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 Nowadays, several service providers in urban areas significantly consider 

vehicular ad hoc networks (VANET). VANETs can enhance road safety, 

prevent accidents, and grant passengers entertainment. Though in VANET, 
efficient routing has remained an open problem. VANET is dynamic; the 

frequent update in the situation originates through several aspects, such as 

traffic conditions and updates in the road topology, which demand a suitably 

adaptive routing. The existence of blocking obstacles degrades routing 
approaches and increases the failure of paths. These issues build an 

excessive amount of resource utilization and increase network delay.  

To solve these issues, obstacle detection to minimize delay and Q-learning to 

improve routing efficiency (ODQI) in VANET is proposed. This mechanism 
uses the spanning tree algorithm detects the obstacle. Clustering can be used 

to manage the topology in VANETs. The dingo algorithm selects the best 

cluster head (CH) based on vehicle bandwidth, speed, and link lifespan. 

Furthermore, the sender forwards the traffic information from the sender to 
the receiver by applying a Q-learning algorithm. This learning algorithm 

computes the award function to choose the forwarder, improving the routing 

efficiency. Simulation results demonstrate that the ODQI mechanism 

increases the CH lifetime and minimizes the network delay. 
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1. INTRODUCTION 

With a high relative speed of the vehicles and frequent network discontinuity, vehicular ad hoc 

networks (VANETs) have a very dynamic topology [1]. The roadside units (RSUs) enable communication 

between vehicles and infrastructure and redirect packets when a link is lost [2]. The vehicle moves in an 

identical direction, and each vehicle may transmit with another vehicle if both are in the communication 

range of each other vehicle [3]. If other vehicles are not within the communication range, the vehicles can 

communicate directly with the RSU [4]. In VANET, every vehicle can communicate by applying IEEE 

802.11p and dedicated short-range communication (DSRC) standards (i.e., 100-500m) communication range 

[5]. By restricting the broadcast to a chosen set of vehicles, the clustering strategy may lower the routing cost 

and increase the scalability of the network [6]. The more successful the clustering, the better the topology 

control [7]. Each cluster has a cluster head (CH) that connects with the external controlling stations, such as 

the RSU. The process of creating and maintaining clusters is distributed [8]. However, cluster creation is 

https://creativecommons.org/licenses/by-sa/4.0/
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several challenges are presented in an urban scenario, as the deep crossing of roads, concrete structures, and 

heavy vehicle density cause changeable topology and movement with time dependence. Another significant 

problem is the need for better communication links. The dingo algorithm is established on the dingos hunting 

behavior which contains surrounding, tracking, as well as attacking the target. This algorithm offers less 

computational cost [9]. The dingo algorithm-based forwarder choice mechanism to improve network 

performance [10]. 

Problem statement: hypergraph clustering model (HGCM) for the urban scenario mechanism is an 

evolving hypergraph to account for their dynamic nature and the frequent establishment and breakdown of 

node connections [11]. For each cluster, it is advised to use the relative velocity score, eccentricity, 

neighborhood degree, and trust score to locate the CH with the least volatility. Compared to the performance 

of the three existing measures, for example, relative speed, eccentricity, and neighborhood, the inclusion of 

the trust component in average CH stability significantly improves the results. The method is tested on many 

integrated network metrics using a one-hop network setup. However, this mechanism raises the 

computational complexity. When traveling at higher speeds, the CH stability of the network degrades.  

To solve these issues, obstacle detection to minimize delay and Q-learning to improve routing efficiency in 

VANET is proposed. 

The use of a hybrid optimization strategy to choose the best CH is suggested by the combination of 

a multi-objective genetic algorithm and a gravitational search algorithm [12]. This strategy will likely 

consider various goals, including load balancing, network coverage, energy efficiency, and other pertinent 

metrics. Internet of things (IoT) networks often use cluster-based routing to increase scalability and 

efficiency [13]. It entails segmenting the network into clusters, with a CH normally in charge of directing 

communication within each cluster. Based on the social behavior of dingoes, the dingo optimization method 

is a metaheuristic optimization method inspired by nature. It attempts to resolve efficiency issues by 

mimicking the behavior of dingoes during communication and hunting. 

