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 In the field of object classification, hyperspectral imaging (HSI) has been 

widely used, due to its spectral-spatial, and temporal resolution of larger areas. 

The HSI is generally used to identify the objects physical properties in 

accurate manner and as well as to identify similar object with acceptable 

spectral signatures. Thus, the HSI has been widely used for object 

identification applications in different fields such as precision agriculture, 

environmental study, crop monitoring, and surveillance. However, the object 

classification is time consuming due to extremely large size; thus, the feature 

fusion of both spectral and spatial have been done. The current feature fusion 

method fails to retain semantic object intrinsic feature; further, current 

classification technique induces higher misclassification. In addressing the 

research issues this paper introduces a hybrid spectral-spatial fusion (HSSF) 

technique to reduce feature size and retains object intrinsic properties. Finally, 

in reducing misclassification a soft-margins kernel is introduced in support 

vector machine (SVM). Experiment is conducted on standard Indian Pines 

dataset; the result shows the HSSF-SVM model attain much higher accuracy 

and Kappa coefficient performance. 
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1. INTRODUCTION 

Images captured through remote-sensing sensors, including those provided by satellites as well as 

unmanned-aerial-vehicles (UAVs), are known as remote-sensing images. Satellites are the primary source of 

global coverage, providing images of every single location on earth. Many fields, including forestry, 

agriculture, weather research, oceanography, as well as coastline research, make use of satellite imagery in this 

way. Particularly, it is put to good use in the fields of precision agricultural as well as in identification of 

phenotypes of plants [1], [2]. The normalized-difference vegetation-index (NDVI) [3] is one such indicator, 

and conventional approaches often employ the initial UAV multi-spectral (MS) image to derive the NDVI 

distributed mapping. Inaccuracy within the NDVI distributed mapping may result from the poor spatial 

resolution of the source MS images. In most cases, the spatial resolution of MS images is poor in comparison 

to the spectral resolution. Low spectral resolution and high spatial resolution are characteristics of hyperspectral 

images (HSI) and panchromatic (Pan) images as well as [4]. There is a clear loss of specific spatial information 

when using MS images. As a result, the spectral and spatial resolutions of the combined MS and HSI can be 

enhanced simultaneously. The resulting NDVI distributed mapping will have higher resolution and enhance 

https://creativecommons.org/licenses/by-sa/4.0/
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object classification performance; this development motivated the proposed research to develop an efficient 

hybrid fusion i.e., spatial-spectral fusion technique for performing object classification.  

High resolution is one of the main conditions that must be met before the satellite images can be used 

for object classification applications. Images captured by hyperspectral sensors are rich in spectral-information 

but are poor in spatial-information. However, multispectral sensors are image sensors which capture both a 

large amount of geographical data and a small amount of spectral information. Image-fusion is a preprocessing 

method that improves both the spectral as well as the spatial resolution of an image. Image fusion method are 

utilized in a variety of fields as shown in Figure 1, including such as the visualization in the medical images, 

machine-vision [5], security in bioinformatics, classification of land, navigation, variation identification, digital 

imaging, military applications, satellite, and aerial imaging [6], [7], robotic vision, detection of food microbes [8], 

photography and surveillance [9]. The purpose of this research is to investigate recent developments in the 

field of image-fusion technique applied for object classification approaches using HSI and identify the 

problems and challenges encountered and present an effective feature fusion technique that retain object 

intrinsic characteristic both spatially and as well as spectrally. 

