
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 33, No. 2, February 2024, pp. 795∼803
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v33.i2.pp795-803 ❒ 795

Efficient number theoretic transform accelerator for
CRYSTALS-Kyber

Toan Nguyen, Hoang Anh, Hung Nguyen, Trang Hoang, Linh Tran
Department of Electronics Engineering, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City,

Ho Chi Minh City, Vietnam

Article Info

Article history:

Received Sep 19, 2023
Revised Nov 26, 2023
Accepted Dec 4, 2023

Keywords:

Accelerator
Cryptography
CRYSTALS-Kyber
FPGA
Hardware implementation
Number theoretic transform

ABSTRACT

The national institute of standards and technology (NIST) has presented its
draft of the module-lattice-based key-encapsulation mechanism standard (ML-
BKEMS), choosing cryptographic suite for algebraic lattices (CRYSTALS)-
Kyber as the base encryption. Existing hardware implementations of modern
cryptography will need to process the new standard efficiently. The primary pro-
cess in CRYSTALS-Kyber key-encapsulation mechanism (KEM) is the number
theoretic transform (NTT), which requires heavy computing power. This paper
contributes an efficient hardware accelerator for NTT and inverse NTT (INTT)
by CRYSTAL-Kyber parameters. The proposed design utilizes the K-RED al-
gorithm for reducing polynomial multiplication. It also incorporates the Brent-
Kung method for efficient modular addition and subtraction operation with an
address generator to control the sequences of computation. On the Xilinx Artix
7 field programmable gate array (FPGA), our design achieves 262 MHz clock
speed, utilizing only 1405 LUTs.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Linh Tran
Department of Electronics Engineering, Ho Chi Minh City University of Technology
Vietnam National University Ho Chi Minh City
Ly Thuong Kiet, Ho Chi Minh City, Vietnam
Email: linhtran@hcmut.edu.vn

1. INTRODUCTION
The national institute of standards and technology (NIST) shows their draft of module-lattice-based

key-encapsulation mechanism standard (MLBKEMS) on federal information processing standards (FIPS) 203
[1]. The standard specifies a key-encapsulation mechanism (KEM) that uses a module lattice method called
ML-KEM, based on cryptographic suite for algebraic lattices (CRYSTALS)-Kyber specification. CRYSTALS-
Kyber or Kyber is a module lattice-based KEM, which needs multiplication of polynomials over a polynomial
ring [2]. The main bottleneck in most current implementations of CRYSTALS-Kyber is its method of fast
multiplication using number theoretic transform (NTT). Software implementation of Kyber would need to
iterate many times through the loops of NTT and inverse NTT (INTT), making this the most time-consuming
operation [3]. Unlike the elliptic curve cryptography (ECC) or Rivest–Shamir–Adleman (RSA) mechanism,
which has a primarily linear computation method, NTT could utilize parallelization in computing to increase
throughput.

Current hardware implementations of Kyber and similar lattice-based post quantum cryptography
(PQC) attempt to improve the algorithm performance with many methods. Two main approaches to im-
prove NTT performance are improving the butterfly unit structure and the communication between stages of

Journal homepage: http://ijeecs.iaescore.com

796 ❒ ISSN: 2502-4752

NTT, which includes fetching data from memory and arranging them in order for the following NTT stages.
Zhang et al. [3] merge the pre-processing of NTT and post-processing of INTT with an optimized butterfly unit
for modular operations on NEWHOPE prime q. Our previous work [4] uses a similar approach for NTT and
INTT, with a tweaked modular algorithm for Kyber’s prime called Exact KRED and a 2x2 butterfly unit con-
figuration and low-complexity NTT and INTT algorithm. Ye et al. [5] improves upon the work of Zhang et al.,
hard coded the modular reduction algorithm to NEWHOPE prime q. They also introduce a fully pipelined struc-
ture between stages of NTT and compute with NTT cores. Bit-Parallel NTT (BP-NTT) [6] architecture uses
static random access memory (SRAM) and bit-parallel modular multiplication to improve their NTT process.
Barret reduction is a popular modular algorithm for optimizing the butterfly unit [7]. Fritzman and Sepulveda
[8] discuss possible side-channel attacks on NTT hardware implementation and propose a low-power design
with a single-port RAM. To enhance data throughput, a ping-pong memory access scheme is proposed in [9].