VANETs allow for communication between vehicles and infrastructure, enabling a number of uses, 

including traffic control, collision avoidance, and information sharing [14]. Vehicles provide a lot of data on 

VANETs, which may be used for a variety of things, such as enhancing traffic flow and enhancing road 

safety. Federated learning is a strategy that permits group model training without centralized data 

aggregation. It enables a network of edge devices to train models locally on their own data before sharing 

model updates with a central server or with other network nodes. This method addresses privacy issues and 

lessens the requirement for data transfer, which might be helpful in vehicle settings where network capacity 

and data privacy are major considerations. 

Self-organizing VANETs refer to networks where vehicles autonomously organize themselves into 

a network without relying on a centralized infrastructure [15]. These networks enable communication 

between vehicles and infrastructure for various applications, including traffic management, collision 

avoidance, and cooperative driving. An anti-collision algorithm in the context typically aims to reduce the 

likelihood of collisions between vehicles by enabling efficient communication and coordination [16]. Deep 

learning involves training artificial neural networks to learn and make predictions or decisions from complex 

data. An anti-collision algorithm for self-organizing VANETs that utilizes deep learning techniques. It may 

propose a neural network architecture, training methodology, or data processing techniques that enable 

vehicles to make collision predictions or take appropriate actions to avoid collisions. 

Highway cluster density and average speed prediction mechanisms in which enable diverse 

applications, including traffic management, collision avoidance, and information transmission [17]. Average 

speed is the average velocity of a vehicle in a given area, while cluster density is the number of clusters 

created by vehicles in a certain area. The ability to predict these variables might be useful for resource 

allocation and proactive decision-making in traffic management and planning. 

The load balancing and min-max fairness in vehicle-to-vehicle (V2V) compute offloading inside 

VANETs seem to be the paper’s main points [18]. To increase efficiency or get around resource constraints, 

computational offloading is the act of moving computing duties from one device to another. Vehicles may 

cooperate and share computing work to improve the performance of the whole system. The goal of load 

balancing is to fairly divide the computational effort across the participating resources or cars, preventing any 

one resource or vehicle from being overwhelmed while others are left underused. The idea of “min-max 

fairness” aims to make participation equally equitable by reducing the greatest possible variation in 

performance or resource consumption. In order to achieve load balancing and min-max fairness in V2V, 

compute offloading inside VANETs. It could suggest a solution that takes into account things like the amount 

of resources that are available, the computing power of the vehicles, the state of the network, and how the 

workload is distributed across the vehicles. A multi-objective strategy based on deep learning and differential 

evolution algorithms that uses both deep learning and differential evolution approaches to tackle various 

goals in VANETs [19]. The effective distribution of data, resource allocation, routing, and security are only a 
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few of the difficulties that VANETs face. The authors want to create a method that may concurrently 

maximize many goals by combining the advantages of differential evolution with deep learning. 

Hypergraph clustering includes categorizing information or items based on their connections, where 

connections are not restricted to pairwise connections but may occur between a number of entities at once 

[20]. It enables the data to be captured with more intricate connections and linkages. Urban settings provide 

unique difficulties in the context of VANETs because of the high vehicle density, intricate road systems, and 

shifting traffic patterns. By grouping the vehicles according to their geographic closeness, traffic patterns, or 

other pertinent characteristics, clustering may assist in this process. This mechanism may take into account a 

variety of variables, including vehicle locations, velocities, communication patterns, and other contextual 

data, to build hyperedges that represent interactions between vehicles. 

