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Abstract 
To achieve the reliable control of bearingless induction motor which is a multi-variable and 

nonlinear object, a convenient decoupling control strategy based on inverse system method is proposed. 
The reversibility of four-pole torque system was analyzed, and the inverse system models were analysed 
also. Then the torque system was decoupled into two second-order linear subsystems: one is the rotor 
speed system; another is the rotor flux system. The suspension control system adopts negative feedback 
control strategy, and the required air-gap flux linkage of torque system was obtained from the rotor flux and 
stator current ontime; finally, synthesis and simulation of the decoupling control system for bearingless 
induction motor were researched. Simulation results have demonstrated that good performance can be 
achieved. The presented control strategy is feasible.  
 
Keywords:  bearingless induction motor, reversibility analyse, convenient control strategy, decoupling 

control system, synthesis and simulation  
 

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 
 
 
1. Introduction 

Based on the similarity of magnetic bearing and usual motor’s stator, Bearingless motor 
is proposed [1-5]. Bearingless motor is a newly type of electric machine with suspension control 
windings embedded in the stator slots along with the conventional motor windings. In 
bearingless motor, the usual motor windings are called torque windings, witch will produce usual 
torque magnetic field; and the suspension control windings will produce suspension magnetic 
field. By the interaction between torque magnetic field and suspension magnetic field, the radial 
suspension force will come into being [1], [6-7]. Because of the structure complexity, the 
mathematical model of bearingless motor is so complex; there are cross-couplings between 
multi-variables. In order to achieve good control performance of bearingless motor, it is 
necessary to achieve the decoupling between relevant variables. The inverse system method is 
an effective decoupling measure for multi-variable and nonlinear system, and its basic idea can 
be described as following: based on the original system model, the inverse system can be 
constructed, and the inverse system can be used to compensate the original system into 
several decoupled linear subsystem [8].  

In the paper, the inverse system method will be applied to the variable frequency speed 
adjustment system of three-phase bearingless induction motor. The reversibility of four-pole 
torque system was analyzed based on rotor flux orientation, and the inverse system method 
was analyzed also. Then the torque system will be decoupled into two second-order linear 
subsystems: one is the rotor speed subsystem; another is the rotor flux subsystem; for 
convenience, the suspension control system will adopt negative feedback control strategy, and 
the required air-gap flux linkage of torque system will be calculated online from the rotor flux and 
stator current of torque system.   
 
 
2. Mathematical Model of Bearingless Induction Motors  
2.1. Working Principle of Bearingless Induction Motor  

Bearingless induction motor is a newly type of electric machine that there are two sets 
of windings with a difference in pole-pair numbers embedded together in its stator slots: torque 
windings (with pole pair p1 and angular frequency ω1), and suspension control windings (with 
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pole pair p2 and angular frequency ω2). Relevant researche results show that only when two 
sets of windings meet the qualification of “p2= p1±1，ω1=ω2”, and the two sets of magnetic fields 
produced by two sets of windings rotate in the same direction, can the radial force that can be 
stably controllable be produced [1], [8-10]. By the interaction between torque magnetic field and 
suspension magnetic field, the distribution of composite magnetic field in air-gap was changed, 
then a radial force generates pointing to the direction of the magnetic field enhancement, thus 
the stable suspension of the rotor shaft is achieved.  

In the paper, bearingless induction motors combined 4-pole torque windings and 2-pole 
suspension control windings are selected as the object for study. Figure 1 shows the principle of 
the magnetic suspension force generation for an induction-type bearingless motor. When torque 
windings and suspension control windings are electrified by I1, I2, they will generate 4-pole flux 
linkage ψ1 and 2-pole flux linkage ψ2. Here, α and β represent the axis for rotor displacement 
control. At no-load situation, if the suspension control windings are electrified the current I2 in 
the direction as shown in Figure 1, on the upper of air gap, the air gap flux linkage density would 
be increase because of ψ1 and ψ2 in the area pointing to the same direction. But on the lower 
side, the flux linkage density decreases for ψ2 being in the opposite direction with ψ1. Therefore, 
the radial electromagnetic force Fβ is generated along β-direction due to the imbalance of 
magnetic field. The radial force in the opposite β-direction would be produced when suspension 
control windings are electrified the current which contrary to I2 in Figure1. In the same way, the 
radial force along α-direction can be generated also.  