Accelerating hardware algorithm has many applications and applies to different platforms such as
Xilinx field programmable gate array (FPGA) and application specific integrated circuit (ASIC) [10]-[13].
Paludo and Sousa [14] integrated their butterfly unit to a 5-stage pipeline linux-ready RISC-V. They rated
the performance on both FPGA and 28 ASIC. CoHA-NTT is the first NTT-based polynomial multiplica-
tion operations architecture with run-time and compile-time reconfigurability [15]. Geelen et al. [16] in-
troduce a new instruction set architecture (ISA) extension to their RISC-V architecture to integrate NTT.
Kuang et al. [17] vectorized the NTT algorithm to combine it with their RISC-V design better. Chen et al.
[18] improve the NTT in their processor, taking advantage of dual memory access. The integration of NTT
across different platforms to support the new PQC is evolving [19]-[22].

In this work, we design an efficient NTT accelerator for CRYSTALS-Kyber PQC, with unified block
memory and a hybrid NTT/INTT algorithm. Our contribution includes:

- A dual-configuration three-stage butterfly unit optimized for efficient modular operation on CRYSTALS-
Kyber parameters.

- A low-complexity NTT/INTT hardware architecture with dual butterfly units.
- An improved hybrid NTT/INTT algorithm and address generation using BRAM address sequence to

improve overall speed.

The remainder of the document is structured in the following manner: section 2 provides the back-
ground information on CRYSTALS-Kyber, NTT, Brent-Kung Adders, and K-RED modular reduction. In sec-
tion 3, we present our suggested hardware architecture for the NTT Accelerator. Our discoveries and results
are detailed in section 4. Finally, section 5 serves as the conclusion for our paper.

2. PRELIMINARIES
2.1. CRYSTALS-Kyber scheme

CRYSTALS-Kyber is part of a cryptographic suite called CRYSTALS. Lattice-based cryptography is
grounded in the complexity of solving lattice problems, which are believed to be complicated even for quantum
computers [23]. In its specification [2], Kyber provides 3 versions of its KEM: Kyber-512, Kyber-768, and
Kyber-1024. They also provide the 90s versions, which replace the Keccak SHA3 implementation with the
SHA2 family. The parameters for each version of Kyber are outlined in Table 1, taken from the specifications.

Table 1. The specifications for each version of Kyber with distinct parameters
Version n k q η1 η2 (du,dv) δ

Kyber512 256 2 3329 3 2 (10,4) 2−139

Kyber768 256 3 3329 2 2 (10,4) 2−164

Kyber1024 256 4 3329 2 2 (11,5) 2−174

2.2. Number-theoretic transform
In CRYSTALS-Kyber, Bos et al. [2] use NTT for fast multiplications between polynomials. The

counterpart of the NTT is referred to as the INTT. With NTT and INTT, the multiplication results of the
equation h = f ∗ g could be calculated from (1), which improves the speed of polynomials multiplication
[2]. For software implementation and evaluation, Scott [24] show detailed points to adapt from an effective
reference C implementation of PQC. We employ the negative wrap convolution (NWC) version of the NTT
algorithm. Pöppelmann and Güneysu [25] to prevent the inclusion of zero-padding coefficients in the input

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 795–803

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 797

polynomials f and g for NTT and INTT [4]. Based on the previous two algorithms from [4], we re-write a new
hybrid NTT/INTT algorithm in Algorithm 1.

h = INTT ∗ (NTT (f) ∗NTT (g)) (1)

