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 Quality of service (QoS) is pivotal for ensuring effective and reliable 

network performance, yet achieving end-to-end QoS within current network 

architectures remains a persistent challenge. The emergence of software 
defined networking (SDN) addresses limitations in traditional networking by 

offering a centralized control plane. This allows dynamic resource 

management and efficient enforcement of QoS policies by network 

administrators. However, the controller placement problem (CPP) within 
SDN poses a significant challenge, as identifying the optimal placement of 

controllers is a non-deterministic polynomial-time hardness (NP-hard) 

problem. Researchers are actively working on solutions to address this 

challenge, especially in large-scale networks where deploying controllers 
becomes complex. Additionally, maintaining QoS in terms of controller 

management presents another hurdle. This paper explores these challenges, 

delving into the literature and providing a comprehensive analysis of 

controller performance metrics related to QoS parameters such as load 
balancing, reliability, consistency, and scalability. By addressing these 

challenges, the research aims to enhance QoS within the SDN framework. 
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1. INTRODUCTION 

Quality of service (QoS) is crucial for ensuring efficient and reliable network performance by 

providing differentiated treatment to various types of network traffic. Traditional networks have long relied 

on QoS mechanisms to prioritize critical applications, manage bandwidth allocation, and control network 

congestion. However, despite their widespread usage, these traditional networks often encounter significant 

limitations when it comes to achieving optimal QoS levels. A significant drawback of QoS in conventional 

networks stems from the absence of detailed control and adaptability. These networks typically implement 

QoS mechanisms at the router or switch level, relying on basic prioritization schemes such as integrated 

services (IntServ) [1] and differentiated services (DiffServ) [2] or however, these mechanisms often lack the 

ability to provide fine-grained control over individual flows or applications, resulting in suboptimal 

allocation of network resources [3][7]. Multi-protocol label switching (MPLS) [8] is utilized to simplify 

routing table lookups through the implementation of labeling techniques. Nevertheless, it is statically 

configured without the capability for real-time reconfiguration and adaptability. Another significant 
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limitation is scalability. Traditional networks struggle to maintain consistent QoS levels as network traffic 

increases or changes dynamically. The scalability issue becomes more pronounced when accommodating 

high-bandwidth applications, multimedia streaming, or the proliferation of internet of things (IoT) devices, 

all of which demand efficient QoS management. With the emergence of software defined networking (SDN) 

[9], a potential solution arises to address these issues and open up avenues for the development of novel QoS 

frameworks. 

SDN has arisen as a transformative technology, providing unparalleled flexibility, scalability, and 

programmability in the administration of networks. Through the separation of the data plane from the control 

plane, SDN facilitates centralized network control, dynamic resource allocation, and swift service 

provisioning. However, despite its numerous advantages, SDN faces critical challenges when it comes to 

ensuring optimal QoS for diverse services and applications. The primary objective of QoS in SDN is to 

guarantee reliable and predictable network performance, encompassing factors such as latency, bandwidth 

allocation, packet loss, and overall service availability.  

Achieving and maintaining optimal QoS levels in SDN networks is a complex task that requires 

addressing various challenges, with one of the key challenges being the controller placement problem (CPP). 

The CPP entails strategically positioning controllers within the network to effectively manage and control 

network traffic [10]. As an non-deterministic polynomial-time hardness (NP-hard) problem, finding an 

optimal solution for the CPP becomes computationally demanding, especially in large-scale SDN 

deployments. The placement of controllers directly impacts QoS-related parameters, including reliability, 

scalability, consistency, and load balancing. Consequently, thorough investigation and analysis of the CPP 

and its implications on QoS performance are essential to design efficient SDN architectures. This paper 

presents an in-depth and evaluative analysis of the obstacles within SDN and the CPP with the aim of 

improving QoS in SDN networks. The controllers in SDN networks play a crucial role in maintaining QoS by 

possessing a comprehensive network perspective, necessitating their proper placement. Challenges arising 

from controllers that can influence QoS encompass aspects like network security, network management, 

resource utilization, network programmability, and network service management. These challenges can be 

mitigated by addressing reliability, scalability, consistency, and load-balancing concerns within the SDN 

framework [11]–[14]. 

SDN has gained significant attention as a promising research area in modern computer network 

communication. However, one of the primary challenges within this field is achieving QoS in terms of 

controller management. Deploying controllers effectively becomes increasingly difficult in large-scale 

networks, posing challenges related to scalability and reliability, which are crucial for ensuring QoS 

inprogrammable networks.  

