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Abstract 
T2* and quantitative susceptibility mapping (QSM) of magnetic resonance imaging (MRI) images 

provide different type inner structure information of scanned organs. If they can be properly fused into one 
set, the details of the scaned organ can be revealed more clearly. In this paper, a 3D MRI image fusion 
method based on 3D compactly supported shearlet transform (3D-CSST) and 3D dual tree compactly 
supported shearlet transform (3D-DT-CSST), is proposed, which can overcome the limitation, loss of inter 
layer correlative information, of conventional 2D image fusion methods. 3D-DT-CSST is our modification of 
3D-CSST, which is approximate shift invariant. It can improve the performance of fusion method. The 
proposed method is evaluated by 4 groups of MRI images of human brains. The results suggest that the 
proposed method has a better performance than conventional 2D wavelet, 2D DT-CWT and 3D wavelet, 
3D DT-CWT based fusion methods, and 3D-DT-CSST based method is better than 3D-CSST based 
method. 
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1. Introduction 
Medical image fusion is a special case of image fusion, and has been studied for 

decades. It has widely applied in medical diagnosis [1, 2]. It refers to extract and merge the 
feasible information from different source images, which were captured by different kinds of 
devices, such as CT, MRI, PET etc., or different configurations of the same device, such as MRI 
T2* and quantitative susceptibility mapping (QSM). Special devices or special configurations of 
the same device reveal different aspect of scanned organs. The information of source images is 
correlated or, more likely, complementary. For instance, CT images provide the details of dense 
hard tissues, MRI images provide the inner structure of soft tissues: T2* provide the contrast of 
the tissue relaxation time, QSM provide susceptibility contrast information, such as caused by a 
range of endogenous magnetic biomarkers and contrast agents e.g. iron, calcium and 
gadolinium (Gd). If different data can be properly fused, the fused data contains all the sailent 
information of the scanned organ, which can reveal the details of inner structure more clearly 
than each single source. Previously, all source data need to be registered. 3D T2* magnitude 
images and QSM images are getting from the same scan, and therefore, have already exactly 
registered. 

Currently many researches on medical fusion method only consider the 2D case. While 
many diagnostic devices can provide 3D images, and the value of each voxel in the 3D images 
is correlated not only to the adjacent points in same layer, but also to the points in neighboring 
layers. Therefore, it’s necessary to develop the 3D image fusion method instead of 2D image 
fusion method which cause the loss of the consistency in the third dimension. 

Fusion methods can be performed in spatial domain or certain transformed domain. In 
spatial domain, the intuitive fused image is selected as the weighted average image of source 
images [3]. This kind of methods is relatively easy to implement, but its performance is low and 
always cause the decrease or even loss of some feasible information. The transformed domain 
based fusion methods are usually following the steps: 1) performing the forward transform to 
sources images, 2) acquiring the fused coefficients from coefficients of source images under 
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fusion rules, 3) performing backward transform to fused coefficients to get the fused image. In 
this type of methods, the research works usually focused on two points: the choice of the 
transform and the design of fusion rule. 

Many multi scale transforms are applied in fusion methods, such as DWT [4], lifting 
wavelet [5], complex wavelet [6], curvelet [7], shearlet [8], etc. Shearlets emerged in recent 
years among the most successful frameworks for the efficient representation of 
multidimensional data. Indeed, many transforms are introduced to overcome the limitation of 
traditional multi-scale transforms of poor ability of capturing edges and other anisotropic 
features. However, shearlet transform stands out since it has many advantages uniquely: a 
single or finite set of generating functions; optimally sparse representations for multi-
dimensional data; a unified treatment of the continuum and digital realms; and a compactly 
supported transform etc. With so many advantages above, shearlet transform has been widely 
utilized into many image processing tasks such as de-noising [9], edge detection [10], 
enhancement [11], etc. In this paper, the conventional 3D Compactly Supported Shearlet 
Transform (3D-CSST) is improved to overcome its lacking of shift invariance property, through 
the Dual Tree (DT) structure, and then both 3D-CSST and 3D-DT-CSST are selected as the 
transforms for the 3D medical image fusion. 