Algorithm 1 Hybrid NTT and INTT algorithm
Input: a(x) = a1, a2. . . an for NTT
Input: â(x) = â1, â2. . . ân for INTT
Input: Pre-computed twiddle factor ζ[i] = γBitReverse[i]

Output: NTT (a(x)) for NTT; INTT (â(x)) for INTT
Intialize k = 0 (NTT) or k = n (INTT)
for m = 0;m < log2 n;m++ do

len← (n/2 >> m)or(1 << m)
for i = 0; i < n; i = j + len do

ω ← ζ[+ + k] (NTT) or −ζ[−− k] (INTT)
for j = i; j < i+ len; j ++ do

r1 ← aj + len (NTT) or (âj − âj+len) (INTT)
u1 ← r1 ∗ ω
r2 ← u1 (NTT) or âj + len (INTT)
u2 ← aj + r2 (NTT) or âj + r2 (INTT)
t1 ← u2

t2 ← (aj − u1) (NTT) or u1 (INTT)
aj (NTT) or âj (INTT)← t1
aj + len (NTT) or âj + len (INTT)← t2

end for
end for

end for

Each NTT stage requires a Cooley-Tukey (CT) butterfly unit, and each INTT state requires a gentleman-
sande (GS) butterfly unit. Using NWC, the butterfly unit configuration must account for the pre-processing and
post-processing accordingly. Figure 1 provides the low complexity butterfly unit diagrams for NWC NTT
and INTT [4]. Figure 1(a) is the CT butterfly unit structure for NTT, and Figure 1(b) is the GS butterfly unit
structure.

Figure 1. The figure showcases two butterfly units with the reduced complexity algorithm;
(a) CT butterfly unit and (b) GS butterfly unit

2.3. Brent-Kung adder
The carry-lookahead adder (CLA) has a parallel prefix adder (PPA) variant called the Brent-Kung

adder CLA. We use this adder structure to improve the performance of butterfly unit modular addition and
subtraction. In contrast to the Kogge-Stone adder, it has less wiring congestion and is simpler in structure.
It was first proposed by Brent and Kung [26] (KSA).

In Brent-Kung adders, the carry is computed simultaneously, dramatically reducing the operation time.
Also, the carry has to travel through fewer stages, lowering power consumption. Brent-Kung revolutionized
carry generation and propagation by introducing an operator o defined as (a1, b1) o (a2, b2) = (a1 ∨ (b1 ∧
a2), b1 ∧ b2), along with the function (Gi, P i) = (g1, p1) for i = 1; otherwise (gi, pi)o(Gi − 1, P i − 1)

Efficient number theoretic transform accelerator for CRYSTALS-Kyber (Toan Nguyen)

798 ❒ ISSN: 2502-4752

for i = 2, 3, . . . n. The operator o(Gn,Pn), as defined, can be computed in a tree-like structure, similar to
Figure 2.

Figure 2. Brent-Kung adder tree-like structure

2.4. K-RED modulo reduction
The K-RED algorithm 2 [3], [27] takes any integer C as input and produces an integer D such that

D ≡ kC (mod q), and |D| < q + |C|/2m. While this function doesn’t strictly reduce the value of C modulo
q,” it is termed a reduction because it brings D within the desired range. It’s important to note that for |C| >
(2m/(2m − 1))q, we observe |D| < |K − RED(C)|, meaning it effectively reduces the size of C. For
the CRYSTALS-Kyber parameters, q = 3329 = 1328 + 1. In this context, with k = 13, K-RED returns
13C0 − C1 ≡ 13C (mod q) using the equivalence 1328 ≡ −1 (mod q) [3].