In the image-fusion method [10], [11], considering two images from the same area captured by 

different sensors, the primary focus is on increasing the spectral and spatial resolution in one image without 

affecting object intrinsic characteristic information quality [12]. The current methods help produce a higher-

resolution fusion image [13]; however, there is a possibility that the undesired artifacts as well as noise contents 

brought on by poor registration will have an effect on the overall appearance of the fused image in the original 

images [14]. Depending on the task at hand and the original image, the resulting fused image's improved quality 

will seem very different. The evaluation of the image quality is the single most important step in 

comprehending the relevance of the fusion process. Object classification applications have different needs, so 

it's crucial to select the right image fusion method [15]. Selecting the right approach for a remote sensing object 

classification implementation is difficult, particularly in the environment of supervised classification, where 

the "Hughes-phenomenon" is present due to an imbalance among the small size of training samples as well as 

the extremely high spectral dimensions of HSI, negatively impacting classification accuracy [10]–[15]. This 

paper introduces a hybrid fusion technique i.e., in this work feature fusion is done both spectrally and as well 

as spatially. Finally, the fused feature is used for performing object classificaon using machine learning 

algorithm namely support vector machine (SVM). The significance of the reseach work is given as: 

- The work introduced a spectral feature fusion mechanism that reduces the overall bands required for 

performing object classification using hyperspectral imaging. 

- Second, the work introduced spatial feature fusion mechanism that reduces and retain intrinsic features of 

each object. 

- Finally, introduced a SVM classification algorithm that reduces misclassification using new soft-margin 

weights optimization.  

In section 2, various existing image fusion and classification techniques are studied and identified its 

limitation for remote sensing object classification application. In section 3, presents proposed method of hybrid 

fusion technique. In section 4, provides experiment study and comparative analysis with existing fusion-based 

object classification methodology. Lastly, the research the concluded with future research direction. 

 

 

2. LITERATURE SURVEY 

This section studies recent fusion methodologies adopted for object classification. Pott et al. [16] 

designed HSI-based crop classificaon model using spatial information from HSI features. They used growing 

season data to model a transfer learning approach and examined precision in early-seasonal predictive 

approach; and lastly, crop classification is done to estimate large-scale crop area. Orynbaikyzy et al. [17] used 

multispectral time-series data combined with synthetic-aperture radar data for better crop-type mapping. They 

showed just using radar data exhibit poor accuracy, identified which feature combination increases accuracy, 

and studied misclassification for better crop profile modelling. They studied two fusion methodologies and 

showed feature selection aid in significantly reducing computational overhead.  

Yin et al. [18] studied fusion methodology considering different view point for scene classification 

using HSI. They evaluated scene classification using single side image and also combination of multiple  

image [19]. Bouguettaya et al. [20] studied recent convolution neural network (CNN)-based crop classification 

approaches and its benefits for accurate results. Zhang [21] introduced a CNN combining interleaving 

perception for attaining better fusion; they model is focused in fusion of heterogenous information from light 

detection and ranging (LiDAR) data and HSI. In performing reconstruction of LiDAR and HSI features 

together designed a bidirectional autoencoder; finally, the two-branch CNN takes the fused information as 

input for performing classification.  
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Gao et al. [22] designed a land-cover recognition method of complex wetland which has mixed 

vegetation in patchy manner. First, the multispectral and HSI features are fused using CNN. The model assure 

good spatial-spectral feature resolution; then spatial and spectral visual correlation form fused image is used 

for performing pixel-wise object classification. Yang et al. [23] introduced fusion mechanism namely enhanced 

multiscale feature-fusion network (EMFFN). The model extract multiscale spatial-spectral features using two 

subnetworks namely spectral cascaded dilated convolutional network (SCDCN) and parallel multipath network 

(PMN) [24]. The SCDCN is used for extraction of multiscale features considering long-ranged information of 

larger fields. Then, PMN is used for capturing small, medium, and large-scale features spatially. Finally, feature 

are fused in hierarchical manner assuring better high-level semantic features considering limited training 

samples [25], [26]. 

 

 

3. PROPOSED METHOD 

This section introduces a an effective HSI fusion technique that reduces the band and feature size and 

retains high quality feature both spatially and as well as spectrally. Finally, using the fused features information 

the object classification process is done using machine learning algorithm. The architecture of proposed HSI 

object classification methods is given in Figure 1. 

