
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 33, No. 3, March 2024, pp. 1715~1725 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v33.i3.pp1715-1725      1715 

 

Journal homepage: http://ijeecs.iaescore.com 

Evaluation of filtering and contrast in X-ray and computerized 

tomography scan lung classification 

 

 

Anitha Nagaraja Setty1, Rajesh Thalwagal Mathad1, Krishnatejaswi Shenthar2, Likhith2 
1Department of Computer Science and Engineering, Dayananda Sagar University, Bangalore, India 
2Department of Computer Science and Engineering, RV College of Engineering, Bangalore, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Sep 29, 2023 

Revised Nov 27, 2023 

Accepted Jan 3, 2024 

 

 Deep learning provides many convenient methods to help medical 

practitioners take informed decisions about diverse ailments. The goal of this 

project is to measure the effectiveness of filters and contrast enhancement 
techniques qualitatively and quantitatively in classifying lung scan images. 

Transfer deep learning was used to obtain the necessary results, with 

DenseNet 121 being the base model. Salt and pepper filter was used to 

introduce noise, and 3×3 mean and 5×5 mean with contrast limited adaptive 
histogram equalization (CLAHE) was used to minimize the effect of noise. 

All layers excluding the rearmost were frozen, and new dense and dropout 

layers were added to identify features of computerized tomography (CT) 

scan images of lungs. The resultant models were of comparable accuracy, 
where the model with no filter gave the accurate results for the given data, 

and the one using the 5×5 mean filter gave better adaptability in 

classification of unseen data. The misclassification between normal and 

pneumonia affected lungs is relatively higher, because of the lack of distinct 
features between them. 
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1. INTRODUCTION 

Lung diseases such as pneumonia, tuberculosis, and more recently, coronaviruse disease 2019 

(COVID-19), have presented a significant risk to the overall public health on a global scale. The onset of the 

COVID-19 outbreaks, originating from the SARS-CoV-2 virus, has underscored the critical importance of 

maintaining good lung health and the need to effectively detect, diagnose and treat respiratory diseases [1].  

In addition to infectious diseases, smoking, air pollution [2] and occupational hazards [3] have contributed to 

the deterioration of lung health, increasing the risk of serious diseases such as asthma and lung cancer.  

To meet these challenges and improve the overall health of populations worldwide, innovative strategies to 

detect, prevent, diagnose and treat respiratory diseases are essential [4]. 

Machine learning has become a powerful tool for early and accurate detection of lung diseases, 

which has significantly reduced lung disease-related deaths. Before the introduction of machine learning 

models, the diagnosis of lung diseases was based on the subjective interpretation of radiologists or doctors, 

which often led to inconsistencies and inaccuracies. In addition, analyzing medical images such as 

computerized tomography (CT) scans took time, causing delays in both diagnosis and treatment. 

Over the past few years, machine learning algorithms have sparked a revolution, completely 

transforming the interpretation of large amounts of medical image data, enabling rapid and accurate detection 

of lung nodules that may indicate diseases such as lung cancer [5]. These algorithms can distinguish between 

https://creativecommons.org/licenses/by-sa/4.0/
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benign and malignant nodes with high accuracy, facilitating earlier diagnosis. In addition, machine learning 

models can use information related to environmental exposure, smoking history and age to predict the 

likelihood of developing lung disease, enabling early intervention and preventative measures for those at risk. 

As a result, this approach promotes better treatment outcomes and higher survival rates [6]. 

The purpose of this article is to contribute to the field by evaluating the effectiveness of filtering and 

contrast techniques in the classification of lung scan images. In doing so, we respond to the challenges of the 

complexity of lung disease and the need for more accurate and efficient diagnostic methods. The following 

sections detail the methodology and results of our study, which demonstrate the impact of these methods on 

lung CT scan image classification and their potential to improve the accuracy of early diagnosis.  

