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Abstract 
A new pattern recognition method based on harmonic wavelet packet (HWPT) and hierarchy 

support vector machine (H-SVM) is proposed to solve the fatigue damage identification problem of 
helicopter component. In this approach, HWPT is used to extract the energy feature of acoustic emission 
(AE) signals on different frequency bands and to reduce the dimensionality of original data features. The 
H-SVM classifier is used to identify the AE source type. A subset of the experimental data for known AE 
source type is used to train the H-SVM classifier, the remaining set of data is used to test the H-SVM 
classifier. Also, the pressure off experiment on specimen of carbon fiber materials is investigated. The 
results indicate that the proposed approach can implement AE source type identification effectively, and 
has better performance on computational efficiency and identification accuracy than wavelet packet (WPT) 
feature extraction and RBF neural network classification.  
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1. Introduction 

Due to the fact that helicopter moving components are easy to produce fatigue damage 
such as cracks, which are seriously endanger the operating stability and safety of helicopter, it 
is necessary to monitor the initiation of cracks and to master the developing trend of the cracks. 
Acoustic emission (AE) is a noticeable choice of nondestructive testing method because of its 
extremely high sensitivity. AE has been proved to be a very sensitive method for defect 
recognition of composite materials which have been used in typical application areas such as 
aerospace, vehicle industry and infrastructure. Interest towards automatic recognition of defect 
types based on their AE signals has increased and many recent studies have been published 
[1-3]. In the AE technique, AE source type identification is used to determine the model of 
fatigue damage.  

AE source type identification is a typical problem of pattern recognition, which includes 
two steps, i.e. feature extraction and pattern classification. AE signals are non-stationary 
signals, so the traditional techniques in the time and frequency domains are not suitable for 
analyzing them. The wavelet transform (WT) has been demonstrated as an alterative tool for 
feature extraction. The scaling operation in wavelet transform produces a series of wavelet 
functions with different window sizes, enabling multi-resolution analysis that is suited for 
representing the non-stationary signals. A major drawback of wavelet transform is its low-
frequency resolution in the high frequency range. The wavelet packet transform (WPT), in 
comparison, further decomposes the detailed information of the signal, which has been 
successfully applied in the feature extraction of sensor fault and machine health diagnosis [4-6]. 
Of the different types of wavelets developed, the harmonic wavelet possesses compact 
frequency expression and has overcome the limitations of traditional wavelet including energy 
leakage, inflexible frequency band selection and different frequency resolutions on different 
levels [7-8]. So in this research, harmonic wavelet packet transform is used to extract the 
feature of AE sources. 

Numerous pattern recognition methods have been developed within the intelligent 
systems. Among the methods, statistical learning method and ANN are mostly used in AE 
signals analysis of composite materials. ANN has been widely applied in AE signal classification 
problems based on learning pattern from examples or empirical data modeling in the last two 
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decades [9-12]. However, as a typical machine learning classifier, the ANN method is based on 
the empirical risk minimization principle, which has been recognized as a method that cannot 
always minimize the actual risk. The traditional neural network approaches have limitations on 
generalization giving rise to modals that can over-fit the data. This deficiency is due to the 
optimization algorithms used in ANN for the selection of parameters and the statistical 
measures used to select the model. Meanwhile, the effectiveness of the ANN methods is closely 
related to the number of training samples. In most cases, it is difficult to obtain large sample 
sets of AE signals in composite material and the effectiveness of the ANN methods can hardly 
be improved. 

In order to overcome the disadvantages of ANN, support vector machine (SVM) is used 
for classification of AE sources. SVM, based on statistical learning theory, is gaining 
applications in the areas of machine learning, computer vision and pattern recognition because 
of the high accuracy and good generalization capability. The SVM training seeks a global 
optimal solution and avoid over fitting, so it has the ability to deal with a large number of 
features. It is very suitable for pattern recognition with small samples. 

In this paper, we discuss the application of harmonic wavelet packet in feature 
extraction and hierarchy support vector machine classification in AE source type identification, 
and verify the algorithm using pressure off experiment on specimen of carbon fiber materials. 
 
