑘 is sensor noise covariance 

matrix measurement. 

 

𝑆𝑘 = 𝐻𝑘𝑃(𝑘|𝑘 − 1)𝐻𝑘
𝑇 + 𝑅𝑘 (6) 

 

2.6.  Kalman gain 

This value indicates how much the prediction of the state of the system and the prediction of the 

covariance of the correction for the new state of the system are. Kalman gain (𝐾𝑘) can be calculated from 

several components that have been obtained previously using (7). Such as covariance prediction (𝑃𝑘|𝑘−1), 

transpose measurement matrix 𝐻𝑘
𝑇 , and inverse covariance residual matrix (𝑆𝑘−1). 

 

𝐾𝑘 = 𝑃(𝑘|𝑘 − 1)𝐻𝐾
𝑇𝑆𝑘

−1 (7) 

 

2.7.  System state estimation update 

The EKF, which is a nonlinear full-state estimator given the sensor measurements, the model 

prediction, and their variances, approximates the state estimate with the smallest covariance error.  

The calculation of the final estimate of EKF is possible via (8). The estimation of the system's current state is 

revised each time a new sensor measurement is acquired. 

 

�̂�(𝑘|𝑘) = �̂�(𝑘|𝑘 − 1) + 𝐾𝑘�̃�𝑘 (8) 

 

2.8.  System state covariance estimation update 

The system state covariance estimation update in the EKF aims to continuously refine the 

covariance matrix, providing a more accurate depiction of the uncertainty in the system’s state variables as 

new measurements are incorporated into the filtering process [24], [25]. In addition to the state estimation, 

the output of the EKF system is the estimation of the system state covariance using (9). The refined state 

variables �̂�(𝑘|𝑘) and 𝑃(𝑘|𝑘)will be used for predictions in the next iteration. The process of the EKF stages is 

carried out repeatedly as many iterations as needed. 

 

𝑃(𝑘|𝑘) = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃(𝑘|𝑘 − 1) (9) 

 

 

3. RESULTS AND DISCUSSION 

3.1.  System design 

During this phase, the design of the robot's mechanical system is developed, taking into account the 

previously conducted needs analysis. The outcome of the design is an equilateral triangle-shaped robot with a 

length of 476.54 mm. The robot mechanical system is designed to be made using acrylic material with a 

thickness of 5 mm for layer 1 and 2 mm for layer 2, see in Figure 4. The bottom layer 1 functions as a 

wheelbase or seat for omni wheels and DC motors. Meanwhile, on layer 1, the upper part functions as a place 

for the hardware system. Layer 2 is used as a place to store LIDAR sensors. 

The hardware system created functions to integrate robot components. The block diagram of the 

hardware system is shown in Figure 5. The STM32F767ZI microcontroller functions to process all inputs, 

both from the control system and from sensors, into outputs in the form of robotic actions. The input and 

output components processed by the controller are the rotary encoder, LIDAR, and the BTS7690 motor 

driver. At the component input, the rotary encoder is connected to a digital pin. While LIDAR is connected 

using serial communication pins Rx and Tx. As for the output component, the BTS7690 is connected to a 

digital pin which is set as pulse width modulation (PWM) so that the motor speed can be adjusted. In order 

for the robot to move in an omni directional manner or in all directions, a drive called an omni wheel or omni 

wheel is required. The omni wheel component has the ability to move on the x and y axes. The omni wheel is 

connected to a PG45 DC motor using a hub that is adjusted to the hole between the wheel and the motor. 
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Three omni wheels are used because the robot’s triangular design. Each omni wheel drive motor is controlled 

by a motor driver, namely the BTS7690 which is connected to the STM32F767ZI. 

The flowchart of robot positioning using the odometry method is shown in Figure 6. The odometry 

system is designed using three rotary encoder sensors installed in the PG45 DC motor. This sensor has 2 

input channels with an output pulse of 7 ppr. The rotary encoder is mounted on an omni wheel with a 

diameter of 12 cm with a three omni-directional configuration. With this configuration, position data of 𝒙, 𝒚, 

and 𝜽 of the robot can be obtained using the odometry method. 

The positioning algorithm using the LIDAR sensor can be seen in Figure 7. LIDAR is an object 

detection method that uses the principle of laser light reflection to measure the distance of objects on the 

earth's surface. The sensor used on the robot is RPLIDAR A1M8 which has specifications that can detect 

distances of up to 12 meters. In this study, the sensor is used to determine the position with a reference to the 

initial position.  

 

 

 
 

Figure 4. Dimension of omni-directional robot 

 

 

 
 

Figure 5. Block diagram of the hardware system 

 

 

 
 

Figure 6. Robot positioning flowchart 
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Figure 7. Flowchart of positioning algorithm using LIDAR sensor 

 

 

In EKF, two models are required from the robots, specifically the state space model and the 

observation model. In this study, the robot moves on a flat plane, and the state of the robot is defined by 

matrix (10). Since the robot moves omnidirectionally, the control signal 𝑢 is defined as the vector of position 

and orientation velocities, as depicted in Figure 8. Thus, the control signal can be described by (11) [26]. 