 
 

 
 

Figure 1. Principle of Magnetic Suspension Force Generation of Bearingless Induction Motor 
 
 
2.2. Mathematical Models of Four-pole Torque System  

The principle of torque generation for bearingless induction motor is similar with the 
conventional induction motor. The mathematical model of torque system consists three parts in 
d-q coordinate, which is voltage equations, flux linkage equations and torque equations. Voltage 
equations are shown as Equation (1).  
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                                                                 (1) 

 
Where ω1 is the rotation angular speed of the d-q sysnchronous reference frame; ωs is 

the slip angle frequency, ωs=ω1-ω; ω is the angular speed of the rotor; is1d、is1q and ir1d、ir1q are 
the stator current component and the rotor current component of the torque windings in d-q 
reference frame; Us1d、Us1q and Ur1d、Ur1q are the stator voltage component and the rotor 
voltage component of the torque windings in d-q reference frame; ψs1d、ψs1q and ψr1d、ψr1q are 
the component of the stator flux linkage and the rotor flux linkage of the torque windings in d-q 
reference frame; Rs1、Rr1 are the stator and rotor resistance; p is the differential operator.  
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Equation (2) shows the rotor flux linkage equation.  
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                                                                 (2) 

 
In Equation (2): ψ1d、ψ1q are the air gap flux component of the torque windings in d-q 

reference frame; Lm is the mutual induction between stator and rotor in d-q reference frame; Ls is 
the self-induction of the stator, Ls=Lm+Lsl; Ls  is the self-induction of the rotor, Lr=Lm+Lrl ; Lsl、Lrl 

are the leakage induction of the stator and the rotor.  
Equation (3) shows the Torque equation.  
 

1 1 1 1 1( )m
e r d s q r q s d

r

L
T p i i

L
                                                                               (3) 

 
Where, p1 is the pole-pairs of the torque windings.  
 

2.3. Mathematical Models of Two-pole Suspension System  
The radial magnetic suspension forces of the bearingless motor can be expressed as 

following [9, 10]:  
 

2 1 2 1 2 1 2 1( ), ( )m s d d s q q m s d q s q dF K i i F K i i                                       (4) 

 
Where Km is the levitation force coefficient that is related to the structure of the motor.  

In addition, there is an eccentric magnetic pull on the rotor that can be written as:  
 

,s s s sF K F K                                                                                      (5) 

 
Where Ks is the radial displacement coefficient.  

 
2.4. Motion Equation of the Bearingless Motor  

The motion equations of the bearingless motor can be expressed as Equation (6).  
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Where, m is the rotor mass; α and β are the eccentric displacements of rotor from the stator 
center.  

 
 

3. Inverse Decoupling Control of the Torque System  
3.1. State Equations of the Torque System  

Oriented the d-axes in the rotor flux linkage, then 1 1r r d  ， 1 1 0r q r q   . Then, 
Substituting Equation (2) into Equation (1), and eliminating ir1d、 ir1q、ψr1d、ψr1q , and the state 
equations of the torque system can be written as [11]:  
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In addition, there is following relation equation: 
  

11 1 1 1( ) / 0s q rr q r r mL i T                                                       (11) 

 
Then the rotation angular speed of the d-q reference frame can be written as following:  
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By the Equation (9), the rotor flux linkage can be deduced as:  
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According to the Equation (12), the rotation angle of the rotor flux linkage can be 

deduced as the following:  
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3.2. Reversibility Analysis of the Torque Systems  

The state variables are chosen as [12-15]:   
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Input variables are chosen as:   
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Output variables are chosen as:  
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The state equation of the system can be written as:  
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In equation (18):  
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In order to analysis the reversibility of the system, interactor algorithm is adopted. 