 

 

 
 

Figure 1. Architecture of prosed hybrid HSI fusion technique for object classification 

 

 

3.1.  Spectral feature fusion technique 

The raw HSI 𝐽 can be expressed using (1); 

 

𝐽 = (𝐽1, … , 𝐽𝑂) ∈ 𝒮
𝐶×𝑂 (1) 

 

where the raw HSI is segmented into 𝑁 clusters with equal spectral band size, the parameter 𝐶 defines 

dimensions and parameter 𝑂 defines pixels size of raw HSI. The bands size in each cluster is expressed in (2); 

 

𝐶1, 𝐶2, ..., 𝐶𝑁 (2) 

 

the averaging-based image fusion is done at each group and the corresponding fusion data is given using (3); 

 

𝐽𝑛 =
∑ 𝐽𝑛

𝑜𝐶𝑛
𝑜=1

𝐶𝑛
  (3) 

 

where parameter 𝑛 defines the 𝑛th group, 𝐶𝑛 defines the bands size in the 𝑛th group, 𝐽𝑛
𝑜 defines the 𝑜th band 

in the 𝑛th group of the raw HSI, and 𝐽𝑛 defines the 𝑛th spectral band after performing fusion. In (3) enables 

the spectrally reduced pixels of HSI to retain the object physical properties i.e., quality of object reflectance 
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will be retained. Further, the model is very effective in eliminating noise. The spectrally reduced HSI 𝐽 is again 

divided into multiple sub-clusters of neighboring bands as defined (4); 

 

𝐽𝑙 = {
(𝐽(𝑙−1)𝐴+1,…,𝐽(𝑙−1)𝐴+𝐴),    𝑙 = 1,2, … , ⌊

𝑁

𝐴
⌋

(𝐽𝑁−𝐴+1,…,𝐽𝑁),                  𝑙 = ⌈
𝑁

𝐴
⌉ ≠ ⌊

𝑁

𝐴
⌋

 (4) 

 

where 𝐽𝑙 defines to the 𝑙th subcluster, 𝐴 defines bands size of each cluster, ⌈
𝑁

𝐴
⌉ represent the minimum value 

not smaller than 
𝑁

𝐴
, ⌊
𝑁

𝐴
⌋ represent maximum value not larger than 

𝑁

𝐴
. Then, for obtaining shading and reflectance 

features of each object optimization is done using intrinsic feature extraction mechanism at each subcluster 𝐽𝑙 
as defined (5); 

 

(𝑇𝑙
∗
, 𝑆𝑙

∗
) = arg min

𝑆𝑙,𝑇𝑙
𝐸(𝐽𝑙, �̂�𝑙 , �̂�𝑙)  (5) 

 

where 𝑇𝑙 defines shading elements of the 𝑙th subcluster and 𝑆𝑙 defines reflectance elements of the 𝑙th 

subcluster. Finally, the reflectance features of objects in multiple subclusters are fused together for obtaining 

corresponding intrinsic features of objects, which is defined as a matrix representation with 𝑛-dimensional 

feature �̃� as defined (6). 

 

�̃� =

(

 
𝑆1
⋯
𝑆𝑙
⋯

𝑆
⌈
𝑁
𝐴
⌉)

 ∈ 𝒮𝑁×𝑂 (6) 

 

3.2.  Spatial feature fusion technique 

In this section the work aimed at extracting features that retains objects intrinsic feature using 

minimum number of pixels. The intrinsic feature depends on the surface feature of earth; the illumination and 

climate condition impact the intrinsic properties of objects. In order to extract semantically meaningful features 

spatially the shading feature must be removed from the intrinsic feature. Let the intensity feature, intrinsic 

feature and shading feature be defined using parameter 𝐽 ∈ 𝒮𝑠∗𝑑, 𝑆 ∈ 𝒮𝑠∗𝑑, and 𝑇 ∈ 𝒮𝑠∗𝑑, respectively. The 

HSI for a pixel 𝑞 is excessed as a pixel-wise multiplicative of object reflectance and shading features as defined 

in (7); 

 

𝐽𝑞 = 𝑆𝑞𝑇𝑞 , (7) 

 

where 𝑞 represent pixel indexes. In (7), the parameter 𝑆𝑞  and 𝑇𝑞 are unknown parameter and 𝐽𝑞 is the known 

parameter. The reflectance properties of objects will vary extremely at the edges and remain similar within the 

respective object class. The value of reflectance keeps changing with variation in intensity value; thus, 

identifying exact intensity value will result in identifying similar reflectance output. Therefore, reflectance 𝑆𝑞  

is measured in (8). 