 

 

2. METHOD 

Our methodology represents a comprehensive approach adapted to evaluate filtering and contrast 

enhancement techniques in the classification of lung radiographs. It aims to improve the accuracy and 

robustness of lung scan classification by handling the complexity of the dataset and optimizing the efficacy 

of the convolutional neural network (CNN) model's performance. The journey begins with the careful 

collection of data from various sources, culminating in the compilation of a rich and challenging dataset 

spanning four distinct categories, each representing a different respiratory disease. This dataset forms the 

foundation upon which a series of critical steps evolve, from data addition to denoising, to prepare the data 

for effective model training. Using a pre-trained architecture, the CNN model plays a key role in achieving 

accurate classification. Our methodology is evolving as a carefully designed framework that aims to advance 

the field of medical image analysis is shown in Figure 1. 

 

 

 
 

Figure 1. Workflow diagram 

 

 

2.1.  Data collection and preprocessing 

The foundation of our methodology lies in the meticulous collection and preparation of the dataset. 

We sourced a diverse range of CT scan and X-ray images from both Kaggle, a well-known data repository, 

and local scanning centers. This dataset consists of 7,135 images distributed across four primary classes: 

“Normal,” “COVID-19,” “Pneumonia,” and “Tuberculosis.” The diversity in these classes not only mirrors 

the complexity of real-world lung scan data but also presents a formidable challenge for our study. Each image 

is in JPEG format, with a resolution of 1,024×1,024 pixels, ensuring a rich and high-resolution dataset [7]. 
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2.2.  Data splitting 

To effectively train, validate, and test our model, the dataset was partitioned into three distinct 

subsets: training, testing, and validation. This division was made with careful consideration, resulting in 

ratios of 88%, 10%, and 2%, respectively. Moreover, each subset was meticulously categorized into 

“COVID-19”, “Normal”, “Pneumonia” [8], and “Tuberculosis” [9] classes, maintaining the integrity and 

diversity of the dataset across all sets. 

 

2.3.  Data augmentation 

Recognizing the importance of a diverse and balanced training dataset, we harnessed the power of 

data augmentation. We implemented the image data generator method from the Keras library, an invaluable 

tool for introducing diversity and robustness into our training data. This method enabled a range of 

augmentation techniques, including horizontal and vertical flips, random zoom, and random rotation.  

These augmentations were thoughtfully applied to the images, serving a twofold purpose. First, they 

mitigated the potential introduction of bias, ensuring a balanced training dataset. Second, they empowered 

the CNN model to adapt to variations in the input data, a crucial attribute in real-world application scenarios. 

 

2.4.  Noise reduction 

The presence of noise in medical images, often referred to as "salt and pepper noise" [10] can 

significantly impact the performance of machine learning models. To mitigate this, we incorporated noise 

reduction techniques into our methodology. Initially, we employed the salt and pepper filter, which 

introduced random dark and light pixels based on a user-defined threshold. This filter plays a crucial role in 

eliminating the disruptive salt and pepper noise, typified by sporadically placed white and black dots. 

Mean and median filters: in addition to the salt and pepper filter, we applied mean and median 

filters. These filters function to enhance image smoothness by substituting each pixel's value with the average 

(mean) or central (median) value of adjacent pixels. This process significantly diminishes the influence of 

noise, thereby augmenting the overall image quality. 

 

2.5.  Data normalization 

Normalization is a key step in preparing the data for training, ensuring that the input data is within a 

consistent range of values. In our methodology, we initiated this process by resizing the input images to a 

uniform 200×200-pixel resolution, enabling the neural network to efficiently process the data. Subsequently, 

we normalized the pixel values by adjusting them to have a mean of 0 and a variance of 1. This 

standardization is pivotal in guaranteeing that all pixels are on a similar scale, enabling the network to extract 

relevant features from the entire image. 

 

2.6.  Data augmentation 

Building on the foundation of data augmentation, we also incorporated random flipping and rotation 

techniques. These augmentations are not only crucial for introducing diversity into the training data but also 

serve as a preventative measure against overfitting. By randomly modifying the input images while 

preserving their labels, we effectively expanded the variety of the training data. This augmentation approach 

fortifies the network's capacity to generalize and make accurate predictions when faced with unseen data [11]. 