Three fusion rules are utilized in this paper: maximum points’ modulus (MPM), which 
considers only the value of single point; maximum regional energy (MRE), which considers the 
information for local region [12], and treats each points of the region equally and maximum sum 
of modified laplacian [13], which also considers the information in local region, but treats the 
center point of the region and the points around it differently. These three classic fusion rules 
are expanded into 3 dimensions. In order to evaluate the performance of proposed method, the 
quality indices also are expanded into 3 dimensions. 

The rest of the paper is organized as followings. In section 2, the implementation of 3D-
CSST and the modification of 3D-DT-CSST are introduced. In section 3, fusion method based 
on 3D-CSST and 3D-DT-CSST with three fusion rules is proposed. From the experiments of 
section 4, the comparison of 2D and 3D methods and the performance about the proposed 
methods are illustrated and discussed. Finally, we draw conclusions in section 5. 

 
 

2. 3D Compactly Supported Shearlet Transform 
 

 
 

Figure 1. Steps of Forward and Backward 3D-CSST 
 
 

In [14], Lim proposed the principle and the details about the construction of Compactly 
Supported Shearlet Transform (CSST). His work is mainly focus on 2D case. We first expand 
this implementation into 3D case. The steps of forward and backward 3D-CSST are given in 
Figure 1. The input signal ( )f x  is first processed by shear operation in three pyramids, 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 6, June 2014:  4250 – 4257 

4252

represented by P , P  , and 

P , which are around x, y and z axis respectively. Then the 

Anisotropic Discrete Wavelet Transform (ADWT) is performed on every sheared versions of 

input signal. The outputs of ADWT, 1 kC C , 1 kC C   and 1 kC C
 
 , are the coefficients of three 

pyramids of the transform where the parameter k  is the number of directions. 
 
 

 
 

Figure 2. Shear Operation of 2D and 3D-CSST 
 
 

Shear operation has an integer control parameter [ , ]n N N   stands the offset that the 

first point of first row are shifted along one direction, where N  is the size of image and minus 
refers to inverse direction. The illustration of shear operation with n N  is given in Figure 2. 
With such scheme, many directions can be represented without resampling the original data. 
And finally, the sheared data are embedded into a rectangle with the same sizes of the original 
images, which guarantees no more extra memory is needed to store the sheared images. The 
backward shear operation just has the same steps but in an inverse order. Shear operation can 
be further expand into 3D case, as in Figure 2. The 2D shear operation is performed layer by 
layer along x-axis and then y-axis consequently. 

 
 

 
 

Figure 3. Reconstruction of 2D-CSST and 2D-DT-CSST 
(a)The reconstructed images, (b) the reconstruction by low frequency coefficients, (c)~(e) the 

reconstruction by three single scale of high frequency coefficients 
 
 

3D anisotropic DWT is performed next to shear operation. Anisotropic DWT is 
necessary, because it satisfies the definition of shearlet transform, which requires optimal 
representioin to curve-like singularities. In the application of image fusion, the optimal 
representation of curve-like singularities has little impact to the performance of fusion results. 
And from experiments, the value of performance indices of anisotropic DWT were indeed less 
than that of DWT. So the requirement of anisotropic DWT is released to common DWT. DWT 
has its own drawback: the shift variant property, which causes distortions in fused images. 
Fortunately, the shift variant property can be reduced through the structure of Dual Tree. 

Using the same method in [15] which Kingsbury was using to illustrate the shift-variant 
of DWT and shift-invariant of dual tree complex wavelet transform (DT CWT), the comparison of 
reconstruction results between traditionally CSST and DT CSST were given in Figure 3. The 
input image was a white circle located at the center of a black background. The images in first 
row were the reconstruction images along one direction of DT CSST and the images in second 
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row were the reconstruction images along the same direction of CSST. And it should be 
observed from pictures in (a) that both CSST and DT CSST can reconstruct the input images 
precisely. But in low frequency coefficients (b) and different scales of high coefficients (c)~(e), 
the reconstruction images of DT CSST were much smoother than those of CSST. These 
differences suggested that CSST was shift-variant and DT CSST was (approximately) shift-
invariant. And in 3D cases, DT structure could also effectively reduce the shift-variance of 
CSST. 
 