To automatically and dynamically infer the shape of static obstacles standing, utilize a technique 

called autonomic obstacle detection and avoidance [21]. Automatic obstacle recognition using a coverage-to-

precision ratio to identify fixed, convex obstructions. To successfully achieve our goal of autonomously 

avoiding broken connections induced by the blocking barrier, the suggested detection approach offers a 

suitable precision ratio without requiring “a priori” knowledge of the obstacle map. But, in this approach, 

routing stability is lesser. Obstacle prediction-based routing protocol for detecting vehicles, sending packets 

to the RSU, and selecting the most reliable path [22]. Improving packet delivery rates by updating prediction 

routing protocol to use reliable paths and including new logic in selecting intermediate nodes on the way to 

the destination. After modifying the predictive greedy and predictive perimeter forwarding algorithms to 

fulfill the criteria, they are used in this mechanism as the forwarding and recovery algorithms, respectively. 

However, this mechanism raises the routing overhead [23]. A number of analytical approaches to build 

unfailing route formation. Though, the wireless medium is untrustworthy [24]. An obstacle aware mobile 

sink path strategy mechanism to detects the obstacles that improve the lifetime [25]. Assistive model of 

obstacle detection by applying deep learning algorithm [26]. Bacterial behaviour algorithm is used to 

measure the location of obstacles in an unidentified situation. However, this mechanism s expensive [27]. 

 

 

2. PROPOSED METHOD 

For simulating urban scenarios, we utilized road traffic situations and a clustering structure for 

VANETs. This vehicle transmission offers stable inter-vehicle communication and demonstrates the best 

routes to the receiver. The traffic dynamics assist in maximizing the performance of routing by utilizing 

velocity, acceleration, and traffic movement. However, a vehicle’s acceleration and speed both influence how 

it moves. To avoid accidents, a safe parameter is utilized to conceive safety criteria. Figure 1 demonstrates 

the block diagram of the obstacle detection to minimize delay and Q-learning to improve routing efficiency 

(ODQI) approach. This figure contains three phases that are CH selection, obstacle detection, and forwarding 

data. Here, CH selection is followed by dingo algorithm, and we detect the position of the obstacle by 

spanning tree algorithm. Finally, the Q-learning algorithm is used for forwarding traffic information from 

sender to receiver.  

 

 

 
 

Figure 1. Block diagram of the ODQI approach 

 

 

2.1.  Cluster formation  

In VANETs, clustering acts as a significant task in grouping vehicles with the same features and 

limiting needless broadcasts. The topological scenario entropy is shared with the vehicles using RSUs.  

The most common measurements are mobility and neighborhood; however, in an urban environment where 

vehicles go at a slow pace, and there is heavy traffic during rush hours, these measures are lost. Since the 

topology of the VANET is constantly shifting, connecting one source to the intended vehicle can be difficult. 

Data loss can be significant if the connection is multi-hop because the carrying vehicle may alter its course 
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and speed. Accordingly, the information should be delivered in a single hop, which is doable by constructing 

a dependable cluster. A CH is chosen by the surrounding nodes. The CH-annotated vehicle is in charge of 

increasing the network performance in addition to producing clusters with more efficiency. 

 

2.2.  CH selection 

Choosing a CH with a lengthy cluster lifespan is the main problem of VANET clustering strategies. 

The dingo algorithm is used to discover the CH. Dingoes have accurate reporting, and they communicate 

with each other cluster members by detecting some parameters. In this system, dingo makes sound feedback; 

the dingoes replace their information with others. The amplitude of the excitement is updated by the 

durability of the person as the dingo motions into a new location from the previous one. Cluster search is a 

pertaining behavior of dingoes that constructs its extension to the behavior of dingoes. Figure 2 illustrates the 

dingo algorithm-based CH selection. 

 

 

 
 

Figure 2. Dingo based CH selection in VANET 

 

 

The dingo’s algorithm function is categorized as:  surrounding, tracking, and attacking the target. 

Dingoes are capable of finding out the location of the target. After tracing the location, the group adopted by 

alpha circles the target. It is accepted that the accessible best agent is the target that is similar to the optimal 

because the chase region is not identified a priori. 

