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 Aquaculture is one of many industries where the use of artificial intelligence 

(AI) techniques has increased dramatically in recent years. Internet of things 

(IoT), AI, and big data are just a few of the technologies being used in smart 

aquaculture to increase productivity, efficiency, and system sustainability of 

aquaculture systems. Data classification, which involves finding patterns and 

relationships in huge datasets, is one of the most important tasks in smart 

aquaculture. The ant colony system (ACS) has been used to solve a number 

of optimization issues, including data classification. To provide a more 

practical and successful solution, this study proposes an improved ACS 

algorithm for rule-based data classification in smart aquaculture. The 

proposed algorithm combines the advantages of ACS and rule-based 

classification to optimize the number of rules and accuracy. The experimental 

results showed that the proposed algorithm outperformed the traditional 

AntMiner algorithm in terms of the number of rules and accuracy. The 

improved pheromone update technique could potentially increase data 

classification accuracy and convergence in smart aquaculture systems. 
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1. INTRODUCTION  

Smart aquaculture is intelligent aquaculture management that uses smart devices in an appropriately 

prepared environment to monitor environmental parameters in real time and make decisions based on the data 

collected. Internet of things (IoT), big data, artificial intelligence (AI), fifth generation (5G), cloud computing, 

and robotics can automate and remotely manage smart aquaculture [1], [2]. The combination of these 

technologies can control machinery, facilities, and other devices to operate entire systems for successful 

production with minimal human intervention. Smart aquaculture collects data from sensors, sends it to a 

database in real time, and turns it into meaningful information. This information can be further analyzed and 

classified accordingly to enable data driven decision making. Some smart aquaculture systems can also be 

controlled remotely and require less human labour. Thus, smart aquaculture aims to develop the aquaculture 

industry in an environmentally and economically sustainable manner [3].  

Traditional aquaculture involves seed selection, water preparation, feeding, and care [4], [5]. 

Aquaculture workers struggle with water quality management because water samples must be taken regularly. 

It is tedious to clean ponds and tanks, and unexpected changes in water quality can lead to many adverse effects 

as they can occur outside of the regular cleaning schedule. Another challenge is that there are instances whereby 

diagnoses and treatments cannot be performed while the pond-dwelling fish are still alive. These factors 

ultimately affect productivity and quality. Smart aquaculture solves the classic problems of aquaculture with 
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innovative production methods, by incorporating advanced technologies such as real-time monitoring, 

automation, data analysis, and many more [6], [7]. 

Intelligent water quality monitoring in smart aquaculture uses temperature, hydrogen potential, and 

dissolved oxygen to determine water quality suitable for aquatic animal breeding, rearing, and harvesting [8], [9]. 

Systematic data classification is essential for managing huge amounts of real-time data with different properties 

in each sequence. Data classification is classified as a nondeterministic polynomials (NP) complete problem 

that is algorithmically intractable. NP complete problems provide flexible predictions and evaluations in 

polynomial-time. One of the best ways to solve the NP complete problem is to use metaheuristic algorithms 

that go through all conceivable optimization options to find the best solution [10]. 

Ant colony optimization (ACO) which is one of the metaheuristic algorithms has successfully 

improved classification performance in terms of accuracy, model size and execution time [11]–[13]. ACO is 

inspired by the foraging behaviour of real ants to find the shortest path from nest to food source. Ants use 

chemical substance called pheromone to communicate with each other [14], [15]. Pheromone is dispersed by 

the ants along the traversed path and can attract other ants to use the same path. Pheromone is volatile and 

dissipate gradually where the path with low pheromone value is longer than the path with high pheromone 

value. Therefore, it needs to be dispersed continuously by the other ants to mark the optimal path for the next 

ants to follow [16]. There are many ACO variants such as ant system (AS), ant colony system (ACS), elite ant 

system, rank based ant system, and max-min ant system (MMAS) that have been applied to solve the NP 

complete problems [17].  

In data classification, ACO can be used for rule development to accurately classify dataset instances. 