To address these challenges, researchers are actively investigating various aspects. They aim to 

determine the optimal number of controllers required for an SDN infrastructure, identify suitable deployment 

locations for these controllers, and establish efficient communication between the controllers and attached 

devices [15]. This research aims to overcome these obstacles and provide answers to fundamental questions 

surrounding controller management in SDN.  

This paper focuses on discussing the main objectives within this research domain, utilizing a 

taxonomy approach. By examining these aspects, the paper aims to contribute to the understanding and 

improvement of QoS in SDN networks, ultimately enhancing the overall performance and efficiency of 

programmable networks. The structure of the remaining paper is as follows: section 2, presents the 

architectural foundations of SDN and a summary of existing open-source controller platforms and 

architectural issues related to them. Section 3 explores the research challenges associated with enhancing 

QoS in SDN networks that utilize multiple controllers. Finally, section 4 concludes the paper, summarizing 

the key findings and implications. 

 

 

2. SDN ARCHITECTURE AND CONTROLLER PLATFORMS: AN OVERVIEW 

2.1.  Architecture of software-defined-networking 

SDN is a network architecture that introduces a novel approach to network management and control 

[16], [17]. Unlike traditional network architectures, SDN separates the control plane from the data plane, 

thereby enabling centralized control and programmability of the entire network [18]. The architecture of a 

SDN network is composed of three layers: the application layer, the control layer, and the infrastructure 

layer. Each layer plays a distinct role in the functioning and management of an SDN network as shown  

in Figure 1. 
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Figure 1. Standard SDN architecture 

 

 

2.1.1. Application layer 

The application layer is the topmost layer of the SDN architecture and encompasses the 

applications, services, and network management tools that leverage the capabilities provided by SDN.  

This layer includes a wide range of network applications such as load balancing, traffic engineering, security, 

and QoS management. These applications interact with the SDN controller through well-defined interfaces to 

request network services and configure network behavior. 

 

2.1.2. The control layers 

The control layer is the central intelligence of the SDN architecture. It comprises the SDN 

controller, which acts as the brain of the network. The controller communicates with the application layer and 

the infrastructure layer to orchestrate network behavior. Its primary function is to receive high-level 

instructions and policies from the applications in the application layer and translate them into low-level 

network configurations. The control layer is responsible for tasks such as topology discovery, network 

monitoring, and path computation. It maintains a global view of the network, making it possible to 

dynamically configure and manage network resources. The controller enforces network-wide policies, 

handles network events, and distributes the appropriate instructions to the infrastructure layer switches. 

 

2.1.3. Infrastructure layer 

The infrastructure layer forms the foundation of the SDN architecture and comprises the physical 

and virtual network devices, such as switches, routers, and gateways. These devices make up the data plane, 

responsible for forwarding data packets within the network. In an SDN network, the infrastructure layer 

switches are typically simpler in nature compared to traditional network devices. 

 

2.1.4. The northbound interface 

This interface serves as a mediator for communication between the upper and middle planes, as well 

as management and control entities. It facilitates the transmission of instructions from the application plane to 

the controllers. At present, OpenFlow is widely recognized as the prevailing southbound application 

programming interface (API), while a standardized northbound API is yet to be established. As the 

development of use cases is still ongoing, it may be premature to define a definitive standard for the 

northbound API. However, it is anticipated that a common northbound API will emerge as SDN continues to 

evolve. To fully harness the capabilities of SDN, it is crucial to have an abstraction layer that allows 

applications applications to operate independently of particular implementations. 

 

2.1.5. The southbound interface 

The southbound interface (SBI) plays a vital role as a communication mediator between the control 

layer and the infrastructure layer. It effectively facilitates the decoupling of these two layers through the 

utilization of the OpenFlow protocol. Additionally, the southbound API supports various functionalities and 

protocol plugins like simple network management protocol (SNMP), border gateway protocol (BGP), and 

network configuration protocol (NetConf). These plugins enable the controller to manage both recently added 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 951-959 

954 

and pre-existing physical or virtual devices using southbound APIs like OpenFlow, OpFlex, OpenState, and 

protocol-oblivious forwarding (POF). Currently, OpenFlow is commonly acknowledged as the standard for 

the SBI in SDN systems. 

 

2.1.6. OpenFlow protocol 

The OpenFlow protocol is a key enabler of SDN, providing a standardized interface for 

communication between the SDN controller and network devices. It defines how the controller can program 

forwarding rules on network switches or routers, enabling centralized control over network flows [19]. 

OpenFlow operates on a simple premise: the controller maintains a flow table on each network device, which 

contains flow entries specifying how to handle specific types of traffic. When a packet arrives at a network 

device, it is matched against the flow table, and the corresponding action is taken as per the flow entry 

instructions. This dynamic forwarding behavior allows the controller to control traffic flows, implement QoS 

policies, and respond to network events in real-time [20]. 

