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 The sparse Gaussian process regression (GPR) has been used to model 
trajectory data from Real time kinematics-global navigation satellite system 

(RTK-GNSS). However, upon scrutinizing the model residuals; the sparse 

GPR model poorly fits the data and exhibits presence of correlated noise. 

This work attempts to address these issues by proposing an integrated 
modeling approach called GPR-LR-ARIMA where the sparse GPR was 

integrated with the linear regression with autoregressive integrated moving 

average errors (LR-ARIMA) to further enhance the description of the 

trajectory data. In this integrated approach, the predicted trajectory points 
from the GPR were further described by the LR-ARIMA. Simulation of the 

GPR-LR-ARIMA on three sets of trajectory data indicated better model fit, 

revealed in the normally distributed model residuals and symmetrically 

distributed scatter plots. Correlated noise was also successfully eliminated 
by the model. The GPR-LR-ARIMA outperformed both the GPR and LR-

ARIMA by its ability to improve mean-absolute-error in 2-dimension 

positioning by up to 86%. The GPR-LR-ARIMA contributes to enhancement 

of positioning accuracy of dynamic GNSS measurements in localization and 
navigation system with good model fit. 
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1. INTRODUCTION 

Global navigation satellite system (GNSS) comprised of a group of satellites that generate and 

transmit positioning, timing, and navigation data from space to connected receivers or devices on earth. 

GNSSs were used in various applications such as locating potential forest fires [1]; space surveillance and 

tracking system [2]; observation of coastal tides [3]; cadastral surveying [4] and localization and navigation 

system [5]. In addition to GNSS, simultaneous localization and mapping systems (SLAM) [6]-[8] and indoor 

localization and navigation systems [9]-[10] were developed for localization and navigation systems.  

GNSS positioning accuracy in localization and navigation systems could be affected by signal 

interference [11] and the absence of satellite signals when navigating under tree canopy, tunnels or in-

between buildings [12]. Real-time kinematic global navigation satellite systems (RTK-GNSS) could enhance 

the positioning accuracy; however, it was reported that the accuracy of positioning was affected by the 

quality of the receiver and satellite position when the receiver moves in different landscapes [13]-[16]. For 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Modelling and estimating trajectory points from RTK-GNSS based on … (Ravenny Sandin Nahar) 

163 

example, performance evaluation conducted on low-cost RTK-GNSSs tested in different landscapes did not 

achieve fixed-integer solution for long duration of time in dynamic applications [16]. 

To improve the positioning accuracy of localization and navigation systems, Gaussian process 

regression (GPR) has been used to model odometry errors in SLAM [7] and inertial measurement system 

errors in [12]. GPR is a type of machine learning that is non-parametric and adopts a Bayesian regression 

approach. The GPR model is well suited for data that is correlated, possesses time-varying covariates, 

nonlinear and non-stationary [17]. The trained GPR model could be used for processing position errors from 

GNSS in static and dynamic measurements. 

Some works applied the GPR to model measurement errors from static GNSS stations resulted in 

prediction of improved positions with better accuracy [18], [19]. On the other hand, Kortesalmi et al. [20] 

performed coarse approximation of GNSS measurements in dynamic applications to model and estimate 

position variance in bus trajectory using the GPR. Xue-mei et al. [21] developed GPR models to predict the 

trajectories of incoming vehicles at a traffic intersection using lateral and vertical position information from 

vision sensors. Yoon et al. [22] utilized GPR, assisted by a path-following model, to predict the future state 

of a cut-in vehicle. Research on such dynamic modeling of trajectory contributes to better positioning 

accuracy in navigation systems. However, current research did not scrutinize the performance of the GPR 

model fit on the trajectory dynamic data [20]-[26].  