Each regulation is symbolized by a pheromone-trailing ant [18]. Ants prefer rules with a higher pheromone 

concentration. The algorithm starts with random rules where each rule contains a collection of requirements 

outlining the properties and values an instance must have to be assigned to a class. The ants are scattered across 

characteristics. Each ant then selects a feature based on the pheromone concentration and a heuristic function 

that evaluates the importance of the the feature to the classification problem. A fitness function analyses the 

correctness of each rule’s classification model using the existing set of rules [19]. The ants alter their 

pheromone trail based on feature grade. The characteristics’ efficacy determines the strength of the pheromone 

trail. By encouraging the ants to choose the same traits in subsequent iterations, the method converges on a 

subset of attributes. Weak characteristics with low pheromone concentration may be removed from the subset 

to prevent the algorithm from converging to a poor solution. After selecting the best features, a classification 

model can be created [20]. 

A-HACO which integrates the artificial bee colony (ABC) strategy into the ACO algorithm, was 

introduced by [21] to optimize the classification process. ACO is applied to evaluate the quality of rules, 

dynamically adjusting the number of ants after a classification rule is created along with the quality of the rule 

evaluation function. The higher the quality of the rule evaluation functions, the more ants are produced 

compared to the lower quality functions. After the classification rule is created, ABC is applied to determine 

the range of continuous attribute values. Even though A-HACO has achieved an outstanding accuracy value 

when compared with the other algorithms, the other performance metrics must also be considered during the 

classification process.  

ACS-AntMiner was proposed by [20] which combines ant miner classification algorithm and the ACS 

algorithm to improve the selection of an appropriate number of terms to be included in the classification rule. 

The importance rate (IR) is introduced by ACS-AntMiner as a pre-pruning criterion that depends on the 

probability (pheromone and heuristic) amount. Based on the proposed IR, only the important terms are added 

to each rule to prevent noisy data. The ACS algorithm is responsible for controlling the IR parameter through 

the learning process of the Ant-Miner algorithm. The experimental results showed that ACS-AntMiner 

outperformed ant-miner, TACO-Miner, and CAnt-Miner algorithms in terms of accuracy and number of terms. 

However, the performance of ACS-AntMiner was not compared with other variants of the ACS algorithm.  

ACO-based multi-label feature selection technique called Ant-TD which uses a heuristic learning 

approach was proposed by [22] to improve the search process. The proposed approach integrates heuristic 

learning with the ACO algorithm by using temporal differences to learn a heuristic function from experience. 

The state transition rule based on probabilistic and greedy rules produces the transition function for the feature 

selection search space. At the same time, a learned heuristic function is formed by the state value function that 

is updated by the temporal differences together with the global pheromone update. The experimental results 

showed that Ant-TD performed better than the other algorithms in terms of accuracy, average precision, and 

execution time. However, Ant-TD did not consider the local pheromone update which may lead to the local 

optima problem. 

The self-training using associative classification using ant colony optimization (ST-AC-ACO) 

algorithm was proposed by [23] to improve the self-training classification accuracy. ST-AC-ACO consists of 

three main components namely the self-training mechanism of semi-supervised learning, associative 
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classification principles, and the ACO-based rule construction process. ACO is employed in this algorithm to 

label and classify the unlabeled data. Heuristic function and pheromone value are the components used in 

selecting the subsequent term to be added to the rule. The experimental results showed that ST-AC-ACO 

performed better than other algorithms in terms of accuracy. However, ST-AC-ACO was not compared with 

the other ACO variants. 

Based on the previous research works discussed above, it can be concluded that ACO approaches are 

effective in enhancing the data classification process. In this paper, an ACS based algorithm for data 

classification called ACS-E is proposed to optimize the classification process in smart aquaculture. The main 

focus of the proposed classification algorithm is to improve the pheromone update techniques in optimizing 

the accuracy and number of classification rule. The utilization of dynamic pheromone update and pheromone 

decay in the local and global pheromone updates is an enhancement over previous Ant-Miner algorithms. In 

the first phase, a control parameter is employed to prevent the possibility of excessive buildup on a single 

parameter and to maintain a minimum amount of overfitting of noisy data. During the global pheromone update 

phase, the update rule uses a decay rate that gradually decreases the pheromone values over a period of time. 