 
3. Proposed Fusion Method 
 

 
 

Figure 4. Steps of Proposed Medical Volume Fusion Method 
 
 

The proposed fusion method in this paper belongs to the voxel-level fusion, with 
average rule for low frequency coefficients mean( , )l l l

f a bC C C , and three different fusion rules for 

high frequency coefficients: 
a)  Max modulus of Points’ Modulus (MPM) 
 

,

,
a a b

f
b a b

C C C
C

C C C

   
                                                               (1) 

 
The fused high coefficients are those have the larger modulus as in equation (1), where 

, { , , }tC t a b f  means the high frequency coefficients, ,a b  label two source data respectively, 

f  refers the fused result. This fusion rule considers only single point’s information of 

coefficients. 
b)  Max Region Energy (MRE)  
The fused high frequency coefficients are acquired according to (2) [12], 
 

,

,
a a b

f
b a b

C E E
C

C E E

   
                                                               (2) 

 

Where  21 ( ) , { , }t t t
p

E C p C t a bN 

   ,  is a local region, tC , is the mean of all tC  in  , N  

is the number of coefficients in  . The fused high coefficients are the coefficients that have the 
larger local energy. This fusion rule considers all the information of points which are in the local 
region  . 

c)  Max Sum of Modified Laplacian (MSML) 
The fused high frequency coefficients are acquired according to (3). 3D version of 

Modified Laplacian index is calculated through equation (5), and the sum of them is calculated 
as (4), where , ,i j k  exhaust every point in source images and   is a local region around the 

center point ( , , )i j k . The parameter s  equals 1 in this paper. This fusion rule also considers 

all the information of points which are in the local region  , and what’s more, the center point 
and other points are treated differently. 
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                   (5) 

 
The steps of proposed fusion method are given in Figure 4. Firstly, forward 3D-CSST or 

3D-DT-CSST are performed to both source images, the low frequency is the average of both 
source coefficients, the fused high frequency fused by Equation (1~3). Finally, the backward 
3D-CSST or 3D-DT-CSST are performed to fused coefficients, and the output is the fused 
images as represented by fV . 

 
 
4. Results and Analysis 

In this section, the performances of proposed methods were evaluated on 4 human 
brain subjects, and compared with 2D, 3D-DWT [4] and 2D, 3D-DTCWT [5] based methods. 
The human study was approved by our Institutional Review Board. MR examinations were 
performed with a 3.0T MR system (Signa HDxt, GE, USA), using an 8-channel head coil. A 3D 
T2* weighted multi echo gradient echo sequence was used with the following parameters: 
FA=20°; TR=57ms; number of TEs=8; first TE=5.7ms; uniform TE spacing (∆TE)=6.7ms; 
BW=±41.67 kHz; field of view (FOV)=24cm; a range of resolutions were tested: 0.570.752 
mm3. The 3D T2* magnitude and QSM images, which are reconstructed by the tools of [16], are 
interpolated to 128 128 128  . In QSM processing, the magnetic fields outside the brain 
parenchyma were corrupted by noise, therefore, QSM regions were cropped by masks, which 
were obtained by brain extraction tool (BET) of [17]. Consequently, the experiments were 
evaluated by the valid data in all masks. 

 
 

 
 

Figure 5. Inter Frame Differences for 2D and 3D Fusion Methods 
 
 