It is essential to further scrutinize the GP models' residuals for un-modeled errors that directly 

reflect the model performance. These un-modeled errors are variations in the residuals of a mathematical 

model, which are challenging to be further modelled by incorporating additional parameters [27]. This gap 

was bridged by Nahar et al. [28] where predictions of dynamic measurements from RTK-GNSS using the 

sparse GP (a type of GPR) was further scrutinized and studied. Although, the sparse GP could predict 

dynamic trajectory points with better accuracy; the residuals of the models revealed poor model fit [28]. 

Therefore, there is a need to ensure good model fit when using GPR to model and predict dynamic GNSS 

points. Methods such as reweighing and retraining of GP models [18] using weighted least square [29] and 

fitting an appropriate noise model [19] have been implemented to improve fitness of models describing data 

of static GNSS stations. However, these methods were tedious and computationally expensive; hence, may 

not be feasible to optimize model fit in dynamic data.  

This paper revisits the modeling of dynamic trajectory data using sparse GPR method introduced by 

Nahar et al. [28]. The aim of this work is to improve model fitting and positioning accuracy of dynamic 

trajectory data described by the sparse GPR models [28]. We proposed an integrated model approach using 

both sparse GPR and Linear regression with autoregressive moving average errors (LR-ARIMA) models that 

were developed by Nahar et al. [28] and Ng et al. [30] respectively to describe dynamic trajectory data. 

ARIMA error models could further describe the un-modelled errors in the residuals of the GPR with better 

correlation in the model based on time series method [30]-[34]. The predicted outputs from the sparse GPR 

are fed into the LR-ARIMA, forming an integrated two-stage model named as GPR-LR-ARIMA. The 

performance of the predictions from the GPR-LR-ARIMA were compared with sparse GPR to demonstrate 

improvement in model fit. Positioning accuracy produced by the sparse GPR, LR-ARIMA and GPR-LR-

ARIMA were compared to reveal the advantage of this model integration. The method contributes to 

enhancement of positioning accuracy of dynamic GNSS measurements in localization and navigation system 

with improved model fit. Section 2 of this paper outlines the method that includes data sets used in section 

2.1 whereas section 2.2 outlines the model integration method. Section 3 presents the results and evaluates 

the model performance.  

 

 

2. METHOD 

2.1. Data sets 

Three sets of trajectory data were employed from [28]. The trajectory data was collected using 

EMLID Reach RTK-GNSS in the location shown in Figure 1, which is situated in the city of Shah Alam, 

Malaysia [35]. It comprised of a base station (marked “X”) which was placed in the football field to project 

carrier phase corrections to the rover with baseline ranging from 200 to 500 meters. The rover moved along 

the trajectory (the red path) that encircles residential houses, buildings, structures and trees. The trajectory 

was affected by multipath effects as the direct line of sight between the rover and base station was obstructed 

by building and structures. Data was logged by connecting the rover to the laptop via serial communication. 

A MATLAB program was developed to read National Marine Electronics Association (NMEA) $GPGAA- 

format from the rover and log all geodetic coordinates and fix quality indicators. The sampling rate is set at 

0.5 Hz. The data has been cleaned to remove outliers and flawed data by removing the spiked data points in 

each of data set. Spiked data points were logged measurements that deviated more than 5 meters from the 

trajectory, which can be visually observed using Google Earth. All data logging and computing were 

performed using MATLAB R2017b on a laptop running on an Intel Core i5 processor. 
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Figure 1. Trajectory of the rover  

 

 

2.2. GPR-LR-ARIMA model integration  

Figure 2 shows the flow diagram of the model integration method in this work named as GPR-LR-

ARIMA. Step 1 to 4 indicates the methods of modeling the fully independent conditional (FIC) sparse GPR 

as explained in [28] whereas step 5 to 8 depicts the LR-ARIMA modelling adopted from [30]. In step 1 to 4, 

FIC sparse GPR model is trained using the rover trajectory data to predict improved trajectory x-y coordinate 

points. Subsequently, these predicted x-y coordinates are fed in the LR-ARIMA (step 5-8) to further 

eliminate correlated noise and improve position accuracy using the time series method.  