 

2.7.  Contrast enhancement CLAHE 

Enhancing the contrast of input images is instrumental in ensuring the network can identify and 

classify features accurately. To this end, the contrast limited adaptive histogram equalization (CLAHE) 

technique was employed. CLAHE operates by adjusting pixel intensities based on local contrast, thereby 

improving the visibility of image details. The outcome is a set of images that the network can learn from 

effectively, ultimately improving its capability to recognize significant features [12]. 

 

2.8.  Convolutional neural network architecture (DenseNet 121) 

Our study leverages the power of a pre-trained DenseNet121 CNN model for image classification. 

DenseNet 121 is a deep CNN architecture renowned for its effectiveness in extracting features and mastering 

representations [13]. It is built on the concept of dense connections between layers, enabling the network to 

capture intricate features in the images effectively [14]. 

The input images are resized to a fixed size of 256×256 pixels, ensuring compatibility with the 

model's requirements. Furthermore, we employed augmentation methods on data, such as flips and random 

rotations, to diversify the training dataset [15]. This augmentation strategy not only enhances the size of the 

training dataset but also bolsters the network's resilience against variations in the input data. A robust and 

adaptable model is essential for accurate lung scan classification [16]. 
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2.9.  Transfer learning 

Transferred-learning technique was used to maximize the accuracy of the model [17], due to the 

small size of the dataset available [18]. It enables a model that has been trained for one task to be utilized for 

another task, usually one with less labeled data or a problem domain that is similar [19]. We used transfer 

learning to enhance the functionality of our CNN model for lung scan detection [20]. 
 

2.9.1. Densenet 121 

Our choice of architecture for the CNN was Densenet121, a pre-trained model that initially 

underwent training on the extensive ImageNet dataset, comprising over 1 million annotated images 

categorized into 1,000 classes [21]. Leveraging the features and weights learned during this pre-training 

phase proved invaluable for enhancing our lung scan classification model. In our implementation, we 

capitalized on the power of transfer learning by using the Densenet121 model as a feature extractor.  

This approach enabled us to make use of the knowledge encoded in the pre-trained model. We further 

improved the Densenet121 architecture by introducing a custom fully connected layer as the final layer of the 

network. The process of training the model on our own labeled lung scan dataset, while preserving the pre-

trained weights and modifying only the weights in the custom layer, is known as fine-tuning [22]. The 

primary advantage of fine-tuning is that it allows us to effectively train the model using a smaller amount of 

labeled data [23]. The features acquired by the pre-trained model are instrumental in classifying lung scans 

with high accuracy, even when confronted with limited training data and a relatively short training time [24]. 
 

2.9.2. Modifications 

In adapting the Densenet121 architecture as shown in Figure 2 to our specific lung scan 

classification task, we made several strategic modifications. We introduced a flattening layer to convert the 

feature maps into a suitable format for subsequent processing. A densely connected layer comprising 80 

neurons was introduced, alongside a dropout rate of 0.4, augmenting the model’s capacity to generalize 

proficiently. 

The final layer of our modified architecture was tailored to the requirements of our classification 

task, consisting of four output classes with a softmax activation function. The selection of a dropout rate of 

0.4 was reached through a systematic experimentation process, where we trained multiple models with 

varying dropout rates ranging from 0.2 to 0.5, in steps of 0.05. This process allowed us to fine-tune the 

dropout rate for optimal model performance and robustness. These modifications ensured that the 

Densenet121 architecture [25] was aligned with the specific demands of our lung scan classification problem, 

resulting in a model that could effectively capture the nuances of respiratory conditions and provide accurate 

classifications. 
 

 

 
 

Figure 2. Densenet architecture 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Visual exploration of preprocessing techniques in lung scan classification 

In this pivotal section, our rigorous evaluation and analysis of lung scan classification unfold a 

narrative that goes beyond numerical results, shedding light on the efficacy of various filtering and 

enhancement techniques in medical image analysis. Visual representations in Figures 3 to 7 provide a 

glimpse into the impact of preprocessing techniques. Figure 3 exhibits minimal discrepancies in processed 

images with no filter, highlighting areas of interest amidst random zoom, rotations, and flips. Figure 4 

showcase effects of the salt and pepper filter, Figures 5 to 7 introduce mean filters for noise reduction and 

enhanced interpretability of pathological features. These visual insights pave the way for a comprehensive 

discussion of technique effectiveness in improving interpretability and classification accuracy, setting the 

stage for subsequent quantitative analyses and implications. 
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Figure 3. Preprocessed images with no filter 