Surrounding: dingoes often congregate in clusters while hunting. Dingoes have the ability to locate 

their target and encircle it. In (1) represents this behavior. Here, 𝑥𝑗⃗⃗⃗  (𝑡 + 1) represents the search agent’s new 

location that denotes the movement of dingos, and n indicates the arbitrary movement of 2,
𝑝𝑜𝑝 𝑠𝑖𝑧𝑒

2
. Where 

pop size denotes the dingo’s population size. 𝜆ℎ(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 
represents the search agent subset, 𝑥𝑗⃗⃗⃗  (𝑡) 

denotes the 

present search agent, and 𝑥 ∗ (𝑡)
 
represents the optimal search agent. ƞ1 represents the arbitrary number 

equivalently rendered in the interval of [−2,2]. 

 

𝑥𝑗⃗⃗⃗  (𝑡 + 1) = ƞ1 ∑
[𝜆ℎ(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗−𝑥𝑗⃗⃗⃗⃗  ]

𝑛

𝑛
ℎ=1 − 𝑥𝑗⃗⃗⃗  ∗ (𝑡) (1) 

 

Tracking: dingoes often pursue tiny prey until each individual animal is captured. This behavior is 

modeled by (2). Where 𝛽2 represents the arbitrary number consistently created in the interval of [−1,1].  

In addition, 𝑟1 indicates the arbitrary number created in the interval from 1 to the highest of search agents 

(dingoes), and 𝑥𝑟1⃗⃗ ⃗⃗  ⃗represents the selected rth search agent. 

 

𝑥𝑗⃗⃗⃗  (𝑡 + 1) = 𝑥𝑗⃗⃗⃗  ∗ (𝑡) + ƞ1 ∗ 𝑒ƞ1 ∗ (𝑥𝑟1⃗⃗ ⃗⃗  ⃗(𝑡) − 𝑥𝑗⃗⃗⃗  (𝑡)) (2) 

 

Attacking the target: when dingoes are wandering aimlessly across their area, this function is 

described as the behavior they engage in order to obtain carrion to consume. This behavior is modeled by (3). 

Where υ represents the arbitrarily created binary number. Furthermore, it computes the fitness function based 

on vehicle bandwidth, vehicle speed, and link lifespan. The dingo viability rate calculation is specified (4). 

 

𝑥𝑗⃗⃗⃗  (𝑡 + 1) =
1

2
[𝑒ƞ1 ∗ (𝑥𝑟1⃗⃗ ⃗⃗  ⃗(𝑡) − (−1)𝑣 ∗ 𝑥𝑗⃗⃗⃗  (𝑡))] (3) 

 

𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒(𝑗) =
𝐹𝑖𝑡𝑚𝑎𝑥−𝐹𝑖𝑡(𝑗)

𝐹𝑖𝑡𝑚𝑎𝑥−𝐹𝑖𝑡𝑚𝑖𝑛
 (4) 
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where 𝐹𝑖𝑡𝑚𝑎𝑥 and 𝐹𝑖𝑡𝑚𝑖𝑛 are the most horrible, and the optimal fitness value in the present creation, 

correspondingly, but Fit(j) represents the jth search agent present fitness value. The viability rate contains the 

fitness in the interval of [0,1]. In (5) is applied for low viability rates, e.g., for viability rate values equal to or 

less than 0.5. 

 

𝑥𝑗⃗⃗⃗  (𝑡) = 𝑥𝑗⃗⃗⃗  ∗ (𝑡)
1

2
[𝑒ƞ1 ∗ (𝑥𝑟1⃗⃗ ⃗⃗  ⃗(𝑡) − (−1)𝑣 ∗ 𝑥𝑟1⃗⃗ ⃗⃗  ⃗(𝑡))] (5) 

 

2.3.  Obstacle detection 

The environment contains different shape obstacles. Here, the spanning tree algorithm is applied to 

detecting the obstacle. The obstacle-detecting spanning graph contains rest of edges, which can be planned 

via building connections between vehicles and bends of obstacle. Figure 3 explicates the vertices of vehicles 

and isolates an obstacle bend represently. 