In step 1 of Figure 2, the trajectory geodetic coordinates in Figure 1 that were logged by the RTK-

GNSS are converted to north-east-down (NED) coordinates (Ynorth-Xeast-Zdown). This conversion divides 

model development into two dimensional models based on the x-axis and y-axis data. The Zdown was 

excluded due to logged data was performed in flat land areas. It will only be considered for data logged in 

uneven terrains such as hilly areas.  

In step 2 of Figure 2, the sparse GPR for x-axis positioning is trained based on Xeast points and the 

Xeast actual ground truth, using functions in the MATLAB R2017b GPR machine learning toolbox. Model 

training is also conducted for y-axis using Yeast points and the Yeast actual ground truth. Five kernel functions 

which are exponential (EXP), squared exponential (SQEXP), Matern 3/2 (MAT32), Matern 5/2 (MAT52) 

and Rational Quadratic (RATQUA) are respectively used to model the trajectory data.  

In step 3 of Figure 2, the models of the sparse GPR using these kernel functions are validated based 

on the Bayesian Information Criterion (BIC) and mean-square-error (MSE) (obtained from 10-fold cross 

validation). The BIC and MSE provide the quality indicators of the model fit to help identify the best-

performed kernel function. The sparse GPR with selected best-performed kernel function is applied for each 

data set in step 4 to predict XGPR and YGPR points. 

Steps 5 to 8 describe the linear regression with ARIMA errors (LR-ARIMA) which can be defined 

in (1). The LR equation in (1) comprised of β as the regression coefficient and c as the regression intercept 

when yt which is a response series is linearly regressed upon xt which is a series of predictor data. The LR-

ARIMA contains 𝜇𝑡 that describes the ARIMA errors disturbance series at t = 1, 2, … N, and N the number 

of samples. The ARIMA errors comprised of autoregressive coefficients 𝛼1, … , 𝛼𝑝 up to degree p and moving 

average coefficients ∅1, … , ∅𝑝  up to degree q, where 𝜀𝑡 is the white noise series and 𝐿𝑗𝑓𝑡 = 𝑓𝑡−𝑗. The (1 −

𝐿)𝐷 is the degree D integration polynomial. 
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yt = βxt + c + 𝜇𝑡 

(1 − 𝛼1𝐿 − ⋯ − 𝛼𝑝𝐿𝑝)(1 − 𝐿)𝐷𝜇𝑡 = (1 + ∅1𝐿+. . +∅𝑞𝐿𝑞)𝜀𝑡  (1) 

 

In step 5, a linear regression relationship X = βXGPR + c between predicted XGPR points from the 

sparse GPR with the Xeast ground truth is obtained from each data set. Linear regression model,  

𝑌 =  𝛽𝑌𝐺𝑃𝑅 +  𝑐 is also established for predicted yGPR points from the sparse GPR with the Ynorth ground 

truth. Subsequently, the autocorrelation function (ACF) and partial correlation function (PACF) plots are 

applied on the residuals of the linear regression model to estimate the ARIMA error models for each 

trajectory in step 6. This estimation draws on the unique relationship of ACF and PACF plots explained in 

[34].  

In step 7, the Akaike Information Criterion (AIC) is used to identify the best fitted ARIMA error 

model for both x and y axes respectively. The lowest AIC is used to identify the type of ARIMA error. Based 

on (1), LR-ARIMA models are developed for x-axis coordinates and y-axis coordinates as shown in (2) and 

(3) respectively. The Xopt and Yopt in (2) and (3) respectively depict the final optimized coordinates produced 

by GPR-LR-ARIMA model.  