 

 

  
 

Figure 4. Salt and pepper filter applied 

 

 

 

Figure 5. 3×3 mean filter for salt and pepper noise 

 

 

  
 

Figure 6. 5×5 mean filter for salt and pepper noise 

 

Figure 7. Tuberculosis infected lung 
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3.2.  Filtering techniques in lung scan classification: a comparative analysis of model performance 
Within machine learning, accuracy, loss, and epochs stand as crucial metrics utilized for assessing a 

model's performance. Accuracy represents the proportion of correct predictions made by the model, 

determined by dividing the number of accurate predictions by the total number of predictions made. Loss 

quantifies the model's adherence to the training data by assessing the disparity between the model's predicted 

outputs and the actual outputs of the training dataset. This measurement gauges the degree of fitting between 

predicted and actual outcomes. Epochs refer to the instances where the model processes and learns from the 

complete training dataset. 

Accuracy and loss typically vary with respect to epochs in the following way: accuracy increases as 

the model trains for more epochs. This is because the model can learn more about the training data as it trains 

for longer. Loss decreases as the model trains for more epochs. This is because the model can better fit the 

training data as it trains for longer. However, it is important to note that accuracy and loss can also start to 

decrease after a certain number of epochs. This is known as overfitting. Overfitting arises when the model 

excessively adapts to the training data, hindering its ability to effectively generalize to unseen or new data. 

Comparing different models for lung scan classification: this study involved an assessment of the 

effectiveness of three distinct models for classifying lung scans: i) model 1: no filter, ii) model 2: 3×3 mean 

filter, and iii) model 3: 5×5 mean filter. Our study findings revealed that the 5×5 mean filter model exhibited 

superior performance compared to the other models concerning both accuracy and validation accuracy.  

Table 1 shows the accuracy and validation accuracy of the different models. 

 

 

Table 1. Model accuracies for test and validation dataset 
Model Accuracy (%) Validation accuracy (%) 

No filter 83.46 81.23 
3×3 mean filter 83.54 79.32 
5×5 mean filter 84.68 83.24 

 

 

The accuracy plot as shown in Figure 8 illustrates the model's accuracy on both the training and 

validation sets throughout the training process. The sudden jump in accuracy in the initial epochs is due to 

the accumulation of features from clustering. The model is able to learn the most important features of the 

data quickly, which leads to a rapid increase in accuracy. However, as the model trains for more epochs, it 

starts to learn less important features, which leads to a stagnation in accuracy. The validation accuracy is also 

fluctuating, which is due to the unevenness of the data that is used for validation. Some of the data in the 

validation set may be more difficult for the model to classify than other data. Consequently, this can result in the 

model overfitting to the training data, causing a decline in performance when applied to the validation dataset. 

The loss plot as shown in Figure 9 demonstrates the model's loss concerning both the training and 

validation sets throughout the training duration. Initially, the model rapidly learns the data, reducing the loss 

on both sets. Yet, beyond a certain epoch count, the loss on the validation set begins to rise, indicating 

potential overfitting of the model to the training data. This divergence implies a decrease in generalization 

ability. Overall, the results in Figures 8 and 9 suggest that the model is able to learn the data quickly and 

achieve a high accuracy on the training set. However, the model is also starting to overfit to the training data. 

This is evident from the increase in loss on the validation set and the fluctuation in validation accuracy. 

 

 

  
 

Figure 8. Accuracy plot for no filter model 

 

Figure 9. Loss plot for no filter model 
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Figures 8 and 9 show the accuracy and loss plots for the model with no filter, while  

Figures 10 and 11 show the accuracy and loss plots for the model with the 3×3 mean filter. The accuracy plot 

for the 3×3 mean filter model in Figure 10 shows a similar trend to the accuracy plot for the model with no 

filter as shown in Figure 8. The accuracy increases rapidly in the initial epochs and then stagnates. However, 

the accuracy of the 3×3 mean filter model is slightly lower than the accuracy of the model with no filter.  