Algorithm 2 KRED (C)
C0 ← C mod 2m

C1 ← C/2m

Return

3. HARDWARE IMPLEMENTATION
In Figure 3, the comprehensive hardware architecture for the NTT accelerator is depicted, featuring

two butterfly units designed for both NTT and INTT operations. The read-only memory (ROM) stores data and
Two dual-port random access memory (RAM) stores polynomials. The controller and address generator define
input, NTT, INTT, and output states through an I/O interface. At the outset, the data is stored in the RAM, with
polynomial coefficients represented as 16-bit integers within the processor. Next, the address generator module
generates the addresses of the data that need to be read from the RAM. These data are then fetched from the
RAM and sent to the dual butterfly units for computation. Simultaneously, the address generator also generates
the addresses of the corresponding twiddle factors stored in the ROM, which are required by the dual butterfly
units. All the necessary data undergo computation, and the resulting values are pushed back to the RAM at
the same addresses. Figure 4 shows the controller’s state machine, which controls all the processes from input
to output. The state machine resets to the reset or idle stage, waiting for the start signal to start input data to
RAM, calculate based on the mode selection (NTT or INTT), and output data back to data out.

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 795–803

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 799

Figure 3. The block diagram of the hardware implementation for NTT accelerator

Figure 4. State machine of the NTT accelerator

3.1. The address generator
The address generator module serves as a control and address generator for a specific application,

providing the necessary signals and addresses to ensure the data sequence for each cycle in a layer. Each
NTT/INTT operation for Kyber n = 256 has to go through 8 layers. Each layer has 64 butterfly unit operations
for a dual butterfly unit configuration. Based on the mode and the current layer, the module generates specific
control signals and calculates address values for different layers of operation. It uses conditional and case
statements to determine the behavior based on the mode and layer values. Depending on the layer value, it
generates the address signals to RAM and ROM, which are used to read the value of polynomials and twiddle
factors. The address sequence of each operation (NTT, INTT, Input, and Output) is stored in BRAM to reduce
critical paths, enhance the circuit’s speed, and reduce LUT resource consumption.

3.2. Hardware design of the butterfly unit
The butterfly unit handles three operations: modular addition, subtraction, and multiplication. There

are the multiplication and the modular reduction steps for modular multiplication. With CRYSTALS-Kyber
prime q = 3329, each polynomial coefficient’s required bit length is 12-bit. The inputs for the butterfly unit

Efficient number theoretic transform accelerator for CRYSTALS-Kyber (Toan Nguyen)

800 ❒ ISSN: 2502-4752

and data in memory are stored as 16-bit for consistency with the software model using reference C code.
Furthermore, at the first step, where polynomials are randomly created in Kyber, they are not required to be
modular with prime q by default. So, the initial input into the butterfly unit can be larger than the prime q, and
every modular operation unit must prepare for these inputs. Figure 5 shows the block diagram of the butterfly
unit. It has 16-bit inputs a and b, 16-bit outputs c and d, a mode selection between CT NTT and GS INTT, and
a 16-bit ω input for the twiddle factors. Modular addition and modular subtraction use Brent-Kung adders. The
modular multiplication operations use a digital signal processing (DSP) core and a K-RED reduction block.
The latency for each butterfly CT/GS operation is 9 clocks.

Figure 5. The block diagram of the butterfly unit

3.3. KRED modulo reduction
The K-RED reduction module is designed for q = 3329 of Kyber. It is divided into 3 steps as

presented in Algorithm 3. The first step is getting the low and high bits and then extending the low bits. The
second step is shifting extended low bits 10 bits to the left. The final calculation gives the modular reduction
result S = C mod q.