 

2.2.  Comparison of SDN controllers and architectural issues 

2.2.1. Open source controllers platforms: enhancing QoS 

A wide range of SDN controllers, both open source and commercial, are readily available. These 

controllers offer distinct features tailored to specific applications. Broadly speaking, controllers can be 

categorized as either distributed or centralized. Centralized controllers consolidate the logic of the control 

plane in a single location; however, they frequently encounter scalability issues owing to restricted capacity. 

On the other hand, distributed controllers do not encounter scalability issues and provide superior 

performance, particularly under high traffic loads. Table 1 provides a concise comparison of various 

controllers based on their distinct features. Beacon [21] is an open-source controller known for its focus on 

scalability and high-performance networking. Built using Java and employing the OpenFlow communication 

protocol. It prioritizes QoS parameters such as latency management and bandwidth allocation, ensuring 

efficient resource utilization and network responsiveness.Beehive [22] is a controller that emphasizes fault 

tolerance and scalability. It employs distributed architectures to handle large-scale networks, enabling 

seamless scalability and ensuring uninterrupted network operation. DCFabric [23] is a controller designed for 

data center networks. It excels in QoS parameters such as bandwidth allocation and latency management, 

facilitating optimized data transmission and efficient resource utilization within data center environments. 

Faucet [24] is an open-source SDN controller that emphasizes network security and QoS enforcement. It 

allows for fine-grained control over network flows, enabling administrators to prioritize and allocate 

resources based on QoS requirements. FloodLight [25] is a widely used and extensible SDN controller. It 

offers comprehensive support for QoS parameters, including bandwidth allocation, latency management, and 

load balancing. FloodLight provides a flexible platform for deploying QoS-aware network. 

FlowVisor [26] is a controller that focuses on network slicing and resource isolation. It enables the 

creation of virtual networks with dedicated QoS parameters, allowing for customized resource allocation and 

isolation for different network slices. Kandoo [27] is a controller designed for multi-tenant environments.  

It ensures QoS by providing isolation and resource allocation mechanisms for different tenants, enabling 

efficient management and control of network resources. Loom [28] is programmed in Java, Loom 

emphasizes QoS parameters such as scalability, fault tolerance, and network management. Maestro [29] is a 

controller that prioritizes scalability and fault tolerance. It employs distributed control plane architectures and 

advanced load balancing techniques to ensure high performance and QoS in large-scale networks. NOX [30] 

is an early SDN controller that offers flexibility and programmability. While it may lack some advanced QoS 

capabilities, it provides a foundation for developers and researchers to investigate and incorporate features 

related to QoS. Onix [31] is a controller known for its focus on network programmability and flexibility.  

It enables the deployment of customized QoS policies and allows for fine-grained control over network 

behavior. 

Open network operating system (OnoS) [32] is an open-source controller that supports QoS 

parameters such as latency management, bandwidth allocation, and network reliability. It offers a modular 

architecture, allowing for easy integration and customization of QoS-related features. OpenContrail [33] is a 

controller specifically designed for SDN in cloud environments. It emphasizes network virtualization and 

QoS-aware resource allocation to ensure optimal performance and isolation for different cloud tenants. 

OpenDaylight [34] is a widely adopted open-source SDN controller that provides extensive support for QoS 

parameters. It offers a modular and customizable framework, enabling the implementation of various QoS-

related features and applications. OpenMUL [35] is an open-source controller designed for multi-layer 

networks. It focuses on QoS parameters such as bandwidth allocation, latency management, and network 

reliability, ensuring efficient resource utilization across multiple network layers. POX [36] is a lightweight 

and extensible SDN controller. While it may lack some advanced QoS capabilities out of the box, it provides 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Quality of services in software defined networking: challenges and controller … (Siham Aouad) 

955 

a foundation for developers to implement and customize QoS-related features based. RYU [37] written in 

Python and employing OpenFlow, RYU addresses QoS parameters such as flexibility, programmability, 

efficient network management, and the ability to develop custom applications. These controllers offer various 

features, programming language choices, and communication protocols, providing flexibility and enabling 

efficient management of QoS parameters in SDN environments. 