 
2. AE Source Feature Extraction Based on Harmonic Wavelet Packet 
2.1. Harmonic Wavelet 

In essence, the wavelet transform characterizes the correlation or similarity between the 
signal to be analyzed and the mother wavelet function. Such a correlation is expressed by the 
wavelet coefficients associated with the wavelet transform, which can be calculated through a 
correlation operation between the signal x(t) and the conjugate )(tw of the chosen mother 

wavelet )(tw : 

 





  dtwxtW )()()(                                                                                     (1) 

 
If the signal x(t) is closely correlated with the mother wavelet )(tw ; the wavelet 

coefficient )(tw will be large, indicating a good match between the mother wavelet and the 

signal being analyzed. As a result, the information embedded in the signal can be extracted by 
analyzing the wavelet coefficients with local maxima. At 1993, professor D.E.Newland [13-15] 
from Cambridge University proposed the harmonic wavelet which has ideal ‘Box-like’ 
characteristic in frequency domain. In this study, the harmonic wavelet is chosen as the mother 
wavelet, due to the simplicity of its expression in the frequency domain, and is defined by: 
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Where m and n are the scale parameters. These parameters are real but not 

necessarily the integers. By taking the inverse Fourier transform of )(, nmH , the time domain 

expression of the harmonic wavelet is obtained as: 
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Based on the generalized expression, the harmonic wavelet transform of a signal x(t) 
can be performed as: 
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Where ),,( knmhwt  is the harmonic wavelet coefficient. By taking the Fourier transform 

of Equation (5), an equivalent expression of the harmonic wavelet transform in the frequency 
domain can be expressed as: 

 
])[()(),,( ,  mnHXnmHWT nm                                                                       (6) 

 
Where )(X  is the Fourier transform of the signal x(t), and ])[(, mnH nm  is the 

conjugate of ])[(, mnH nm  , which is the Fourier transform of the harmonic wavelet at the scale 

(m, n). Since the harmonic wavelet has compact frequency expression, as shown in Equation 
(2), the harmonic wavelet transform can be readily obtained through a pair of Fourier transform 
and inverse Fourier transform operations. 

 
 

H

 
 

Figure 1. Algorithm for Implementing the Harmonic Wavelet Transform [8] 
 
 

As shown in Figure 1, after taking the Fourier transform of a signal x(t) to obtain its 
frequency domain expression )(X , the inner product ),,( nmHWT  of )(X  and the conjugate 

of the harmonic wavelet ])[(, mnH nm   at the scale (m, n) is calculated. Finally, the harmonic 

wavelet transform of the signal x(t), denoted as ),,( knmhwt  is obtained by taking the inverse 

Fourier transform of the inner product ),,( nmHWT . 

 
2.2. Harmonic Wavelet Packet Algorithm 

The scale parameter m and n determine the bandwidth that the harmonic wavelet 
covers. Similar to the Wavelet Packet Transform (WPT), the number of frequency sub-bands for 
the Harmonic Wavelet Packet Transform (HWPT) has to be s powers of 2, in which s 
corresponds to the decomposition level for WPT. Accordingly, the signal can be decomposed 
into 2s frequency sub-bands with the bandwidth in Hertz for each sub-band defined by: 

 
s

hband ff 2/                                                                                                              (7) 

 
Where hf is the highest frequency component of the signal to be analyzed. Since the 

bandwidth of the harmonic wavelet is )(2 mn  , selection of the values for m and n of the 

HWPT has to satisfy the following conditions: 
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bandfmn  2)(2                                                                                                (8) 

 
Thus the harmonic wavelet packet coefficients hwpt(s, i, k) can be obtained as: 
 

),,(),,( knmhwtkishwpt                                                                                            (9) 

 
Where s is the decomposition level, i is the index of the sub-band, k is index of the 

coefficient. The parameters m and n need to satisfy the following condition: 
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2.3. AE Signal Feature Extraction 

With the AE signal being decomposed into a number of sub-bands, the features can be 
extracted from the harmonic wavelet packet coefficients in each sub-band to provide information 
on the type of AE source. The fact of different energy distribution of signals in different 
frequency bands must be caused by the difference information contained in the signals. For the 
AE signal, because of the different AE source features, the characteristic energy distribution 
coefficient of harmonic wavelet packet is selected as the features. The energy content of a 
signal can be calculated, based on the coefficients of the signal’s transform. In the case of a 
HWPT, the coefficients hwpt(s, i, k) quantify the energy associated with each specific sub-band. 
The details of feature extraction procedure are shown as follows. 

Step 1: Normalizing the AE signal using: 
 

)]([
~ 1 XXX ED  

                                                                                     (11) 

 
Where X is the AE signal, )(XE and D is the mean and standard deviation of X . 

Step 2: Decomposing X
~

with four levels of harmonic wavelet packet transform, and 
getting the coefficients vectors of the sixteen nodes, 

15,4,4,4 HHH ,,, 10  , where iH ,4  represents 

1,1,0),,4(  Nkkihwpt  , in which N is the length of AE signal. 