Algorithm 3 K-RED reduction for CRYSTALS-Kyber
Input: q = 3329, C = (C31, C30. . .C0), k = 13, m = 8

Output: S = kC0 − C1 = C mod q
Clow ← zero-extend (C7, ..., C0) to 24-bit
C1 = Chigh ← (C31, ..., C8)

C0 = Clow << 4
Return: S = C0 − (C1 + Clow + Clow << 1)

3.4. RAM and ROM
The RAM module consists of two block RAM (BRAM) configured in dual port mode, as shown in

Figure 3. There is a 256x16-bit memory array that stores the data in the RAM. When the write enables signal
we is asserted (we = 1), the input data (DA1in,DA2in,DB1in,DB2in) is written into the RAM at the
specified write addresses (A1wadd,A2wadd,B1wadd,B2wadd). When the write enables signal we is de-
asserted (we = 0), the output data (DA1out,DB1out,DA2out,DB2out) is read from the RAM at the read
addresses (A1radd,B1radd,A2radd,B2radd).

The ROM module can be accessed based on specific addresses provided by the address generator
module as inputs. The dual-port ROM holds the pre-computed twiddle factor ω. It contains a 256x16-
bit memory array. The initial values of the ROM are pre-loaded in the parameter for CRYSTALS-Kyber.
The ROM consists of 128 signed 16-bit values.

4. RESULTS AND DISCUSSION
We simulate and synthesize our design on Xilinx Vivado 23.1 FPGA platform Artix-7. The design

occupies 1405 LUTs, 190 flip flops (FFs), 10 DSP blocks, and 11 BRAM and runs at the speed of 262 Mhz.
We compare the proposed design with existing relevant references on NTT/INTT accelerators based on several

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 795–803

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 801

key metrics, including configuration (butterfly unit), area utilization (LUTs, FFs, DSPs, and BRAM), and
operating speed. Regarding area utilization, the Karatsuba algorithm [28] achieves a relatively low LUT count
compared to other designs. However, it has a moderate usage of FFs and a limited number of DSPs and
BRAMs. The low-comp design [3] demonstrates a significant reduction in LUTs but utilizes more FFs. The
QISC design [20] shows a high utilization of DSPs but lacks BRAM usage. Our proposed design, as shown in
Table 2, offers a comparable LUT count compared to other designs while maintaining a suitable utilization of
FFs, DSPs, and BRAMs.

In terms of speed, our design achieves a higher clock speed while using fewer FFs than other refer-
ences. This is mainly because the usage of BRAM resource to store the address sequence, the twiddle factors
and data rather than using LUT for logic address generation. More FFs and pipeline stages could be added to
improve performance in applications where speed is essential. Each design’s butterfly unit (block utilization)
configuration is highlighted in Table 2. Our proposed design adopts a 2-butterfly unit configuration, similar
to [3], [20], [28], which simplifies integration into existing systems and processor structures such as RISC-V.
It is essential to consider the platform on which these designs were implemented; different FPGA platforms
could vary in synthesis results, making direct comparisons impossible. Generally, our design is more efficient
regarding area efficiency and is more configurable than existing references.

Table 2. The proposed method in comparison with relevant references for NTT/INTT accelerators
Design Butterfly unit Area Speed

Config LUTs FFs DSPs BRAM [MHz]
Exact-KRED [4]2 2x2 14012 2929 4 1 237

HS-NTT [29]1 2x2 801 717 4 2 222
Karatsuba [28]1 2 1737 1167 2 3 161

QISC [20] 2 2908 170 9 0 -
Low-comp [3]1 2 741 330 2 5 245

Proposed method 1 2 1405 190 10 11 262

5. CONCLUSION
In this paper, we have contributed an efficient hardware accelerator for both NTT and INTT for

CRYSTAL-Kyber. We integrated the Brent-Kung method to enhance computational efficiency, optimizing
modular addition and subtraction operations. When implemented on the Xilinx Artix-7 FPGA platform, our
design achieves a clock speed of 262 MHz while consuming only 1405 LUTs. Our design excels in area uti-
lization with high clock speed. In future research, we aim to improve the speed performance by increasing
the scalability and configurability of the design. We could include more complex BU structure such as 2x2
or 4x2 to enhance the efficiency of NTT and INTT operations. Another direction would be trying to improve
the overall throughput by a mesh of parallel and pipelined BU and NTT/INTT overhead for each layer, so that
we could calculate different polynomials at the same time. The design could be used in large scale in PQC
accelerator cards in data centers or implemented as a small cryptography accelerator in internet of things (IoT)
application.