 

 

 
 

Figure 3. Obstacle bends with vehicle vertices 

 

 

Equally, the section S4 and S8 are obstacle bends but, here sort elements of the list V by non-

decreasing y coordinates in the region R4 and R8 of all obstacle corners. In addition, the section S4 and S5 of 

obstacle bends, the region S1 and S3 of connect vertices. We sort components of the list V by non- minifying 

x+y coordinates in the section S1 and S5 of obstacle bends and the region S1 and S3 of connecting vertices. 

Likewise, the section S3 and S7 of the entire obstacle bends and the region S2 and S4 of connect vertices. 

Here, the components of the list V are sorted through non-minifying y-x coordinates. Along with the 

quadrant division for an obstacle bend and a trapped vertex, then lastly make the spanning graph. 

Accordingly, the spanning graph to determine an obstacle and form an obstacle aware routing. 

 

2.4.  Route formation 

The sender recognizes all routes, then we confirm the Q-learning algorithm for the efficient route 

from sender to receiver. Every vehicle function as an agent, cooperatively sharing information with other 

CHs to ensure that every CH is aware of the state transmission behavior. The ODQI components are as 

follows {S, A, AW, P}. Where S indicates the state, A represents the action, AW refers to the award, and P 

denotes the communication possibility. Assume PS denotes the present state, NS refers to the next state, and 

the present state action acts as the. Let t indicate the waiting time for information transmits to select the next 

CH. In Q-learning, the QV-table value aids in describing an every-state action, and the action value function 

Q (S, A) permits the AWs of present and next when action A is performed at state S. We think that the agent 

selects an action in S, discovers AW and goes into next state NS. Next, the QV, Q (S, A) is depicted as (6). 

 

𝑄𝑉(𝑆, 𝐴) − (1 − 𝛿)𝑄𝑉(𝑃𝑆, 𝐴) + 𝛿{𝐴𝑊 + 𝜎.𝑄𝑉(𝑁𝑆, 𝐴)} (6) 

 

Here, 𝛿 indicates the learning rate and 𝜎 indicates the future AW reduction factor. Assume the 

action denotes the information is transmitted to the PS to NS, the AW is specified to the PS; the action of 

QV-table for state PS is modified. Though, the PS does not have the QV-table of the NS to modify its  

QV-table. Furthermore, it is computed at the NS; thus, while the next CH replies accept the information to 

the sender, it also admits it’s the greatest QV-values and computes the AW. Because the AW is utilized to 

make a decision on a better solution. This mechanism calculates the AW by PB, PE, PDD, and HC from 

sender to receiver, and this computation is specified in (7). 

 

𝐴𝑊 = 𝛾𝐻𝐶 × (𝐵 + 𝑆 + 𝑃𝑆𝐷) (7) 
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Here, bandwidth (B), speed (S), packet successful delivery (PSD), and hop count (HC). Here, the 

extra reduction factor is employed to the vehicle award that is necessitated to evade backward. While the NS 

vehicle’s present energy is reasonably great, and the distance between the PS and the NS is small, it 

minimizes the energy utilization in the network. Reduction factor range between 0 to 1. Figure 4 illustrates 

the flowchart of the proposed strategy. 

 

 

 
 

Figure 4. Flowchart of ODQI system 

 

 

3. SIMULATION ANALYSIS  

The described ODQI mechanism is simulated using the network simulator-2 [28]. The VANET 

simulation region is 1,500×1,500 m2. The developed ODQI mechanism is evaluated in an urban scenario with 

vehicles traveling at varying speeds. The vehicle’s communication range is 200-500 m, and the vehicle’s 

speed is from 20 to 100 m. ODQI mechanism objective is to increase the lifetime of CHs and provide more 

stable clustering. We assess CH lifetime, packet successfully delivery ratio (PSDR), packet drop ratio, and 

delay. PSDR is the ratio of the number of data packets that were successfully transferred from sender 

vehicles to receiver vehicles to the overall amount of data packets sent. Figure 5 depicts the PDR of HGCM 

and ODQI mechanisms based on vehicle speed. 