 

𝑋 = [

𝑥
𝑦
𝜃
] (10) 

 

𝑢 = [

𝑣𝑥
𝑣𝑦
𝑣𝜃
] (11) 

 

 

 
 

Figure 8. Vector illustration of speed positioning and orientation of a robot 

 

 

3.2.  System testing 

The objective of the wheel odometry localization test is to assess the error value in data acquisition. 

The test procedure involves positioning the robot at coordinates (0,0) and subsequently moving it to the 

subsequent point. The test findings indicate an average error of 189.9 mm along the X-axis and 129.8 mm 

along the Y-axis, as presented in Table 1 of the odometry localization test data. Position measurement testing 

using a LIDAR sensor. The method for this sensor is to measure the distance from the object to the surface so 

that two wall planes are used. The results obtained are the average error value on the X and Y axes of 1.8 mm 

can be seen in Table 2. 

The odometry sensor located on the omniwheel wheel serves as the primary sensor within this 

navigation system. In contrast, the measurements obtained from this odometry sensor exhibit a substantial 

margin of error. Consequently, an additional sensor with enhanced precision is required in order to rectify the 

resultant error. You can rectify odometry-induced errors in the navigation system by integrating LIDAR and 

odometry via sensor fusion utilizing the EKF method. Table 3 and Figure 9 illustrate that the error value 

associated with the EKF results is 2.26 for the X coordinates and 4.05 for the Y coordinates. Prior to and 

subsequent to the integration of odometry and LIDAR through EKF, the error value generated by odometry 

decreased by 187.54 in X coordinates and 125.3 in Y coordinates, respectively. As a result, it can be deduced 

that the LIDAR sensor effectively corrects errors in the omniwheel encoder sensor reading. 
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Table 1. Odometry localization data 
Coordinate Measured coordinates Error 

X (mm) Y (mm) X (mm) Y (mm) X (mm) Y (mm) 

0 0 0 0 0 0 

0 1,500 79 1,177 79 323 

750 1,300 1,277 995 -527 305 
750 200 1,174 152 -424 48 

0 0 -81 27 81 -27 

Error average (mm) 189.8 129.8 

 

 

Table 2. LIDAR localization data 
Coordinate Measured coordinates Error 

X (mm) Y (mm) X (mm) Y (mm) X (mm) Y (mm) 

0 0 -4 -7 4 7 
0 1,500 13 1,502 -13 -2 

750 1,300 756 1,320 -6 -20 

750 200 735 183 15 17 
0 0 -9 -7 9 7 

Error average (mm) 1.8 1.8 

 

 

Table 3. Comparison data 
Coordinate Odometry LIDAR EKF estimate 

X(mm) Y(mm) X(mm) Y(mm) X(mm) Y(mm) X(mm) Y(mm) 

0 0 0 0 -4 -7 -4.42 -7.72 
0 1,500 79 1,177 13 1,502 19.75 1,465.95 

750 1,300 1,277 995 756 1,320 710.77 1,323.56 

750 200 1,174 152 735 183 721.3 213.96 
0 0 -81 27 -9 -7 41.3 -16 

Error average 189.8 129.8 1.8 1.8 2.26 4.05 

 

 

The results of the analysis obtained from the experiment, included: 

i) The positioning accuracy achieved through wheel odometry exhibits significant errors, with 189.8 mm on 

the X-axis and 129.8 mm on the Y-axis. Therefore, there is a need for a method that can rectify these 

errors. 

ii) The LIDAR odometry approach results in identical error values of 1.8 mm on both the X-axis and Y-axis. 

Hence, the utilization of LIDAR sensors can effectively mitigate the errors originating from wheel 

odometry localization. 

iii) The position estimation obtained through the implementation of the EKF method yields an error of  

2.26 mm on the X-axis and 4.05 mm on the Y-axis concerning the actual position. This demonstrates that 

the cumulative errors derived from wheel odometry localization can be effectively corrected by 

employing LIDAR sensors in conjunction with the EKF method. 

iv) The results obtained have quite high accuracy on omni-directional robots without taking into account the 

dynamic model of the robot. However, it is necessary to carry out deeper investigations into other forms 

of robots. 

 

 

 
 

Figure 9. Graphic of comparison data 
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4. CONCLUSION 

Recent observations suggest that the inertial navigation system with positioning using a wheel 

odometer causes errors to accumulate continuously every time, causing positioning to be less accurate.  

To overcome this, the LIDAR sensor is used to correct the accumulative error of the wheel odometer by 

applying the EKF method. Odometry data from the wheel odometer is used to predict the robot’s position and 

odometry data from the LIDAR sensor is used to update the data by entering some system noise. The error 

resulting from estimating the position of the EKF is smaller than measuring the position with the wheel 

odometer. So that the positioning system using the EKF with the LIDAR sensor was successfully 

implemented and resulted in a more accurate position estimation. Comparative research is one of the 

suggestions for additional study, which should consider whether the dynamic model of the robot will yield 

substantial performance improvements. 
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