 

 

Table 1. SDN open source controller’s comparaison 
Controller 

name 

Architecture Multithreading Programming 

language 

Modularity Consistency Fault Scalability 

Beacon [21] Centralized Yes Java Fair No No Yes 

Beehive [22] Distributed 

Hierarchical 

Yes Go Good Yes No No 

DCFabric [23]  Centralized Yes C, Javascript Good Yes Yes Yes 

Faucet [24] Centralized Yes Python - Yes Yes Yes 

FloodLight [25] Centralized Yes Java Fair Yes No Yes 

FlowVisor [26] Centralized  C - No No No 

Kandoo [27] Distributed 

Hierarchical 

Yes C, C++, Python High No No No 

Loom [28] Distributed Yes Erlang Good No   

Maestro [29] Centralized Yes Java Fair No No Yes 

NOX [30] Distributed Yes C++ Good No No Limited 

Onix [31] Distributed Yes C++ Good No Yes Yes 

ONoS [32] Distributed  Yes Java High Yes Yes Yes 

OpenContrail 

[33] 

Centralized Yes C, C++, Python High Yes No Yes 

OpenDaylight 

[34] 

Distributed Yes Java High Yes No Yes 

OpenMUL [35] Centralized Yes C High No No Yes 

POX [36] Centralized No Python Low No No Yes 

RYU [37] Centralized Yes Python Fair Yes No Yes 

 

 

2.2.2. Architectural issues in controller-based SDN networks 

Architetural issues play a essential role in the design and implementation of controller-based SDN 

networks. With the advent of SDN, network architectures have undergone significant transformations, 

offering enhanced programmability, flexibility, and control. However, the architectural decisions in 

controller-based SDN networks can impact the QoS delivered to network applications and users. Enhancing 

network performance remains a subject of ongoing research, focusing on both the design and placement of 

controllers. Additional concerns such as adaptability, scalability, latency, security, and consistency also hold 

significant importance [14]. 

 

2.2.3. Scalability and resource management  

Scalability is a key architectural challenge in controller-based SDN networks. As the network 

expands in complexity and size, the controller’s capacity to handle an increasing number of network devices 

and flows becomes critical. Effective resource management techniques, such as load balancing, distribution 

of control plane functions, and intelligent allocation of computational resources, are necessary to maintain 

scalability and ensure optimal QoS [38], [39]. 

 

2.2.4. Centralized administration 

Within the realm of SDN, the advent of a centralized control plane necessitates a heightened focus 

on effective administration and management. This shift brings forth architectural challenges, requiring the 

development of a robust and scalable framework for the centralized management of the network.  

This framework must address multifaceted aspects, encompassing configuration management to ensure 

network elements are appropriately set up, policy enforcement for maintaining compliance with defined 

rules, security measures to safeguard against potential threats, and comprehensive system monitoring to track 

and optimize overall performance. Successfully navigating these challenges is imperative to harness the full 

potential of SDN, ensuring not only the efficient execution of network tasks but also the resilience and 

security of the network infrastructure as a whole [40]. 

 

2.2.5. Controller placement problem 

Determining the optimal placement of controllers in an SDN network is a critical architectural issue. 

Placing controllers strategically across the network can impact the overall efficiency, scalability, and fault 
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tolerance of the system. Finding the right balance between the location and number of controllers is crucial 

for efficient network management [41], [15]. 

 

2.2.6. Controller inconsistency 

In expansive SDN deployments featuring multiple controllers, the imperative of ensuring 

consistency and synchronization between these controllers emerges as a pronounced architectural challenge. 

The coordination of state and policies across distributed controllers demands meticulous attention to maintain 

a cohesive and unified perspective of the network. This challenge becomes particularly formidable in the face 

of dynamic network changes or policy updates, where the need for real-time coordination intensifies. 

Addressing this issue necessitates the development of robust mechanisms for communication and 

synchronization, enabling controllers to seamlessly exchange information and collectively adapt to evolving 

network conditions. In essence, the effectiveness of SDN in large-scale deployments hinges on the ability to 

overcome these challenges, ensuring not only the consistency of network-wide policies but also the 

responsiveness of the entire SDN ecosystem to dynamic shifts in network behavior [42]. 

 

2.2.7. Communication protocol 

In the realm of SDN architectures, the establishment of efficient and reliable communication protocols 

among controllers stands as a cornerstone for ensuring seamless operation and effective coordination [40].  

This imperative extends to the challenge of designing a robust protocol capable of facilitating the efficient 

exchange of control information, timely event notification, and seamless synchronization between diverse 

controllers. The choice and implementation of such a protocol significantly influence the overall performance 

and responsiveness of the SDN environment. Successfully addressing this architectural challenge is pivotal in 

cultivating a network infrastructure that can adapt dynamically to changing conditions, fostering an agile and 

responsive communication framework among controllers [41], [42]. 