Calculate the derivative of the output 1 2,( )Ty yy  with respect to time, until the Input variables 

are revealed. The calculation procedures can be expressed as following:  
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Assuming 1 2( , )Y y y   , then the Jacobi matrix with respect to input variable can be 

expressed as following:   
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order of the system. Then, there is conclusion that the system is reversible.  

Assuming 1 2 1 2( , ) ( , )T TY y y v v   , and substituting it into Equation (19) and (20), then 

the inverse system model of four-pole torque system can be written as:  
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Where ν1、ν2 are input variables of the inverse system.   

Connecting the inverse system in front of the torque system in series, and complexing 
them together, then the torque system is decoupled to two pseudo-linear subsystems.   

The input-output relations of the compound system can be expressed as following：  
 

11 vy  ， 22 vy                                                                                                   (22) 
 

Where： 1 1ry  , 2y  .  

 
 

4. Negative Feedback Control of the Suspension System  
It can be seen from Equation (4) that the radial suspension force is generated by the 

interaction between the air gap flux linkage of torque windings and the stator current of 
suspension control windings. In order to achieve the decoupling control between radial 
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suspension force components, the amplitude of air gap flux linkage is need to be identified 
accurately so that the suspension control current can be calculated according to the required 
magnetic suspension force.  

The amplitude of air gap flux linkage can be identified by the relationship between air 
gap flux linkage and rotor flux linkage, as Equation (23) and (24).  
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Then the required suspension control current can be deduced by Equation (4) as 

following:  
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And Equation (25) can be rewritten as Equation (26) as well.  
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In Equation (25) and (26):  
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5. Synthesizing System  
5.1. Closed Loop Controllers Design  

From the inverse system compensation, the torque system is decoupled into two 
second-order linear subsystems: one is the rotor speed subsystem; the other is the rotor flux 
subsystem, each of them can be controlled by ν1, ν2 independently, as shown in Figure 2. But in 
practice, under the effect of all kinds of factors, the pseudo-linear system that has decoupled by 
inverse system is not a simple and ideal linear system, thus closed loop controller is needed to 
design according to linear system theory to improve the dynamic and static performance and 
anti-jamming capability for the whole control system. As a kind of classic and effective 
controller, PID controllers are suitable for the pseudo-linear system of bearingless induction 
motor.  

In the paper, for the transfer functions of motor speed subsystem and rotor flux 
subsystem can be expressed with G(s) =1/s2, PD controllers are used to synthesizing the torque 
system. The transfer function of PD controller can be written as:  
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In Equation (28), Kp is the proportional gain coefficient, Kd is the differential gain 

coefficient, Td is differential time constant, which can be shown as follows:   
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The open loop transfer function of the second-ordered system with PD controller is:   
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The parameters of the speed controller and the rotor flux controller are the same; the 

setting of the parameters can be determined by method of frequency domain analysis. In the 
paper, Kp =1000, Kd =50 were finally selected as parameter for the controllers. Then the open 
loop transfer function of the system is:  
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The closed loop transfer function of the system can be written as:  
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For the suspension control system, negative feedback control is used after the 

identification of air gap flux linkage. The structure of the suspension control system is simple 
relatively, the traditional PID controllers are appropriate to synthesizing for a good performance.  

 
5.2.  Overall Structure of Control System and Simulation Results 
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Figure 2. Control system of bearingless induction motor based on inverse system  
 
 

The designed overall construct of control system for bearingless induction motor is 
shown as Figure 2. The stator currents and radial displacements can be measured directly; the 
motor speed can be recognized by speed sensorless; the rotor flux linkage and the air gap flux 
linkage can be identified by flux observer, the rotation angular speed can be derived from 
Equation (12). As shown in Figure 2, for the torque system, the detected speed and rotor flux 
linkage are compared with their given values, the deviation values are the input of inverse 
system ν1, ν2. The outputs of inverse system, i.e. u*

s1d and u*
s1q are transformed to u*

s1αand u*
s1β. 