 

Xopt = βXGPR + c + 𝜇𝑡 

(1 − 𝛼1𝐿 − ⋯ − 𝛼𝑝𝐿𝑝)(1 − 𝐿)𝐷𝜇𝑡 = (1 + ∅1𝐿+. . +∅𝑞𝐿𝑞)𝜀𝑡 (2) 

 

Yopt = βYGPR + c + 𝜇𝑡 

(1 − 𝛼1𝐿 − ⋯ − 𝛼𝑝𝐿𝑝)(1 − 𝐿)𝐷𝜇𝑡 = (1 + ∅1𝐿+. . +∅𝑞𝐿𝑞)𝜀𝑡 (3) 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

Figure 2. GPR-LR-ARIMA integrated model 

 

 

In step 8, the best fitted LR-ARIMA models are implemented to simulate Xopt and Yopt, which are 

the final outputs from the GPR-LR-ARIMA. In step 9, residuals analysis is conducted on the sparse GPR and 

GPR-LR-ARIMA models to compare the model fitness. The mean absolute error (MAE) and root mean 

square error (RMSE) in 2-dimensional position (2D) on original data, predictions from the sparse GPR, LR-

ARIMA and GPR-LR-ARIMA models are compared to evaluate their performance in producing coordinate 

points with improved accuracy. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Results of integrated model 

The sparse GPR models based on FIC approximation method was trained for x-axis using 250 

inducing points from a total of 833 logged x coordinate points in each of the three data sets [28]. This was 

repeated for the y-axis using y coordinate points. The EXP, Squared SQEXP, Matern 3/2 (MAT32), Matern 

5/2 (MAT52) and Rational Quadratic (RATQUA) kernel functions were evaluated respectively.  

Simulation of Xopt and Yopt axes points using LR-

ARIMA model  

Convert trajectory geodetic coordinates to North-

East-Down (NED) coordinates 

Training sparse GPR for x-axis positioning 

Training sparse GPR for y-axis positioning 

 

Linear regression on XGPR vs. YNorth ground truth 

Linear regression on YGPR vs. XEast ground truth 

 

ARIMA error estimation from residuals ACF and 

PACF plots 
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1 
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For brevity, Table 1 summarized the best performed kernel functions for data set 1, 2 and 3 

respectively in [28]. The best kernel function for each axis was identified during model validation by 

identifying the lowest BIC value and lowest MSE (produced by the 10-fold cross validation). The row 

labelled MSE-X summarized the lowest MSE of the respective sparse GPR model trained for x-axis 

positioning, whereas MSE-Y shows the lowest MSE of the respective sparse GPR model for y-axis 

positioning of each data set. BIC-X and BIC-Y are respectively lowest BIC values for x-axis and y-axis GPR 

models of each of the data set. The best kernel for each axis is also shown in Table 1. The SQEXP and 

MAT52 outperformed the other kernel functions by producing the lowest BIC and AIC, indicating the 

optimal model fit.  

The sparse GPR models with the best performing kernel were applied in each data set to predict 

XGPR and YGPR points. Subsequently, linear regression (LR) models were developed to established  

𝑋 =  𝛽𝑋𝐺𝑃𝑅  +  𝑐 and 𝑌 =  𝛽𝑌𝐺𝑃𝑅  +  𝑐 respectively. Table 2 summarized the established LR models when 

the respective XGPR and YGPR predicted from each data set were linearly regressed with the ground truth data. 
 

 

Table 1. Best performed kernel functions 
 Data 

Set 1 

Data 

Set 2 

Data 

Set 3 

MSE-X 0.0483 0.0991 0.0768 

MSE-Y 0.1196 0.2414 0.0890 

BIC-X 2940.00 2950.00 2940.00 

BIC-Y 2200.00 2270.00 2200.00 

Best kernel 

for x-axis 
SQEXP SQEXP SQEXP 

Best kernel 

for y-axis 
MAT52 SQEXP MAT52 

 

 

Table 2. Linear regression models 

Data set 
XEast YNorth 

Regression model R2 Regression model R2 

1 X = 0.999XGPR + 0.238 0.9776 Y = 0.998YGPR + 0.103 0.9788 

2 X = 1.000XGPR + 0.224 0.9776 Y = 0.999YGPR + 0.176 0.9762 

3 X = 1.000XGPR– 0.097 0.9821 Y = 0.999YGPR + 0.063 0.9768 

 

 

According to the method in step 6 (Figure 2), the residuals from these LR models were further 

analyzed using the ACF and PACF relations in [34] to estimate all possible ARIMA errors. The ACF and 

PACF relations analysis was conducted after first order differencing on the non-stationary model residuals. 