Step 3: Calculating the energy of each node and normalizing them. 
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Step 4: the feature vector ],,,,[ 15,42,41,40,4 EHEHEHEHT  is used to identify the AE 

source types. 
 
 

3. AE Source Identification Using Hierarchy Support Vector Machine (H-SVM) Classifier 
AE source identification is a typical problem of pattern recognition with small sample, 

because in most cases, it is difficult to obtain large sample sets of AE signals in composite 
material to train the classifiers. In this paper, support vector machine (SVM) is selected as the 
basic classifier, because it provides a novel approach to the two-category classification problem 
with good small sample generation [16-17]. 

The concept of composite damage was proposed by Professor K. L. Reifsnider [18] at 
1977 during his research on composite fatigue damage. There are four damage types of fiber 
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composite, i.e. matrix cracking, interfacial debonding, delamination and fiber fracture. The task 
of AE source identification is to distinguish the damage type using the AE signals. Because the 
features of AE signal for interfacial debonding and delamination are similar and these two 
damage types are always occurred at the same time for the carbon fiber materials, in this paper, 
three damage types are studied, i.e. matrix cracking, interfacial debonding and fiber fracture.  
Obviously, AE source identification is a multi-classification problem.  

There are two standard approaches to construct and combine the results from binary 
classifiers for a C-class problem. The first one is the one-vs-rest method, in which each 
classifier distinguishes one class from the other C-1 classes, and the class label of the input is 
decided by winner-take-all method [19]. Each classifier needs to be trained on the whole training 
set, and there is no guarantee that good discrimination exists between one class and the 
remaining classes. The second standard approach to combine binary classifiers is the one-vs-
one method, in which the decision is made by majority voting strategies. This requires training 
and testing of C(C-1)/2 binary classifiers. This approach is prohibitive when C is large [20]. 

Thus, we chose a binary hierarchical classification structure in Figure 2. Each node is a 
binary classifier. Coarse separation among classes occurs in the beginning (at upper levels) in 
the hierarchy and a finer classification result is obtained in later (at lower levels). At the top 
node, we divide the original 4 classes into two smaller groups of classes (macro-classes). This 
clustering procedure is repeated in subsequent levels, until there is only one class in the final 
sub-group. This hierarchical structure decomposes the problem into 3 binary sub-problems. For 
testing, only about 3log2 classifiers are required to traverse a path from top to bottom. 

 

 
 

Figure 2. Hierarchical Multi-classification Structure for AE Source Identification 
 
 
In this paper, the standard k-means clustering is used to design the binary hierarchical 

structure, as shown in Figure 2. SVM1 is used to classify Normal vs other three patterns, SVM2 
is used to classify Matrix cracking vs Fibers fracture, Interfacial debonding, SVM3 is used to 
classify Fibers fracture vs Interfacial debonding. 

In the training phase, the training samples are grouped according to Figure 2. Then 
SVM1 to SVM3 are trained using the corresponding group of training samples. After that, by 
inputting the feature vector into the trained multi-classifier, the AE source type can be identified. 
 
 
4. Experiment and Results 
4.1. Experimental Setup 

In order to verify the proposed method, a series of pressure off experiments were 
carried out on the specimen of carbon fiber materials, which is one of the commonly used 
materials of helicopter moving component. The AE signal measurement system is shown 
schematically in Figure 3. Figure 4 shows the pressure off experiment process on carbon fiber 
specimen. The dimensions of all samples are all 418mm×120mm×2mm. Two AE sensors are 
distributed on the carbon fiber specimen, one is 80mm distance away from the central line of the 
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specimen in up direction, and the other is 80mm distance away from the central line of the 
specimen in down direction. The central point of the specimen is the force point. The loading 
speed of the pressure off experiment is 500N/s. Figure 5 is the AE signal acquisition system 
employed on-site. The signal conditioning is performed by the pre-amplifiers. The conditioned 
signal (with a gain of 40dB) is fed to the main data-acquisition board in which the AE waveforms 
and parameters are stored. The instruments and equipments used in the experiments are listed 
below: 

(1) MTS electro-hydraulic loading system (MTS 810 material test system). 
(2) Vallen AMSY-5 AE signal acquisition system with 16 channel and 16-bit, 10-MHz AD 

converter on each channel. 
(3) Two Vallen VS150-M AE sensors.  
(4) Two Vallen AEP4 pre-amplifiers (20-2000KHz). 
(5) Vallen AE application software Vallen Visual AE. 
(6) Notebook computer. 
 