ACKNOWLEDGEMENTS
This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant

number DS2022-20-05. We would like to thank Ho Chi Minh City University of Technology (HCMUT),
VNU-HCM for the support of time and facilities for this study.

REFERENCES
[1] D. Moody, “Module-lattice-based key-encapsulation mechanism standard,” National Institute of Standards and Technology, 2023.

doi: 10.6028/NIST.FIPS.203.ipd.
[2] J. Bos et al., “CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM,” in Proceedings-3rd IEEE European Symposium on

Security and Privacy, EURO S and P 2018, Apr. 2018, pp. 353–367, doi: 10.1109/EuroSP.2018.00032.
[3] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly efficient architecture of newhope-nist on fpga using low-

complexity ntt/intt,” IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2020, no. 2, pp. 49–72, 2020,
doi: 10.13154/tches.v2020.i2.49-72.

Efficient number theoretic transform accelerator for CRYSTALS-Kyber (Toan Nguyen)

802 ❒ ISSN: 2502-4752

[4] H. Nguyen and L. Tran, “Design of polynomial NTT and INTT accelerator for post-quantum cryptography CRYSTALS-Kyber,”
Arabian Journal for Science and Engineering, vol. 48, no. 2, pp. 1527–1536, Feb. 2023, doi: 10.1007/s13369-022-06928-w.

[5] T. Ye, Y. Yang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “FPGA acceleration of number theoretic transform,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
12728 LNCS, pp. 98–117, 2021, doi: 10.1007/978-3-030-78713-4 6.

[6] J. Zhang, M. Imani, and E. Sadredini, “BP-NTT: fast and compact in-SRAM number theoretic transform with bit-parallel modular
multiplication,” Proceedings - Design Automation Conference, vol. 2023-July, 2023, doi: 10.1109/DAC56929.2023.10247691.

[7] D. W. Kim, D. I. Maulana, and W. Jung, “Kyber accelerator on FPGA using energy-efficient LUT-based barrett re-
duction,” in Proceedings - International SoC Design Conference 2022, ISOCC 2022, Oct. 2022, pp. 83–84, doi:
10.1109/ISOCC56007.2022.10031533.

[8] T. Fritzmann and J. Sepulveda, “Efficient and flexible low-power NTT for lattice-based cryptography,” in Proceedings of the
2019 IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2019, May 2019, pp. 141–150, doi:
10.1109/HST.2019.8741027.

[9] C. Zhang et al., “Towards efficient hardware implementation of NTT for Kyber on FPGAs,” Proceedings - IEEE International
Symposium on Circuits and Systems, vol. 2021-May, 2021, doi: 10.1109/ISCAS51556.2021.9401170.

[10] B. M. K. Younis and A. K. Younis, “Hardware accelerator for anti-aliasing Wu’s line algorithm using FPGA,” Telkomnika
(Telecommunication Computing Electronics and Control), vol. 19, no. 2, pp. 672–682, Apr. 2021, doi: 10.12928/TELKOM-
NIKA.v19i2.18158.

[11] P. Visconti, R. Velazquez, C. Del-Valle-Soto, and R. De Fazio, “FPGA based technical solutions for high throughput data processing
and encryption for 5G communication: A review,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 19,
no. 4, pp. 1291–1306, Aug. 2021, doi: 10.12928/TELKOMNIKA.v19i4.18400.

[12] M. K. Metwaly et al., “Smart integration of drive system for induction motor applications in electric vehicles,” International Journal
of Power Electronics and Drive Systems, vol. 12, no. 1, pp. 20–28, Mar. 2021, doi: 10.11591/ijpeds.v12.i1.pp20-28.