This suggests that the 3×3 mean filter may be introducing some noise into the data, which is making it more 

difficult for the model to classify the data accurately. The loss plot for the 3×3 mean filter model in Figure 11 

shows a similar trend to the loss plot for the model with no filter as shown in Figure 9. The loss decreases 

rapidly in the initial epochs and then starts to increase after a certain number of epochs. This suggests that the 

3×3 mean filter is not able to completely prevent the model from overfitting to the training data. The results 

in Figures 10 and 11 suggest that the 3×3 mean filter does not provide any significant improvement in the 

accuracy or generalization of the model. However, the 3×3 mean filter may be able to reduce the overall loss 

of the model. 

There are few possible reasons why the 3×3 mean filter may be causing a decrease in accuracy: 

 The utilization of a 3×3 mean filter might blur lung edges, potentially hindering the model’s ability to 

recognize lung features. 

 The 3×3 mean filter may be introducing some noise into the data, which can make it more difficult for the 

model to classify the data accurately. 

 The 3×3 mean filter may be removing some important features from the data, which can make it more 

difficult for the model to learn the data. 

There are few possible solutions to the problem of the decrease in accuracy: 

 Use a different filtering technique, such as a median filter or a Gaussian filter. 

 Use a smaller filter size, such as a 3×3 median filter or a 5×5 Gaussian filter. 

 Use a data augmentation technique, such as random cropping or random flipping, to introduce more 

diversity into the training data. 

 Use a more advanced regularization approach, like dropout or weight decay, to mitigate the model’s 

tendency to overfit on the training data. 
 
 

  
 

Figure 10. Accuracy plot for 3×3 mean filter model 
 

Figure 11. Loss plot for 3×3 mean filter model 
 

 

Figures 12 and 13 show the accuracy and loss plots for the model with the 5×5 mean filter.  

The accuracy plot for the 5×5 mean filter model in Figure 12 shows a similar trend to the accuracy plot for 

the model with no filter as shown in Figure 8. The accuracy increases rapidly in the initial epochs and then 

stagnates. However, the accuracy of the 5×5 mean filter model is comparable to the accuracy of the model 

with no filter. This suggests that the 5×5 mean filter is able to remove noise from the data without blurring the 

edges of the lungs or removing important features. The loss plot for the 5×5 mean filter model in Figure 13 

shows a similar trend to the loss plot for the model with no filter as shown in Figure 9. The loss decreases 

rapidly in the initial epochs and then starts to increase after a certain number of epochs. However, the loss of 

the 5×5 mean filter model is slightly lower than the loss of the model with no filter. This suggests that the 

5×5 mean filter is able to help the model to learn the data more efficiently and prevent overfitting.  

The validation accuracy of the 5×5 mean filter model is substantially higher than the validation accuracy of 

the model with no filter. This suggests that the 5×5 mean filter is able to improve the generalizability of the 

model. The results in Figures 12 and 13 suggest that the 5×5 mean filter is a good choice for filtering lung 

scan images before training a deep learning model. The 5×5 mean filter is able to remove noise from the 

images without blurring the edges of the lungs or removing important features. It is also able to help the 

model to learn the data more efficiently and prevent overfitting. 
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Comparison of the 3×3 mean filter with the 5×5 mean filter: the 5×5 mean filter outperforms the 

3×3 mean filter in terms of accuracy and validation accuracy. This is likely because the 5×5 mean filter is 

better at removing noise from the images without blurring the edges of the lungs or removing important 

features. The 5×5 mean filter is a good choice for filtering lung scan images before training a deep learning 

model. It is able to remove noise from the images without blurring the edges of the lungs or removing 

important features. It is also able to help the model to learn the data more efficiently and prevent overfitting.  