 

 
 

Figure 3. Schematic of the AE Measurement System 
 
 

 
 

 

Figure 4. Pressure Off Experiment Process on 
Carbon Fiber Specimen 

Figure 5. AE Signal Acquisition System 
Employed On-site 

 
 
The sampling rate of the acquisition system is 1MHz. In order to acquire all AE signals 

during the pressure off process, AMSY-5 works in continuous acquisition mode. Three 
specimens of carbon fiber materials with the same dimensions are under the pressure off 
experiment. For each AE source type, 50 groups of data are gathered. 

Figure 6, Figure 7 and Figure 8 shows the AE signal and its spectrum of matrix 
cracking, the AE signal and its spectrum of interfacial debonding and the AE signal and its 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 5, May 2014:  3544 – 3554 

3550

spectrum of fiber fracture, respectively. The three AE signal are all normalized using Equation 
(11). The spectrum of AE signal for the three types indicates that the energy distribution of the 
three types is different. The energy of matrix cracking is mainly in low frequency band and the 
frequency band is very narrow. The energy of interfacial debonding distributes in wide frequency 
band. The frequency band of fiber fracture is wider than matrix cracking but narrower than 
interfacial debonding. 

 

 
 

Figure 6. AE Signal and Its Spectrum of Matrix Cracking 
 
 

 
 

Figure 7. AE Signal and Its Spectrum of Interfacial Debonding 
 
 

 
 

Figure 8. AE Signal and Its Spectrum of Fiber Fracture 
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AE source identification is a typical problem of pattern recognition with small sample, 
because in most cases, it is difficult to obtain large sample sets of AE signals in composite 
material to train the classifiers. In this paper, support vector machine (SVM) is selected as the 
basic classifier, because it provides a novel approach to the two-category classification problem 
with good small sample generation [16-17]. 

 
4.2. Feature Extraction 

Firstly the experiment of feature extraction is performed according to the algorithm 
given in the section 1.3. Table 1 shows the feature nodes and their frequency ranges. The 
frequency band for each feature node is 31.25KHz. Figure 9 shows the normalized energy 
distribution for different AE sources at 15 frequency sub-bands.  

 
 

Table 1. Feature Nodes and Their Frequency Band Range 
Feature nodes Frequency band No Frequency band range (KHz) 

H4,0 0 0~31.25 
H4,1 1 31.25~62.5 
H4,2 2 62.5~93.75 

H4,13 13 40.625~43.75 
H4,14 14 43.75~468.75 
H4,15 15 468.75~500.00 
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Figure 9. Normalized Energy Distribution for Different AE Source at 15 Frequency Sub-bands 
 
 

As shown in Figure 9, the energy distribution of normal state is approximately uniform in 
every frequency band, because the AE signal of normal state is approximately white noise. The 
energy distribution of Matrix cracking is mainly concentrated in frequency band 3, 4 and 5. The 
energy distribution of Fibers breaking is mainly concentrated in frequency band 4, 5, 6, and 7. 
The energy distribution of interface separation is broad, approximately from frequency band 3 to 
8. Therefore combining above analysis, the AE source types can be distinguished using the 
harmonic wavelet packet energy features. 
 
4.3. AE Source Identification Using H-SVM Classifier 

After the experiment of feature extraction, two groups of data are acquired, i.e. the 
training samples and the testing data. 20 groups of data for each type are used as training 
samples, and the other 30 groups of data for each type are used as testing data. The H-SVM 
classifier is trained using the training samples according to section 2. The kernel functions of the 
three SVMs in the H-SVM classifier are all selected as RBF kernels, shown as Equation (14). 
The kernel width parameter,  , for each SVM is selected as 1.0. 

 

)/exp(),( 2
2

jiji XXXXK                                                                              (14) 
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Table 2 shows the AE source identification result using HWPT and H-SVM. The results 
indicate that the proposed approach can implement AE source type identification effectively  

 
 

Table 2. AE Source Identification Result Using HWPT and H-SVM 
AE source type Test sample No (Correct No) Identification rate (%) 
Matrix cracking 30 (28) 93.33 
Fibers breaking 30 (27) 90.00 

Interface separation 30 (28) 93.33 
Normal 30 (30) 100.00 

 
 

In order to verify the advantages of the HWPT feature extraction, the comparison of 
WPT feature extraction and H-SVM classifier with HWPT and H-SVM is studied. For the WPT 
feature extraction, the wavelet function is selected as Db10, and the decomposing level is also 
4. Similar to the HWPT feature extraction, the feature vector of WPT is also the normalized 
energy in each frequency band. Table 3 shows the comparison of feature extraction time for 
HWPT and WPT. These algorithms are all implemented by Matlab 7.1 on Intel Dual Core 
2.4GHz and 1G RAM. The results indicate that the feature extraction speed of HWPT is over 
nine times as quick as the WPT. Such an advantage of the HWPT over WPT is even more 
appreciable when the decomposition level is larger than 4, because of the additional recursive 
operations needed for WPT.  