As an example, Figure 3 shows ACF and PACF plots of the differenced LR model residuals for x and y axes 

of data set 2. The integrated moving average (IMA) or autoregressive integrated (ARI) models can be the 

possible error models as the ACF and PACF displays cut-off at the lag axis for both x-axis (See Figures 3(a) 

and 3(b)) and y-axis (See Figures 3(c) and(d)).  

Based on PACF and ACF relations of the axis residuals, possible ARI, IMA or ARIMA models 

were listed in Table 3. The data sets possibly possessed ARI and IMA errors. However, ARIMA errors were 

not observed in any of the data sets.  

In step 7 (Figure 2), an algorithm written in MATLAB calculates the AIC values of the model errors 

and identify the best IMA and ARI order for each data set axis respectively. The results in Table 4 shows the 

best IMA, and ARI order identified based on the lowest value of AIC (i.e. font in bold) in each data set. 

Based on the lowest AIC values; data set 1 is best modelled with ARI (4, 1, 0) for x-axis and ARI (3, 1, 0) for 

y-axis. ARI (8, 1, 0) and IMA (0, 1, 1) are best fitted errors for data set 2, whereas data set 3 is best modelled 

with ARI (4, 1, 0) and ARI (2, 1, 0) for each axes respectively. All estimated ARI and IMA models 

concurred with all the assumed models listed in Table 3. 

Table 5 shows the fitted LR-ARIMA models estimated for each data set using the ARI and IMA 

order in Table 4. All LR-ARIMA model estimation were done using the MATLAB Linear Regression with 

ARIMA toolbox. The linear regression model with their respective autoregressive (AR) and moving average 

(MA) coefficients were estimated respectively for each data set. For example, the LR-ARIMA model 

estimated from MATLAB for data set 1 possessed only AR coefficients up to the 4th order (i.e. 0.646, 0.288, 

0.197 and 0.098) for x-axis and 3rd order (i.e. 0.357, 0.134 and 0.994) for y-axis positioning. Only data set 2 

possessed moving average errors to the first order with a coefficient of 0.340. 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3. Residuals analysis of LR model of data set 2: (a) ACF of x-axis residuals, (b) PACF of x-axis 

residuals, (c) ACF of y-axis residuals, and (d) PACF of y-axis residuals 
 

 

Table 3. Possible ARI, IMA or ARIMA error models for x-axis and y-axis based on ACF and PACF relations 

Data 

Set 

x-axis Residuals y-axis Residuals 

ACF 

Characteristics 

PACF 

Characteristics 

Possible 

Model 

ACF 

Characteristics 

PACF 

Characteristics 

Possible 

Model 

1 Die out Cut off ARI Die out Cut off ARI 

2 Cut off Cut off 
ARI or 

IMA 
Cut off Cut off 

ARI or 

IMA 

3 Cut off Cut off 
ARI or 

IMA 
Die out Cut off ARI 

 

 

Table 4. ARI and IMA error models for x-axis and y-axis 

Model 
 Data Set  

1 2 3 

Xeast 

Error 

Models 

ARI 
Order 4,1,0 8,1,0 4,1,0 

AIC -1163.79 -584.99 -911.90 

IMA 
Order 0,1,2 0,1,2 0,1,1 

AIC -1161.38 -578.52 -910.73 

Ynorth 

Error 

Models 

ARI 
Order 3,1,0 2,1,0 2,1,0 

AIC -1170.41 -532.08 -1095.32 

IMA 
Order 0,1,1 0,1,1 0,1,2 

AIC -1162.66 -532.54 -1091.40 

 