 

 

  
 

Figure 12. Accuracy plot for 5×5 mean filter model 
 

Figure 13. Loss plot for 5×5 mean filter model 
 

 

3.3.  Filter impact and model evaluation: a comparative analysis of lung scan classification models 

The evaluation of classification models through confusion matrices [26] and F1-scores provides 

crucial insights into their performance. In our project focusing on lung scan images, three models were 

assessed: no filter [27], 3×3 mean filter, and 5×5 mean filter. In our project, the indices 0, 1, 2, and 3 

represent the four classes of lung scan images: COVID-19, Normal, Pneumonia, and Tuberculosis. The no 

filter model demonstrated good overall performance with an F1 score of 0.74. It excelled in predicting 

COVID-19 and normal samples, yet exhibited lesser accuracy in predicting Pneumonia and Tuberculosis 

samples, with F1-scores of 0.77 and 0.67, respectively. 

Comparatively, the 3×3 mean filter model showed a similar overall performance (F1-score of 0.72) 

to the no filter model. While proficient in predicting COVID-19 and normal samples, it displayed a slight 

decrease in accuracy for Pneumonia and Tuberculosis samples, with F1-scores of 0.74 and 0.60, respectively. 

Notably, the 5×5 mean filter model outperformed both counterparts with the highest overall F1-score of 0.73. 

It demonstrated robust predictions across all four classes, with F1-scores of at least 0.58 [28]. 

The superior performance of the 5×5 mean filter model suggests its effectiveness in enhancing the 

model's ability to distinguish between different lung conditions. Additionally, a potential explanation for the 

increase in misclassification between Normal and Pneumonia samples with the 3×3 mean filter points to 

issues such as blurring edges or introducing noise. In conclusion, our findings highlight the significance of 

filter selection in optimizing classification models for lung scan images, with the 5×5 mean filter emerging as 

the most effective choice for improved accuracy and overall performance. The DenseNet documentation and 

repository link of our project [29] is attached for reference. Figures 14 to 16 represent the confusion matrices 

for no filter, 3×3 mean filter, 5×5 mean filter model respectively. 
 

 

  
 

Figure 14. Confusion matrix for no filter model 
 

Figure 15. Confusion matrix for 3×3 mean filter model 
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Figure 16. Confusion matrix for 5×5 mean model 

 

 

4. CONCLUSION 

In this comprehensive study, we meticulously evaluated various filtering and contrast enhancement 

techniques for lung scan image classification using deep learning. By applying transfer learning with 

DenseNet 121 and introducing filters such as salt and pepper, 3×3 mean, and 5×5 mean with CLAHE, we 

aimed to enhance image quality. Qualitative analysis through visual representations emphasized the impact of 

these techniques. Notably, the model with no filter exhibited minimal discrepancies, while the 5×5 mean 

filter effectively reduced noise without compromising lung feature clarity. Quantitative analysis revealed 

reasonable performance across all models, with accuracy ranging from 83.46% to 84.68%. Significantly, the 

5×5 mean filter model consistently outperformed others, achieving a higher accuracy of 84.68% and an 

impressive validation accuracy of 83.24%. Examining accuracy and loss trends, the 5x5 mean filter model 

not only demonstrated higher accuracy but also maintained a more stable validation accuracy over epochs, 

suggesting improved generalization. In contrast, the 3×3 mean filter model exhibited a slight decrease in 

accuracy, indicating potential challenges in noise handling or preserving critical features. 

The insight provided by confusion matrices and F1-scores highlighted the superior performance of 

the 5×5 mean filter model across all classes. Meanwhile, the 3×3 mean filter model showed comparable 

results to the no filter model, with minor variations in predicting Pneumonia and Tuberculosis samples. 

Exploring potential explanations for model discrepancies, especially in distinguishing between Normal and 

Pneumonia samples with the 3×3 mean filter, underscores the importance of careful filter selection and 

customization in medical image analysis. The novelty of this study lies in the systematic evaluation of 

filtering techniques on lung scan image classification. The success of the 5×5 mean filter in enhancing both 

quantitative metrics and visual interpretability suggests its potential as a valuable tool in future medical 

image analysis. To further advance this field, future investigations could focus on optimizing filter 

parameters, exploring ensemble approaches, developing adaptive filtering strategies, extending dataset 

exploration, and collaborating with medical professionals for thorough clinical validation, ensuring the real-

world applicability of these advancements. In conclusion, our study contributes valuable insights to the 

nuanced impact of filtering techniques on the classification of lung scan images, paving the way for future 

advancements in this critical domain of medical imaging. 
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