Firstly, we evaluated the consistency in the third dimension between 2D methods and 
3D methods. 2D methods fused source images layer by layer, 3D methods directly fused all 3D 
images as a whole. Consistency along the third axis can be evaluated by both the perspective 
impression of inter frame difference (IFD) images, as shown in Figure 5, and their mutual 
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information (IFD_MI) [18, 19]. From Figure 5, it can be noticed that the fused images by 2D 
methods have several obvious distortions which resembles to neither of the source images. 
While in the results by 3D methods, the IDF images of were much consistent to the IDF of 
source data, suggested that the IDF images were highly correlated to the IDF of source images. 
The difference among the 3D methods can hardly be noticed. This conclusion can be comfirmed 
by IFD_MI, as listed in Table 1. Only the first subjects are listed for the limitation of the paper. In 
this experiment, only the voxels in the common region of two masks were calculated by 

equation (6). Suppose conventional IFD_MI without mask is represented by ( , , )i i i
i a b fMI D D D , 

where , ,i i i
a b fD D D  are the inter frame difference images for both sources ,i i

a bV V  and i
fV  fused 

images, 1 , { , , }i i i
t t tD V V t a b f   , i represents that the current layer is the i-th layer, N refers 

to the whole number of layers along the third axis, and   refers to point-wise multiplication. The 
quality indices of The method of 3D-DT-CSST with MSML rule has the highest value of IFD_MI, 
and all the values for 3D methods are higher than the 2D methods with same rule. 

 

 
1

1

1

1
IDF_MI ( , , ) ( )

1

N
i i i i i

i a b f
i

MI D D D Mask Mask
N






 
                        (6) 

 
 

Table 1. IFD_MI for the First Subject 
IFD_MI  2D DWT 2D DTCWT 3D DWT 3D DTCWT 3D CSST 3D DT CSST 
MPM 1.8443 1.7659 1.8905 2.2147 2.0943 2.5409 
MRE 1.7349 1.7650 1.8989 2.1558 2.0257 2.3809 

MSML 1.7274 1.7503 2.0965 2.3432 2.0374 2.5899 

 
 

One layer of each coronal, axial and sagittal images are selected as the 
representations, the source and result images are shown in Figure 6 to Figure 8. From the 
perspective impression, it was hard to tell which fusion method was better, because the result 
images were much similar to each other. The distinctions among them can be noticed only after 
carefully observation. This phenomenon suggested that both the proposed methods and all 
conventional methods could fulfill the task. Two performance indices, Mutual Information (MI) 
and QAB|F [20], were selected to evaluate the proposed methods, and were expanded into 3D 
version. They were listed in Table 2. It should be noticed that the quality indices of proposed 
methods were larger than the methods that based on DWT or DT CWT. And in the case of 3D-
CSST and 3D-DT-CSST, the rule of MSML had the highest indices. The same phenomena 
could also be noticed in other subjects which were omitted for the limitation of the paper. 
 
 

 
 

Figure 6. Coronal Source and Result Images 
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Figure 7. Axial Source and Result Images 
 
 

 
 

Figure 8. Sagittal Source and Result Images 
 
 

Table 2. Performance of the First Subject 
First subject 2D DWT 2D DTCWT 3D DWT 3D DTCWT 3D CSST 3D DT CSST 

MPM 
MI 1.1652 1.2168 1.1615 1.2404 1.2574 1.2718 

QAB|F 0.1824 0.1985 0.1820 0.2109 0.2182 0.2264 

MRE 
MI 1.1596 1.2323 1.1471 1.2561 1.3054 1.3112 

QAB|F 0.1987 0.2185 0.1975 0.2351 0.2442 0.2568 

MSML 
MI 1.1566 1.2339 1.2043 1.2617 1.3062 1.3132 

QAB|F 0.1977 0.2158 0.2257 0.2402 0.2534 0.2656 

 
 
5. Conclusion 

Conventional 2D image fusion method can only fuse the 3D MRI images layer by layer, 
which leads to the loss of inter layer correlation of 3D images. In this paper, the 3D medical 
image fusion methods based on 3D-CSST and its shift invariant version, 3D-DT-CSST, were 
proposed. From the principles of methods and the experiments the following conclusions can be 
drawn: 1) the 3D-transform based methods had a better consistency along the third axis than 
conventional 2D-transform based methods. 2) From both perspective impression and the 
performance indices, the proposed medical fusion methods were better than 3D-DWT or 3D-
DTCWT. 3) Among the fusion rules of 3D-CSST or 3D-DT-CSST based methods, the MSML 
rule had a better performance than other two rules. 
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