 

Table 5. Fitted LR-ARIMA models for x and y axes 
Data set Xeast Ynorth 

1 

Xopt = 0.999XGPR + 0.238 + 𝜇𝑡 

(1 + 0.646𝐿 + 0.288𝐿2 + 0.197𝐿3 + 0.098𝐿4)(1
− 𝐿)𝜇𝑡 =  𝜀𝑡 

Yopt = 0.998YGPR + 0.103 + 𝜇𝑡 

(1 + 0.357𝐿 + 0.134𝐿2 + 0.994𝐿3)(1 − 𝐿)𝜇𝑡 =  𝜀𝑡 

2 

Xopt = 1.000XGPR + 0.224 + 𝜇𝑡 

(1 + 0.277𝐿 + 0.155𝐿2 + 0.148𝐿3 + 0.105𝐿4

+ 0.027𝐿5 + 0.108𝐿6 + 0.098𝐿7

+ 0.067𝐿8)(1 − 𝐿)𝜇𝑡 =  𝜀𝑡 

Yopt = 1.000YGPR + 0.176 + 𝜇𝑡 

(1 − 𝐿)𝜇𝑡 = (1 − 0.340𝐿)𝜀𝑡 

3 

Xopt = 1.000XGPR - 0.097 + 𝜇𝑡 

(1 + 0.620𝐿 + 0.361𝐿2 + 0.138𝐿3 + 0.068𝐿4)(1
− 𝐿)𝜇𝑡 =  𝜀𝑡 

Yopt = 0.999YGPR + 0.063 + 𝜇𝑡 

(1 + 0.547𝐿 + 0.220𝐿2)(1 − 𝐿)𝜇𝑡 =  𝜀𝑡 

 

 

3.2. Performance evaluation 

The LR-ARIMA models in Table 5 were used to simulate Xopt and Yopt from the simulated XGPR and 

YGPR data sets. To illustrate performance of model fit; the ACF, histogram and QQ-Plot of the model 

residuals from data set 2 are used to compare model fitness of sparse GPR and GPR-LR-ARIMA as shown in 
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Figures 4 and 5. The ACF of x-axis residuals in Figure 4(a) and the ACF of y-axis residuals in Figure 5(a) of 

the GPR model for data set 2 show the data were correlated, indicating the presence of correlated noise. On 

the other hand, the ACF of x-axis and y-axis residuals of the GPR-LR-ARIMA in Figure 4(b) and 5(b) 

respectively indicated non-correlated residuals. Hence, the correlated noise which appears in the GPR models 

was eliminated by the GPR-LR-ARIMA integrated model. The normally distributed histograms and QQ-

Plots for both x and y axis residuals of the GPR-LR-ARIMA model indicated good model fit (see Figure 4(b) 

and 5(b) respectively). In addition, the scatter plot of the GPR-LR-ARIMA residuals versus fitted values for 

both axes shown in Figure 6, displayed points that were symmetrically distributed and clustering towards the 

zero mean. In contrast, the GPR model displayed kurtosis behavior in the histograms and QQ-Plots for both 

axes (see Figure 4(a) and 5(a)) indicating poor model fitting. This behavior was also observed in the 

histogram and QQ-plots of data set 1 and 3. For brevity, their results are not shown here.  

Table 6 presents the MAEs and RMSEs of 2D position errors achieved by the GPR, LR-ARIMA 

and GPR-LR-ARIMA models respectively compared to the original data performance. The GPR-LR-ARIMA 

models were observed to perform the best in terms of MAE and RMSE for all three data sets when compared 

to the GPR and LR-ARIMA. As shown in Figure 7, the GPR-LR-ARIMA improved the position errors of the 

original logged data by 86% in data set 1, 35.1% in data set 2 and 16.6% in data set 3. On the other hand, the 

percentage of improvement in position errors achieved by the GPR are 23.3%, 25.7% and 16.1% for each 

data set respectively. These are lower in comparison with the GPR-LR-ARIMA. The LR-ARIMA models 

performed better than the GPR at 29.9%, 20.3% and 15.9% respectively, but their improvements were 

inferior compared to the GPR-LR-ARIMA. 