[13] T. Gomathi and M. Shaby, “An efficient and effective energy harvesting system using surface micromachined accelerometer,” Inter-
national Journal of Power Electronics and Drive Systems, vol. 13, no. 2, pp. 1068–1074, 2022, doi: 10.11591/ijpeds.v13.i2.pp1068-
1074.

[14] R. Paludo and L. Sousa, “NTT architecture for a linux-ready RISC-V fully-homomorphic encryption accelerator,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 69, no. 7, pp. 2669–2682, Jul. 2022, doi: 10.1109/TCSI.2022.3166550.

[15] K. Derya, A. C. Mert, E. Öztürk, and E. Savaş, “CoHA-NTT: a configurable hardware accelerator for NTT-based polynomial
multiplication,” Microprocessors and Microsystems, vol. 89, p. 104451, Mar. 2022, doi: 10.1016/j.micpro.2022.104451.

[16] R. Geelen et al., “BASALISC: programmable hardware accelerator for BGV fully homomorphic encryption,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol. 2023, no. 4, pp. 32–57, Aug. 2023, doi: 10.46586/tches.v2023.i4.32-57.

[17] H. Kuang, Y. Zhao, and J. Han, “A high-speed NTT-based polynomial multiplication accelerator with vector extension of RISC-V
for saber algorithm,” in APCCAS 2022 - 2022 IEEE Asia Pacific Conference on Circuits and Systems, Nov. 2022, pp. 592–595,
doi: 10.1109/APCCAS55924.2022.10090293.

[18] Z. Chen, Y. Ma, T. Chen, J. Lin, and J. Jing, “Towards efficient Kyber on FPGAs: a processor for vector of polynomials,” in
Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC, Jan. 2020, vol. 2020-January, pp. 247–252,
doi: 10.1109/ASP-DAC47756.2020.9045459.

[19] P. Karl, J. Schupp, T. Fritzmann, and G. Sigl, “Post-quantum signatures on RISC-V with hardware acceleration,” ACM Transactions
on Embedded Computing Systems, Jan. 2023, doi: 10.1145/3579092.

[20] T. Fritzmann, G. Sigl, and J. Sepúlveda, “Risq-v: tightly coupled risc-v accelerators for post-quantum cryptography,” IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, vol. 2020, no. 4, pp. 239–280, 2020, doi: 10.13154/tches.v2020.i4.239-
280.

[21] T. Fritzmann, U. Sharif, D. Müller-Gritschneder, C. Reinbrecht, U. Schlichtmann, and J. Sepulveda, “Towards reliable and secure
post-quantum co-processors based on RISC-V,” in Proceedings of the 2019 Design, Automation and Test in Europe Conference and
Exhibition, DATE 2019, Mar. 2019, pp. 1148–1153, doi: 10.23919/DATE.2019.8715173.

[22] Z. Azad, G. Yang, R. Agrawal, D. Petrisko, M. Taylor, and A. Joshi, “RACE: RISC-V SoC for en/decryption acceleration on the
edge for homomorphic computation,” Proceedings of the International Symposium on Low Power Electronics and Design, 2022,
doi: 10.1145/3531437.3539725.

[23] D. Micciancio and O. Regev, “Lattice-based cryptography,” Post-Quantum Cryptography, pp. 147–191, 2009, doi: 10.1007/978-3-
540-88702-7 5.

[24] M. Scott, “A note on the implementation of the number theoretic transform,” Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10655 LNCS, pp. 247–258, 2017, doi:
10.1007/978-3-319-71045-7 13.

[25] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for lattice-based cryptography on reconfigurable hardware,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
7533 LNCS, pp. 139–158, 2012, doi: 10.1007/978-3-642-33481-8 8.

[26] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE Transactions on Computers, vol. C–31, no. 3, pp. 260–264,
Mar. 1982, doi: 10.1109/TC.1982.1675982.