 

2.2.8. Multiple controller scheduling 

In scenarios where multiple controllers are involved in the orchestration of SDNs, the effective 

coordination of tasks and the distribution of workloads among these controllers become critical architectural 

considerations. Efficient load balancing, which involves the distribution of network tasks evenly among 

controllers, is essential to prevent bottlenecks and optimize overall system performance. Moreover, effective 

task allocation ensures that each controller is assigned responsibilities in a manner that leverages its specific 

capabilities, contributing to optimal resource utilization. This intricate balance in workload distribution and 

resource allocation is indispensable for achieving high-performance, fault-tolerant, and scalable SDN 

environments, where the seamless operation of distributed controllers is paramount to the network’s overall 

reliability and efficiency [42]. 

 

 

3. RESEARCH CHALLENGES: IMPROVING QOS IN MULTIPLE CONTROLLER SDN 

NETWORKS 

Although research in SDN has contributed to the improvement of QoS, there is still a need for 

further investigation in this area. The two major challenges that require more research efforts are efficient 

controller placement and network reliability. According to surveys, the following are the research challenges 

aimed at enhancing QoS in multiple controller SDN networks: 

 QoS-aware controller placement: designing algorithms and frameworks for optimal placement of 

controllers in multiple controller SDN architectures to enhance QoS provisioning. This involves 

considering factors such as network topology, traffic patterns, and QoS requirements to ensure efficient 

control and management [43]. 

 Distributed QoS management: developing mechanisms for distributed QoS management across multiple 

controllers to maintain consistent QoS policies and ensure seamless communication and coordination. 

Addressing challenges related to synchronization, consistency, and policy enforcement across distributed 

controllers is crucial for effective QoS provisioning. 

 Load balancing and task allocation: designing intelligent load balancing and task allocation techniques to 

distribute the workload among multiple controllers [44]. This involves considering factors such as 

controller capabilities, network dynamics, and QoS requirements to optimize resource utilization and 

prevent overload situations [45]. 

 QoS monitoring and measurement: developing efficient methods for QoS monitoring and measurement in 

multiple controller SDN environments. This includes identifying appropriate QoS metrics, designing 

scalable monitoring frameworks, and analyzing QoS data to detect anomalies and proactively address 

performance degradation issues. 
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 Dynamic QoS adaptation: investigating adaptive QoS strategies that can dynamically adjust QoS 

parameters based on network conditions, traffic demands, and application requirements. This involves 

exploring techniques such as traffic engineering, bandwidth allocation, and congestion control to optimize 

QoS performance in real-time. 

 QoS-aware traffic engineering: researching QoS-aware traffic engineering approaches to efficiently route 

traffic across the network, considering QoS requirements and resource availability. This includes 

developing algorithms that can dynamically adjust traffic paths to meet QoS objectives and mitigate 

congestion or performance bottlenecks. 

 Controller security: the security of an entire network can be compromised due to security vulnerabilities 

in an SDN controller [46]. To mitigate potential attacks such as spoofing, tampering, denial of service 

(DoS) [47][49], and privilege elevation, it is essential to implement measures within the controller itself. 

These measures include processing an application permission framework, containment, and monitoring of 

resource utilization. By implementing these safeguards, the risks associated with security vulnerabilities 

can be minimized [50]. 

 

 

4. CONCLUSION AND PERSPECTIVES 

In conclusion, this paper has delved into the importance of QoS within the realm of controller 

management in SDN. QoS plays a crucial role in ensuring optimal network performance, reliability, and user 

satisfaction. The results of this investigation underscore the significance of effective controller management 

for improving QoS provisioning in SDN environments. Throughout the paper, various research challenges 

and considerations regarding QoS in controller management have been identified and discussed. The issues 

of controller placement, synchronization, load balancing, and dynamic adaptation have emerged as critical 

areas that demand further investigation. Looking ahead, several promising research perspectives emerge in 

the domain of QoS and controller management in SDN. Researchers can explore and develop advanced QoS 

algorithms that consider not only traditional QoS metrics but also factors such as network dynamics, 

application requirements, and user preferences. This can enable more dynamic and personalized QoS 

provisioning in SDN environments. Moreover, incorporating artificial intelligence (AI) and machine learning 

(ML) techniques into SDN can reveal the new opportunities for optimizing QoS. AI-based approaches can 

enhance decision-making processes, traffic engineering, and proactive QoS management in real-time, leading 

to improved network performance. Furthermore, investigating autonomous management techniques, where 

SDN controllers have self-configuring, self-optimizing, and self-healing capabilities, can revolutionize QoS 

provisioning. Autonomous decision-making can adapt to network changes, resolve issues promptly, and 

maintain desired QoS levels. 
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