The performance of the proposed algorithm was compared with the traditional AntMiner algorithm in terms of 

accuracy and number of rules. Section 2 discusses the details about the proposed algorithm while experimental 

results are presented in section 3. Finally, concluding remarks are highlighted in section 4.  

 

 

2. METHOD 

The enhanced ant colony system (ACS-E) algorithm is proposed to improve the accuracy of the data 

classification process in smart aquaculture. Figure 1 shows the proposed ACS-E framework which consists of 

three phases namely rule construction, pheromone update, and performance evaluation. The training dataset is 

added to a list of discovered rules to construct the rule. Then, the instances covered by the construction rules 

are removed from the training dataset. This procedure is repeated until the number of uncovered instances is 

greater than the maximum number of uncovered instances.  

 

 

 
 

Figure 1. ACS-E framework 
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During the rule construction phase, each ant begins by selecting terms to be added in the rule. The 

pheromone value and the heuristic information are two key elements considered in selecting the terms. It is 

calculated by using the probabilistic decision rule (1) where [τ𝑖𝑗(𝑡)] is the amount of pheromone concentration 

for each term in iteration 𝑡 and [η𝑖𝑗] is the heuristic information for each term. The number of the attribute in 

the dataset is represented by 𝑎 while the number of difference values for each attribute is represented by 𝑏𝑖. 
The value of 𝑥𝑖 is set to 0 if the attribute has already been visited by the ant, and 1 otherwise. The ant adds one 

term at a time to enhance the classification accuracy. The process of adding terms will be terminated when all 

attributes have been visited. 

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
[τ𝑖𝑗(𝑡)] [η𝑖𝑗]

∑ 𝑥𝑖.∑ [τ𝑖𝑗(𝑡)] [η𝑖𝑗]𝑏𝑖
𝑗=1

𝑎
𝑖=1

 (1) 

 

In the pheromone update phase, the irrelevant terms are removed to trim the rule constructed by each 

ant. The proposed algorithm determines the prediction class of the pruning rules by assigning the majority class 

of the instances covered by the rule. This process is repeated to optimize the quality of the rule. ACS-E collects 

feedback to improve the quality of the discovered rule by using the local pheromone update (2) where 𝑓 is the 

evaporation rate value that controls the accumulation on certain parameter to prevent the limitless buildup. 

 

τ𝑛(𝑡+1) = (1 − 𝑓). τ𝑛(𝑡) + 𝑓. S(t) (2) 

 

𝑆(𝑡) is the quality of the discovered rule defined by (3) where 𝑁𝑇 is the the total number of instances 

that are not covered by the rule and do not belong to the projected class and 𝑃𝑇 is the total number of instances 

the rule applies and belong to the anticipated class. 𝑁𝐹  is the total number of cases the discovered rule applies 

and whose class from the predicted class. 𝑃𝐹  is the total number of instances with a class that is predicted by 

the rule but are not covered by the found rule.  

 

𝑆(𝑡) =
[𝑁𝑇][𝑃𝑇]

(𝑃𝑇+𝑁𝐹)(𝑁𝑇+𝑃𝐹)
 (3) 

 

This process is repeated until all the ants have discovered all the rules. Furthermore, the best rules 

among all discovered rules in the iteration are inserted into the list of discovered rules. ACS-E collects global 

feedback from the best rule in the iteration by using the global pheromone update (4) where 𝑓 is the quality 

decay parameter and S(t𝑏𝑒𝑠𝑡) is the quality of the best discovered rule. After all steps are completed, a new 

iteration starts with the same flow. 

 

τ𝑛(t𝑏𝑒𝑠𝑡) = (1 − 𝑓). τ𝑛(t𝑏𝑒𝑠𝑡) + 𝑓. S(t𝑏𝑒𝑠𝑡) (4) 

 

 

3. RESULTS AND DISCUSSION 

The performance of the ACS-E algorithm was evaluated using 10-fold cross validation [24], [25]. 