 

 

 
 

Figure 5. Packet delivery ratio of HGCM and ODQI mechanisms based on vehicle speed 
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From this figure, when raises the vehicle speed, the HGCM and ODQI mechanisms PDR is 

increased. Though, the ODQI mechanism has little raises PSDR; because it uses the Q-learning algorithm to 

select the best forwarder vehicle without dropping the packet in the obstacle present situation. Hence,  

it reduces the drop rate. Nevertheless, the HGCM mechanisms increase the PSDR when presenting the 

obstacle. Packet drop rate (PDR) represents the percentage of packets that were sent but not received at their 

receiver vehicle is known as PDR. Figure 6 explains the PSDR of HGCM and ODQI mechanisms based on 

vehicle speed.  

 

 

 
 

Figure 6. PDR of HGCM and ODQI mechanisms based on vehicle speed 

 

 

This figure clearly says that when increases the vehicle speed, the PDSR of HGCM and ODQI is 

minimized. But, the proposed ODQI mechanism has a lesser minimized PDSR since it detects the obstacle 

and then forwards the traffic information. But, the HGCM mechanism can’t able to detect the obstacle 

efficiently. Delay is the average amount of time that passes between when a packet is delivered by the sender 

and when it is received by the receiver. The protocol performs better the smaller the value of delay. Figure 7 

depicts the delay of HGCM and ODQI mechanisms based on vehicle speed. 

 

 

 
 

Figure 7. Delay of HGCM and ODQI mechanisms based on vehicle speed 

 

 

Figure 7 obviously states that when raises the vehicle speed, the HGCM and ODQI mechanisms 

delay is also raised. The proposed ODQI mechanism uses the spanning tree algorithm to detect the obstacle, 

and as a result, it evades an extra delay. But, the HGCM mechanism can’t detect the obstacle; thus,  

it increases the delay due to data packet retransmission. Figure 8 demonstrates the lifetime of HGCM and 

ODQI mechanisms based on DSRC. 

The proposed ODQI mechanism selects the CH by applying the dingo algorithm. This algorithm 

discovers the best CH based on bandwidth, link lifespan, and speed; as a result, it provides a longer CH 
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lifetime and minimizes the possibility of the CH leaving. But, the HGCM mechanism minimizes the CH 

lifetime. Figure 9 demonstrates the delay of HGCM and ODQI mechanisms based on DSRC. 

The DSRC value increases, the delay also increases. The ODQI mechanism compared to the 

HGCM, the proposed ODQI mechanism has a lesser delay. Since the ODQI mechanism detects the obstacle 

efficiently and Q-learning chooses the best forwarder based on vehicle PSDR, bandwidth, and speed. As a 

result, minimizes the delay and increases the routing efficiency. 

 

 

 
 

Figure 8. Lifetime of HGCM and ODQI mechanisms based on DSRC 

 

 

 
 

Figure 9. Delay of HGCM and ODQI mechanisms based on DSRC 

 

 

4. CONCLUSION 

In VANET, the link life is affected through the movement of nodes is a significant element in 

discovering stable routes. Several routing protocols do not concentrate on this element, leading to 

consecutive route failures, which raises packet losses. However, the majority of clustering techniques move 

violently with poor data handling, local cluster optimum, and network quality of service (QoS) requirements. 

This article presents obstacle detection to minimize delay and Q-learning to improve routing efficiency.  

The spanning tree algorithm detects the obstacle efficiently. This mechanism chooses the best CH by 

applying the dingo algorithm based on vehicle bandwidth, vehicle speed, and link lifespan. Furthermore, we 

utilized the Q-learning algorithm to select the forwarder; thus, it provides guarantee and reliable 

communication in VANETs. The simulation results using the network simulator-2 tool demonstrate that the 

proposed method improves network PSD ratio, lifetime, and minimizes the routing delay and packet  

drop ratio. 
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