 
 

Table 3. Feature Extraction Time Comparison of HWPT and WPT 
Feature extraction method Feature extraction time for 50 samples (s) 

HWPT 0.65 
WPT 5.88 

 
 
Table 4 shows the comparison of AE source identification result for HWPT and H-SVM 

with WPT and H-SVM. The results indicate that the identification rate of HWPT and H-SVM is a 
little higher than WPT and H-SVM. HWPT overcomes the energy leakage shortcoming of 
traditional wavelet, and can extract the energy feature more accuracy.  

 
 

Table 4. AE Source Identification Comparison of HWPT and H-SVM with WPT and H-SVM 

AE source type 
Identification rate (%) 

HWPT and H-SVM WPT and H-SVM 
Matrix cracking 93.33 86.67 
Fibers breaking 90.00 83.33 

Interface separation 93.33 90.00 
Normal 100.00 100.00 

 
 
In order to verify the advantages of the H-SVM classification, the comparison of HWPT 

feature extraction and H-SVM classifier with HWPT and RBF neural network is studied. The 
RBF neural network is a three layer network. The first layer is the input layer, and the second 
layer has RADBAS neurons as well as the output layer has PURELIN neurons. For the 
classification of AE source type, the input neurons are 16, each for one feature. The output 
neurons are 4. Figure 10 shows the structure of RBF neural network for AE source 
classification. Table 5 shows the relationship between RBF output and AE source type. 

 
 

Table 5. Relationship between RBF Output and AE Source Type 
AE source type Output of RB neural network [Y1 Y2 Y3 Y4] 
Matrix cracking [1 0 0 0] 
Fibers breaking [0 1 0 0] 

Interface separation [0 0 1 0] 
Normal [0 0 0 1] 
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Figure 10. Structure of RBF Neural Network for AE Source Classification 

 
 

The training process of the RBF neural network is shown as follows. Initially the 
RADBAS layer has no neurons, while the input layer has 16 neurons and the output layer has 4 
neurons. The following steps are repeated until the network's mean squared error falls below 
GOAL or the maximum number of neurons are reached: 

(1) The network is simulated using the training samples. 
(2) The input vector with the greatest error is found. 
(3) A RADBAS neuron is added with weights equal to that vector. 
(4) The PURELIN layer weights are redesigned to minimize error. 
Table 6 shows the comparison of training time for H-SVM and RBF neural network. 

These algorithms are all implemented by Matlab 7.1 on Intel Dual Core 2.4GHz and 1G RAM. 
The results indicate that the training speed of H-SVM is about three times as quick as the RBF 
neural network, which verify that the convergence performance of SVM is better than RBF 
neural network. 

 
 

Table 6. Training Time Comparison of H-SVM and RBF Neural Network 
Classification method Training time for 20 samples (s) 

H-SVM 0.120 
RBF neural network 0.358 

 
 

Table 7 shows the comparison of AE source identification result for HWPT and H-SVM 
with HWPT and RBF neural network. The results indicate that the identification rate of HWPT 
and H-SVM is higher than HWPT and RBF neural network, which verify that SVM is very 
suitable for classification with small training samples.  

 
 

Table 7. AE Source Identification Comparison of HWPT and H-SVM with HWPT and RBF 
Neural Network 

AE source type 
Identification rate (%) 

HWPT and H-SVM WPT and RBF neural network 
Matrix cracking 93.33 83.33 
Fibers breaking 90.00 80.00 

Interface separation 93.33 66.67 
Normal 100.00 90.00 

 
 
5. Conclusion 

In this paper, the HWPT feature extraction and H-SVM classifier are firstly applied to 
the AE source identification. The experimental system is built up and the pressure off 
experiments on specimen of carbon fiber materials is carried out. The comparison results of 
HWPT and H-SVM with WPT and H-SVM indicate that the proposed approach can implement 
AE source type identification effectively, and it has better performance on computational 
efficiency and identification accuracy than WPT feature extraction. The comparison results of 
HWPT and H-SVM with HWPT and RBF neural network indicate that the proposed approach 
has better performance on computational efficiency and identification accuracy than the RBF 
neural network classification. The proposed approach is very suitable for small samples 
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problem. The efficient energy feature extraction ability and less computational time makes the 
HWPT and H-SVM good candidates for efficient, on-line AE source identification. 
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