ACS-E divides the dataset into ten (10) equally sized subsets where 80% are used for the training process and 

20% are used for the testing process. To ensure that all subsets are utilized, this procedure is run ten (10) times 

with different subsets for training and testing. Then, the performance of all folds is averaged and the standard 

deviations are calculated. Two performance metrics are used to evaluate the performance of ACS-E which are 

classification accuracy and number of rules. The classification accuracy is based on the correctly classified 

instances in the test data. In each round, the classifier performs the training and tests the performance of training 

subsets consisting of a certain number of instances. Meanwhile, the number of rules is determined by the size 

of the discovered rule list. 

The water quality of smart aquaculture datasets such as Realfish [26], [27], Kiribati [28], sensor  

data [29], and Sentinel [30] are used to compare the performance of the proposed ACS-E algorithm with the 

other algorithms. These benchmark datasets are secondary data that are selected based on the literature. These 

datasets are gathered from a variety of dataset sources, including public datasets and Google dataset. The sensor 

data dataset consists of three fundamental water quality parameters which are temperature, pH, and water 

turbidity. Two sets of Arduino-based digital sensors were utilized to collect data at two distinct water depths 

from a fishpond on the ground of Khan Jahan Ali Hall, Khulna University. As for the Sentinel dataset, the 

water quality data includes dissolved oxygen, salinity, pH, turbidity, temperature, and water condition. The 

collection of Sentinel data was performed at two marine sites at the Tasmanian sea in Australia. For the Realfish 

dataset, the collection method was developed by applying an IoT framework for real-time monitoring of the 
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aquatic environment with an Arduino and sensors. Five ponds were analyzed using three sensors for pH, 

temperature, and turbidity. The Kiribati dataset is a complete collection of water quality monitoring data 

organized by the Commonwealth Marine Economies Programme that carried out around Tarawa, Kiribati. The 

key parameters measured were nutrients, chlorophyll, total suspended solids, E. coli, intestinal Enterococci, 

vibrio, and ESBL-producing bacteria. However, because the data collected were extensive, the temperature, 

pH, dissolved oxygen, turbidity, and salinity were also recorded and are shown in the dataset. 

Several ant-mining classifiers such as ACS-AntMiner and Ant-Miner are used to determine the 

performance of the proposed ACS-E algorithm in terms of classification accuracy and the number of rules. The 

parameter specifications listed in Table 1 were adopted and adapted from [20] to ensure that all ant-mining 

classifiers use the same parameter values and provide a fair evaluation of the experimental results. These 

parameters are selected because they were used by [20] and were proven to be effective in validating the 

classification accuracy and the rule term numbers. 

 

 

Table 1. Experimental parameters 
Description Value 

Number of Ants 10 

Minimum number of cases that each rule must cover 5 

Maximum of uncovered cases by the discovered rule 10 
Number of iterations 100 

Evaporation rate 0.3 
Alpha 1 

 

 

Figure 2 shows the average classification accuracy of all algorithms where a higher accuracy value 

indicates that the classification algorithm is more accurate. As shown in the figure, the proposed ACS-E 

algorithm achieved higher accuracy as compared to the others in all datasets. The integration of global and 

local pheromone updates along with the inclusion of pheromone decay distinguishes the ACS-E algorithm 

from other comparable algorithms, and as a powerful solution for smart aquaculture data classification. Its 

adaptability to dynamic environments combined with its ability to control the balance between exploitation 

and exploration positions ACS-E as a promising approach in this field. 