 

𝑆𝑞 = ∑ 𝑏𝑞𝑟𝑆𝑟 ,𝑟∈𝒪(𝑞)  (8) 

 

In (8) 𝑏𝑞𝑟 defines the parameter that estimates intensity similarities between spectral angle and intensity value 

among pixel indexes 𝑞 and 𝑟 as defined (9); 

 

𝑏𝑞𝑟 = 𝑒
−(𝐾𝑞−𝐾𝑟)

2
2𝜎𝑞𝐾
2⁄ +𝐴(𝐽𝑞−𝐽𝑟)

2
𝜎𝑞𝐴
2⁄  (9) 

 

where parameter 𝐾 is used to measure the intensity of HSI by taking the average of entire bands of HSI, 𝜎𝑞𝐴 

defines the difference in angle in local window in adjacent 𝑞 and 𝜎𝑞𝐾 defines the difference in intensities in 

local window in adjacent 𝑞. In (9) the angle between two-pixel vectors 𝐽𝑞 and 𝐽𝑟 represented by parameter 

𝐴(𝐽𝑞 − 𝐽𝑟) are measured using (10). 

 

𝐴(𝐽𝑞 − 𝐽𝑟) = arcos  (𝐽𝑞𝑠𝐽𝑟𝑠 + 𝐽𝑞𝑔𝐽𝑟𝑔 + 𝐽𝑞𝑠𝐽𝑟𝑠) (10) 
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The parameter 𝑏𝑞𝑟 defines pairwise similarity between 𝐽𝑞 and 𝐽𝑟 and is an element of affinity matrix; 

where 𝒪(𝑞) depicts the neighbor pixel 𝑞 represented as Gaussian window as defined (11); 

 

𝒪(𝑞)  = exp (−
‖𝑞−𝑟‖2

2

2𝜎2
) (11) 

 

in (11) the size of 𝜎 and 𝒪(𝑞) plays important role in obtaining semantic feature of objects intrinsic 

representation. In measuring 𝑏𝑞𝑟 affinity graph through gaussian function both range distance between intensity 

𝐽𝑞 and 𝐽𝑟 and space distance between pixel 𝑞 and 𝑟 is used through (12); 

 

𝑏𝑞𝑟 = {
exp [−(

‖𝑞−𝑟‖2
2

2𝜎𝑡
2 +

‖ 𝐽𝑞− 𝐽𝑟‖2
2

2𝜎𝑠
2 )] , 𝑖𝑓𝑟 ∈ 𝒪(𝑞)  

0,                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (12) 

 

where 𝜎𝑡 defines the space optimization parameter and 𝜎𝑠 defines range optimization parameter. Therefore, 

using (12), the 𝑆𝑟  can be established through (13). 

 

𝑆𝑟 = ∑ {exp [−(
‖𝑞−𝑟‖2

2

2𝜎𝑡
2 +

‖ 𝐽𝑞− 𝐽𝑟‖2
2

2𝜎𝑠
2 )]}𝑟∈𝒪(𝑞) 𝑆𝑟  (13) 

 

Using (12) the HSI 𝐽𝑞 structure can be preserved with better texture 𝑆𝑞  representation. The object 

intrinsic feature is established by considering �̃�𝑞 =
1

𝐽𝑞
 through linear properties using (7) and (8); 

 

{
𝑆𝑞 = ∑ 𝑏𝑞𝑟𝑆𝑟 ,𝑟∈𝒪(𝑞)

�̃�𝑞 =
1

𝐽𝑞
𝑆𝑟 ,

  (14) 

 

using (14), the value of 𝑆𝑟  and 𝑇𝑞  is approximated. Therefore, the reflectance value of different objects by 

eliminating shading is obtained. Thus, aiding in better spatial feature intrinsic representation. Once the fusion 

of both spectral and spatial is done. The final fused feature of 𝑆 of different objects is represented as a vector 

form and trained using machine learning algorithm defined 3.3. 