Then by SVPWM inverter, the torque control of three-phase bearingless induction motor can be 
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achieved. For the suspension control system, the difference between the actual radial 
displacements α, β and their given values are regulated by PID controller, the required given 
values of radial suspension force are derived. The current components i*s2d, i

*
s2q for suspension 

control can be deduced by Equation (26). By current regulating, u*
s2d, u

*
s2q are obtained, and by 

coordinate transformation, u*
s2α, u

*
s2β are derived witch will be used as the reference voltages of 

SVPWM modulation. 
In order to verify the feasibility of the proposed decoupling control method as shown in 

Figure 3, simulation is implemented based on Matlab/Simulink, the bearingless induction motor 
with two-pole suspension winding and four-pole torque winding is adopted as the control object . 
The motor parameters are given as followings: the stator resistance Rs=0.435Ω, the rotor 
resistance Rr=0.816Ω, the self-inductance of stator Ls=0.071H， the self-inductance of rotor 
Lr=0.071H, the mutual inductance of stator and rotor Lm=0.069H, the rotor moment of inertia 
J=0.189kg·m2, the touch down bearing clearance δ=250μm, the mass of rotor m=3.25kg, the 
radial displacement coefficient Ks=2.3H/m.  

 
 

 
 

Figure 3. Rotor Flux Linkage Response 
Waveform 

 
 

 
Figure 4. Rotor Speed Response Waveform  

 
 
 

 

Figure 5. Response Waveform of α-direction 
Radial Displacement 

 

Figure 6. Response Waveform of β-direction 
Radial Displacement 

 
 

In the simulation experiment, the initial values are set as followings: the given value of 
rotor speed is 1500r/min, the given value of rotor flux linkage is 0.8Wb; the initial values of two 
radial displacements are -0.1mm, and the given values of radial displacements are 0.0mm; the 
motor will start with no load. The simulation results of the decoupoling control system are shown 
as Figure 3 to Figure 6. From the simulation results, we can see that each of the output meets 
the given value with fast response times and small overshoot. In order to verify the effectiveness 
of the decoupling control strategy, the given signal of the system varies with time. At t=0.6s, the 
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given value of rotor flux linkage be changed to 1.2Wb; at t=1.4s, the given value of rotor speed 
be changed to 1000r/min. As shown in Figure 4 to Figure 7, the variation of rotor speed couldn’t 
affect the rotor flux linkage and the radial displacements, and the variation of the rotor flux 
linkage has no influence on the other controlled variables also.  

To further verify the effects of decoupling control of suspension control system, the 
given value of α-direction radial displacement be changend to 0.02mm at the moment of 0.5s; at 
the moment of 1.2s, the given value returned to 0; at the moment of 0.8s, the given value of β-
direction displacement be changed to -0.02mm, and at the moment of 1.5s, the given value of β-
direction displacement returns to 0.0mm. Fig.8 shows the simulation results. As shown in Figure 
7, when one of the radial displacement components changes, another is not be impacted. 
 
 

 
 

Figure 7. Decoupling Control Response Waveforms of Suspension System  
 
 
 From above simulation results, better decoupling control performance of bearingless 

induction motor has achieved, and the proposed decoupling control strategy is effective.   
 
 
6. Conclusion  

Three-phase bearingless induction motor is a multi-variable, nonlinear and strong-
coupling object. Aiming at the the strong-coupling problem of Bearingless induction motor, the 
paper proposed a convenient inverse system decoupling control strategy. By compensation of 
the Inverse system, the four-pole torque system is decoupled into two second-order linear 
integral subsystems: one is the rotor speed system; another is the rotor flux subsystem. Then, 
using the rotor flux linkage and stator current, the required air-gap flux linkage of torque system 
is identified ontime. By linear feedback control, the radial displacements can be control reliably.  

Simulation results have demonstrated that good decoupling control performance can be 
achieved with the presented control strategy; the overall system has fine dynamic and static 
performance and higher anti-jamming capability. The given control strategy is feasible and 
effective.  
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