[27] P. Longa and M. Naehrig, “Speeding up the number theoretic transform for faster ideal lattice-based cryptography,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10052
LNCS, pp. 124–139, 2016, doi: 10.1007/978-3-319-48965-0 8.

[28] Y. Xing and S. Li, “A compact hardware implementation of cca-secure key exchange mechanism crystals-kyber on FPGA,”
IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2021, no. 2, pp. 328–356, Feb. 2021, doi:
10.46586/tches.v2021.i2.328-356.

[29] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “High-speed NTT-based polynomial multiplication accelerator for
post-quantum cryptography,” in Proceedings - Symposium on Computer Arithmetic, Jun. 2021, vol. 2021-June, pp. 94–101, doi:
10.1109/ARITH51176.2021.00028.

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 795–803

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 803

BIOGRAPHIES OF AUTHORS

Toan Nguyen received the B.S. degree in Electronics and Telecommunications Engineering
from Ho Chi Minh City University of Technology, VNU-HCM, Vietnam (2023). Currently, he is pur-
suing a Master of Electronics at the Faculty of Electrical-Electronics Engineering, Ho Chi Minh City
University of Technology VNU-HCM. He can be contacted at email: nhtoan.sdh20@hcmut.edu.vn.

Hoang Anh is pursuing a B.S. degree in Electronics and Telecommunications Engineering
from Ho Chi Minh City University of Technology, VNU-HCM, Vietnam. He is researching effi-
cient algorithms and hardware design on various FPGA platforms. He can be contacted at email:
anh.phamhoanganhov@hcmut.edu.vn.

Hung Nguyen received the B.S., M.S. degree in Electronics and Telecommunications
Engineering from Ho Chi Minh City University of Technology, Vietnam (2019, 2022), Currently,
he is working as a lecturer at the Faculty of Electrical-Electronics Engineering, Ho Chi Minh City
University of Technology VNU-HCM. He can be contacted at email: ngthung@hcmut.edu.vn.

Trang Hoang received his Ph.D. degree in Microelectronics from CEA-LETI and Uni-
versity Joseph Fourier, France, in 2009. He is an Associate Professor in Electronics Engineering at
Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City VNU-
HCM, Vietnam and the Dean of the Graduate School, Ho Chi Minh City University of Technology,
VNU-HCM. His fields of research interest are in the domains of ASIC/FPGA implementation, IC
architecture, MEMs, wireless communications, wireless security, signal processing, optimisation for
IC design and wireless networks, AI, and quantum computing. He can be contacted at email: hoang-
trang@hcmut.edu.vn.

Linh Tran received the B.S. degree in Electrical and Computer Engineering from the Uni-
versity of Illinois, Urbana–Champaign (2005), M.S. and Ph.D. in Computer Engineering from Port-
land State University (2006, 2015). Currently, he is working as a lecturer at the Faculty of Electrical-
Electronics Engineering Ho Chi Minh City University of Technology VNU-HCM. His research inter-
ests include quantum/reversible logic synthesis, computer architecture, hardware-software co-design,
efficient algorithms and hardware design targeting FPGAs, and data analysis. He can be contacted at
email: linhtran@hcmut.edu.vn.

Efficient number theoretic transform accelerator for CRYSTALS-Kyber (Toan Nguyen)

https://orcid.org/0009-0006-3496-0167
https://orcid.org/0009-0002-2092-7885
https://orcid.org/0000-0003-3461-2681
https://orcid.org/0000-0001-7317-9708
https://orcid.org/0000-0001-6490-5413
https://www.scopus.com/authid/detail.uri?authorId=55804267600

	Introduction
	Preliminaries
	CRYSTALS-Kyber scheme
	Number-theoretic transform
	Brent-Kung adder
	K-RED modulo reduction

	Hardware Implementation
	The address generator
	Hardware design of the butterfly unit
	KRED modulo reduction
	RAM and ROM

	Results and Discussion
	Conclusion