 

3.3.  Object classification using machine learning algorithm 

The classification problem of the object can be said to be a multi-objective classification. The 

supervised machine-learning algorithm, namely SVM has been used for the classification, regression and 

detection of the objects. Hence, in this work, we utilize the SVM for solving the multi-objective classification. 

In this proposed method, the SVM first builds hyper-planes or group of hyper-planes in a space which has the 

highest dimension. The structure of the hyper-planes can be acquired using [27]. The linear model for SVM 

hyper-plane is defined using the (15); 

 

𝑦 = 𝑤𝑇𝜙(𝑋) + 𝑏 (15) 

 

where, 𝜙(𝑋) is used for defining the space which has transformed features. Further, the margin is represented 

using the least distance between the decision hyper-plane and closest point using the dataset. To solve the 

multi-objective classification problem, it is important to build a hyper-plane which has a decision boundary 

which will help to increase the margin within the dataset. Hence, in the dataset, for every data-points, the target 

point represented as 𝑡𝑖 should belong to {1, −1}, i.e., 𝑡 ∈ {1, −1}. If the target point is satisfied, then it is said 

to linearly separable. When the target point does not satisfy, then it is said to be non-linearly separable. Hence, 

to address the issue of non-linearly separable, in this work, a soft-margin SVM has been presented which uses 

a slack parameter,  𝜑𝑖 ≥ 0, where 𝜑 is used for defining the rate of misclassification. Moreover, when 𝜑𝑖 > 1, 

the data-points are said to be misclassified. Furthermore, the inequality constraints would arise which can be 

defined using the (16). 

 

𝑡𝑖(𝑊𝑖
𝑇𝜙𝑖(𝑋) + 𝑏) ≥ 1 −  𝜑𝑖 (16) 

 

The inequality constraints arise because we try to change 𝑦(𝑥𝑛) > 0 for the data-points having 𝑡𝑛 =
1 and 𝑦(𝑥𝑛) < 0 for the data-points having 𝑡𝑛 = 1. The range between the data-point 𝑥𝑛 and decision-

boundary which is inside the hard-margin can be given using the (17); 
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𝑡𝑛𝑦(𝑥𝑛)

‖𝑊‖
=
𝑡𝑖(𝑊

𝑇𝜙(𝑋)+𝑏)

‖𝑊‖
 (17) 

 

in finding the maximal margin or the best solution for the multi-objective classification, the (18) has to be 

solved;  
 

argmax
𝑊,𝑏

1

‖𝑊‖
min
𝑛
(𝑡𝑛(𝑊

𝑇𝜙(𝑋) + 𝑏)) (18) 

 

by solving the (18) and the soft-margin slack parameter, the multi-objective problem changes to the given (19); 
 

argmax
𝑊,𝑏,𝜑

1

2
‖𝑊‖2 + 𝐶 ∑ 𝜑𝑛

𝑁
𝑛=1   𝑠. 𝑡 𝑡𝑛(𝑊

𝑇𝜙(𝑋) + 𝑏) ≥ 1 − 𝜑𝑛;𝜑𝑛 ≥ 0; 𝑛 = 1,2, … , 𝑁 (19) 

 

where, the parameter 𝐶 has been used as the regularization parameter which will help to control the trade-off 

among the margin as well as the misclassification-tolerance. Moreover, as the dataset which has been 

considered as non-linearly separatable, the kernel method can be utilized for transforming it to a higher linear 

dimension, i.e., Gaussian Kernel method. Furthermore, the SVM handling a multi-objective classification is 

considered as a convex optimization issue, which can help the model to attain the best solution. By using the 

optimum decision boundary, the dataset can be classified into various labels. The results which have been 

discussed in the next section show that the proposed classification method for the hyperspectral image shows 

better performance in terms of accuracy and Kappa coefficient in comparison to other traditional classification 

methods.  