 

 

 
 

Figure 2. Average classification accuracy of all ant-based classification algorithm 

 

 

A statistical test was performed to calculate the standard deviation of the average classification 

accuracy as presented in Table 2. As shown in the table, ACS-E attained the best standard deviation result in 3 

out of 4 datasets. These results show that ACS-E is consistent and stable during the experiments as compared 

to ACS-AntMiner which has the second-best accuracy and standard deviation. 
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Table 2. Statistical test for the average accuracy value 
Dataset Algorithm Average accuracy Standard deviation 

Sensor data ACS-E 81% 2.77 
ACS-AntMiner 80% 6.67 

Ant-Miner 79% 3.48 

Sentinel ACS-E 84% 3.40 
ACS-AntMiner 83% 5.17 

Ant-Miner 78% 3.27 

Realfish ACS-E 83% 4.73 
ACS-AntMiner 78% 2.91 

Ant-Miner 77% 3.35 

Kiribati ACS-E 84% 4.00 
ACS-AntMiner 75% 4.53 

Ant-Miner 72% 4.42 

 

 

Table 3 shows the number of rules discovered by all algorithms in a 10-fold cross-validation process. 

The results show that ACS-E performs better in 2 out of 4 datasets which are realfish and sensor data. The 

combination of global pheromone update and local pheromone update in ACS-E promotes exploitation of the 

best solution and exploration of the potential new solution. Despite the promising results with non-real-time 

datasets, the ACS-E should be further validated with real-time datasets which requires data collection from the 

actual aquaculture environment. Due to implementation costs, the use of real-time datasets is not feasible in 

this study. 

 

 

Table 3. Number of discovered rules 
 Sensor data Sentinel Realfish Kiribati 

ACS-E 6.1 6.3 6.1 6.2 
ACS-AntMiner 6.2 6.3 6.3 6.1 

Ant-Miner 6.2 6.2 6.1 6.3 

 

 

4. CONCLUSION 

In summary, this study proposes ACS-E which is an improved ant-based algorithm for optimizing the 

data classification in smart aquaculture. The experimental results have shown that ACS-E outperforms the 

existing ant-based algorithms which are ACS-AntMiner and Ant-Miner, in terms of average classification 

accuracy and the number of rules discovered. However, instead of using real time dataset, these experiments 

were conducted using an existing dataset from the internet. To implement the ACS-E algorithm in a real-time 

aquaculture environment, several steps must be performed. For example, the data collection process involves 

the deployment of specialized sensors such as temperature probes, dissolved oxygen meters, and pH sensors to 

continuously monitor crucial parameters in the aquaculture environment. These sensors provide real-time data 

on water quality, enabling the ACS-E system to make data driven decisions. However, challenges may arise, 

such as sensor calibration, maintenance, and the need for data synchronization across multiple sensors. In terms 

of hardware requirements, a robust sensor network with reliable communication devices and data storage 

capabilities is essential. For example, wireless sensor nodes equipped with low-power communication 

protocols, such as Zigbee or LoRa, can be deployed throughout the aquaculture facility to gather data from 

various locations. The collected data is then processed using computing resources, such as powerful 

microcontrollers or cloud-based systems, depending on the scale of the operation. Scalability is another 

important consideration as expansion requires the ACS-E system to handle increasing data volumes and 

computational demands. For instance, in a large-scale farm with hundreds of sensor nodes spread across 

multiple ponds, efficient data aggregation techniques and distributed processing algorithms become crucial to 

maintain real-time performance and minimize communication overhead. By incorporating these practical 

aspects, this study aims to provide insight into the real-world applicability of the ACS-E system in aquaculture 

environments. Understanding the challenges associated with data collection, hardware requirements, and 

scalability will help researchers and practitioners effectively implement the ACS-E system, leveraging its 

potential for optimizing aquaculture operations and improving decision making processes. While the findings 

in the experiments are promising, there are also several areas of improvement for future research works. The 

proposed ACS-E algorithm could be hybridized with the other potential algorithms to improve the 

classification process and could also be used for other machine learning tasks beyond classification, such as 

clustering or regression. Moreover, the proposed ACS-E algorithm could be applied to various classification 

problems across many domains such as natural language processing, medical diagnosis, image classification, 

and object recognition. Overall, the study contributes to the growing field of ACO algorithms and their 
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applications in machine learning and data mining. The results have ultimately demonstrated the potential of 

ACS-E as an effective tool for predictive modeling and decision making in aquaculture and other domains, and 

have shown several promising directions for future research.  
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