Percentage of improvement on RMSE produced by the GPR-LR-ARIMA are 88.7%, 43.2% and 

14.4% for data set 1, 2 and 3 respectively (see Figure 8). The GPR and LR-ARIMA were observed to achieve 

lower improvement in RMSE compared to the GPR-LR-ARIMA. The differences between the MAE and 

RMSE values for the GPR-LR-ARIMA in Table 6 were smaller compared to the GPR. The bigger disparity 

between the RMSE and MAE produced by the GPR reflects significant variance in the individual errors in 

the data set, which may be caused by poor model fitting. Though the GPR could improve position errors, the 

predicted data points are very spread out from the mean producing undesirable outliers in the model.  

 

 

 
(a) 

 

 
(b) 

 

Figure 4. Comparison of model fit between sparse GPR and GPR-LR-ARIMA for x-axis of data set 2  

(a) autocorrelation, histogram and QQ plots of sparse GPR model for x-axis of data set 2 and  

(b) autocorrelation, histogram and QQ plots of GPR-LR-ARIMA model for x-axis of data set 2 
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(a) 

 

 
(b) 

 

Figure 5. Comparison of model fit between sparse GPR and GPR-LR-ARIMA for y-axis of data set 2  

(a) autocorrelation, histogram and QQ plots of sparse GPR model for y-axis of data set 2 and  

(b) autocorrelation, histogram and QQ plots of GPR-LR-ARIMA model for y-axis of data set 2 
 
 

 
 

Figure 6. Scatter plots x-axis and y-axis residuals from GPR-LR-ARIMA models of data set 2 
 

 

 
 

Figure 7. Percentage of improvement in 2D MAE positioning  
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Table 6. Comparison of 2D position errors of original data, GPR and GPR-LR-ARIMA 
Data Set Original Logged Data GPR LR-ARIMA GPR-LR-ARIMA 

MAE 

(m) 

RMSE 

(m) 

MAE 

(m) 

RMSE 

(m) 

MAE 

(m) 

RMSE 

(m) 

MAE 

(m) 

RMSE 

(m) 

1 0.4887 0.6043 0.3749 0.5017 0.3425 0.3731 0.0685 0.0685 

2 0.5990 0.7642 0.4448 0.5812 0.4776 0.4776 0.3888 0.4337 

3 0.5019 0.5555 0.4213 0.4884 0.4223 0.4790 0.4184 0.4756 

*bold font indicates best performance 
 

 

 
 

Figure 8. Percentage of improvement in 2D RMSE positioning 

 

 

4. CONCLUSION 

The work demonstrated the usefulness of sparse GPR to model dynamic trajectory data from RTK-

GNSS that could produce improved positioning accuracy. However, evaluation on the model residuals 

revealed undesirable outliers that indicated poor model fit. In addition, the GPR was not able to handle 

correlation in the residuals signifying its inability to eliminate correlated noise. The integrated model 

formulation based upon the GPR-LR-ARIMA model could enhance the description and prediction of 

trajectory data with better model fit. The GPR-LR-ARIMA improved MAE in 2D position accuracy of the 

original trajectory up to 86% whereas the GPR and LR-ARIMA improved only up to 25.7% and 29.9% 

respectively. The integrated model displayed better model fit with normally distributed residuals; ability to 

eliminate correlated noise and exceptional positioning accuracy. To this end, we successfully demonstrated 

the drawback of the GPR can be compensated by the LR-ARIMA via the integrated approach to reduce 

positioning errors in localization and navigation systems.  
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