 

 

4. RESULTS AND DISCUSSIONS 

The performance of the HSSF-SVM based hyper-spectral image object classification using HSI has 

been compared with the other existing feature fusion-based object classification techniques spectral spatial 

dependent global learning (SSDGL) [10], central attention network (CAN) [11], convolution neural network -

active learning-markov random field (CNN-Al-MNF) [12], enhanced-multiscale feature-fusion network 

(EMFFN) [23], 3-dimension self-attention multiscale feature-fusion network (3DSA-MFN) [24], adaptive 

spectral-spatial feature fusion network (ASSFFN) [25], low-rank attention multiple feature-fusion network 

(LMAFN) [26], and deep support vector machine (DSVM) [27]. For evaluating the proposed HSSF-SVM and 

other existing HSI object classificaon techniques, the Indian Pines dataset has been used. Overall-accuracy 

(OA), average-accuracy (AA), the kappa-coefficient (K), and time required for computation are some of the 

most commonly utilized metrics in current HSI-based object classification techniques to evaluate the 

effectiveness of various HSI fusion based object-classification approach. By attaining higher values for the 

OA, AA, and K, the technique shows the best performance. Moreover, by decreasing the time for the 

computation, the techniques can be deployed in the real-time. 

 

4.1.  Dataset description 

An airborne visible/infrared imaging spectrometer (AVIRIS) sensor that was positioned over the 

northwestern corner of Indiana was used for capturing the data for the Indian-Pines dataset as shown in Figure 2. 

When gathering hyperspectral information, a wavelength of 0:4-2:5×10−6meters is used alongside 145×145 

pixels and 224 bands. Indian-Pines dataset is necessary since two-thirds of the area that was measured is 

agricultural, while the remaining one-third is made up of forest along with other naturally present flora.  

In addition, there are crops that are still in the beginning phases of their development, which accounts for fewer 

than five percent of the total data acquired in Indian-Pines dataset. According to figure, there are an overall of 

16 crops (or labels) that make up the ground-truth information. In a manner comparable to [2], [3], the water-

absorption spectrum bands are removed, and the total number of the bands that comprise the spectral spectrum 

is decreased to 200. 

 

4.2.  Effect of hybrid fusion technique 

In this section the impact that the hybrid-fusion technique has been given. The results for the accuracy 

attained for the classification when the HSSF is used by the proposed HSSF-SVM technique has been given in 

the Figure 3. The results for the accuracy attained for the classification when the SSF is not used by the 

proposed HSSF-SVM technique has been given in the Figure 3. When comparing it can be seen that the HSSF 

help to increase the accuracy for the classification of the HSIs. Hence, from all the results, it can be noted that 

the proposed HSSF-SVM technique has the ability to train the model and learn about the object features by 

removing the shadowing-element. 
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Figure 2. Pseudo-color image and ground-

truth map for Indian Pines dataset 

Figure 3. Effect of spatial-spectral fusion on hyperspectral 

object classification performance 

 

 

4.3.  Comparative study 

In this section, the experimentation has been done using the Indian-Pines dataset and has been 

evaluated using the OA, AA, K and time required for the computation metrics. The proposed HSSF-SVM 

technique has been compared with the existing techniques like SSDGL, CAN, CNN-Al-MNF, EMFFN, 3DSA-

MFN, LSGSAN, LMAFN, and DSVM techniques. The accuracy which has been achieved for the various 

objects (class name) has been given in Table 1. From the results presented in the Table 1, it can be noted that 

the presented HSSF-SVM technique attains the best accuracy in terms of OA, AA, K and time required for the 

computation for all the objects in comparison to the other existing techniques. Moreover, the proposed HSSF-

SVM technique induces the least computing overhead when compared with all the CNN-AL-MNF and EMFFN 

technique. 
 
 

Table 1. Comparative analysis 
Class name DSVM 

(2020) 

[27] 

CNN-Al-

MNF 

(2020) 

[12] 

SSDGL 

(2021) 

[10] 

CAN 

(2021) 

[11] 

EMFFN 

(2021) 

[23] 

3DSA-

MFN 

(2022) 

[24] 

ASSFFN 

(2022) 

[25] 

LMAFN 

(2023) 

[26] 

HHSSF-

SVM 

[Proposed] 

Alfalfa 100 92.71 100 87.8 100 98.67 93.18 98.78 100 
Corn notill 100 92.98 99.63 98.05 96.88 99.59 96.24 64.40 99.98 

Corn mintill 100 88.7 99.24 97.99 99.22 100.00 97.85 66.02 99.97 

Corn 100 97.7 100 94.37 99.97 98.73 97.35 90.95 100 
Grass 

pasture 

99.43 92.9 99.56 98.39 99.37 100.00 98.91 83.37 99.56 

Grass trees 98.89 98.89 100 99.7 99.80 99.54 99.71 96.72 99.88 
Grass 

pasture 

moved 

100 76.74 100 100 100 100.00 40.74 99.57 100 

Hay 

windrowed 

98.72 97.87 100 100 100 99.09 100 99.70 100 

Oats 100 38.89 100 77.78 100 99.42 84.21 100.00 99.97 
Soybean 

notill 

95.75 92.27 99.68 98.17 98.07 99.56 96.86 74.01 99.41 

Soybean 
mintill 

100 95.07 99.36 98.33 97.91 100.00 98.67 67.36 99.46 

Soybean 

clean 

99.63 90.51 99.11 97.94 99.31 99.56 96.98 80.43 100 

wheat 100 96.53 100 100 100 98.47 98.46 98.55 99.85 

woods 100 99.28 100 98.77 99.53 98.73 100 93.01 100 

Buildings 
Grass trees 

95.45 88.4 100 92.51 99.55 99.37 100 86.90 99.87 

Stone steel 
Towers 

100 97.12 100 98.81 99.73 99.37 98.88 98.30 100 

OA (%) 98.86 98.79 99.63 98.1 98.85 99.52 98.11 75.41 99.76 

AA (%) 99.24 94.28 99.79 96.16 - 99.32 93.62 78.15 99.87 
Kappa (%) - - 99.58 97.84 98.36 99.24 97.84 87.38 99.62 

Time (s) - 8109.34 - - 279.65 - - - 67.5 

 

 

4.4.  Classification map comparizon 

The Figure 4 shows the classification produced by existing HSI object classification methods. The 

accuracies of different existing HSI object classification methods is given inside the parenthesis. The result 
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clearly shows the proposed method produces very false positive in comparison with existing HSI object 

classification methods; thus, produces better classification maps in comparison with existing HSI object 

classification methods. 

 

 

     

Three-band false color 

composite 

Ground truth DSVM, 2020 [27] 

(98.86%) 

CNN-Al-MNF, 2020 

[12] (98.79%) 
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EMFFN (2021) [23] 

(98.85%) 

3DSA-MFN, 2022 

[24] (99.52%) 

ASSFFN, 2022 [25] 

(98.11%) 
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Figure 4. Classification maps produced using different HSI object classification methods 

 

 

5. CONCLUSION 

In this paper first various existing object classification model have been studied. The study shows the 

need for reducing the feature size to perform object classification; thus, various feature fusion mechanism has 

been presented to reduce the features both spatially and as well as spectrally. However, the study shows the 

current method failed to bring tradeoffs between reducing feature size and retaining object intrinsic 

characteristics. Further, the classification is a multi-label classification problem; the current method design 

classification with hard-margin. Thus, exhibit higher object misclassification. In this work a hybrid spectral-

spatial fusion that reduce feature by eliminate shading element from object intrinsic features. Further, a soft-

margin optimization for SVM is designed to attain better classification performance. Experiment is conducted 

using standard Indian Pines hyperspectral dataset; the result shows the HSSF-SVM attain much improved 

accuracy and kappa coefficient performance. The future work would further consider introducing realistic noise 

representing real-time environment and perform object classification and further, work on improving the model 

under noisy environment; alongside consider studying performance using different hyperspectral dataset. 
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