
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 33, No. 2, February 2024, pp. 951~959

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v33.i2.pp951-959  951

Journal homepage: http://ijeecs.iaescore.com

Quality of services in software defined networking: challenges

and controller placement problems

Siham Aouad1, Issam El Meghrouni2, Yassine Sabri3, Adil Hilmani2, Abderrahim Maizate2
1Smart Systems Laboratory, National School of Computer Science and Systems Analysis, Mohamed V University, Rabat, Morocco

2RITM-ESTC/CED-ENSEM, Hassan II University, Casablanca, Morocco
3Laboratory of Innovation in Management and Engineering for Enterprise (LIMIE),

ISGA Institut Supérieur d’Ingénierie and des Affaires, Rabat, Morocco

Article Info ABSTRACT

Article history:

Received Jul 16, 2023

Revised Nov 9, 2023

Accepted Dec 9, 2023

 Quality of service (QoS) is pivotal for ensuring effective and reliable

network performance, yet achieving end-to-end QoS within current network

architectures remains a persistent challenge. The emergence of software
defined networking (SDN) addresses limitations in traditional networking by

offering a centralized control plane. This allows dynamic resource

management and efficient enforcement of QoS policies by network

administrators. However, the controller placement problem (CPP) within
SDN poses a significant challenge, as identifying the optimal placement of

controllers is a non-deterministic polynomial-time hardness (NP-hard)

problem. Researchers are actively working on solutions to address this

challenge, especially in large-scale networks where deploying controllers
becomes complex. Additionally, maintaining QoS in terms of controller

management presents another hurdle. This paper explores these challenges,

delving into the literature and providing a comprehensive analysis of

controller performance metrics related to QoS parameters such as load
balancing, reliability, consistency, and scalability. By addressing these

challenges, the research aims to enhance QoS within the SDN framework.

Keywords:

Controller

Inconsistency

Load balancing

Quality of service

Scalability

Software defined networking

This is an open access article under the CC BY-SA license.

Corresponding Author:

Siham Aouad

Smart Systems Laboratory, National School of Computer Science and Systems Analysis

Mohamed V University

Madinat Al Irfane, Rabat, Marocco

Email: siham.aouad@ensias.um5.ac.ma

1. INTRODUCTION

Quality of service (QoS) is crucial for ensuring efficient and reliable network performance by

providing differentiated treatment to various types of network traffic. Traditional networks have long relied

on QoS mechanisms to prioritize critical applications, manage bandwidth allocation, and control network

congestion. However, despite their widespread usage, these traditional networks often encounter significant

limitations when it comes to achieving optimal QoS levels. A significant drawback of QoS in conventional

networks stems from the absence of detailed control and adaptability. These networks typically implement

QoS mechanisms at the router or switch level, relying on basic prioritization schemes such as integrated

services (IntServ) [1] and differentiated services (DiffServ) [2] or however, these mechanisms often lack the

ability to provide fine-grained control over individual flows or applications, resulting in suboptimal

allocation of network resources [3][7]. Multi-protocol label switching (MPLS) [8] is utilized to simplify

routing table lookups through the implementation of labeling techniques. Nevertheless, it is statically

configured without the capability for real-time reconfiguration and adaptability. Another significant

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 951-959

952

limitation is scalability. Traditional networks struggle to maintain consistent QoS levels as network traffic

increases or changes dynamically. The scalability issue becomes more pronounced when accommodating

high-bandwidth applications, multimedia streaming, or the proliferation of internet of things (IoT) devices,

all of which demand efficient QoS management. With the emergence of software defined networking (SDN)

[9], a potential solution arises to address these issues and open up avenues for the development of novel QoS

frameworks.

SDN has arisen as a transformative technology, providing unparalleled flexibility, scalability, and

programmability in the administration of networks. Through the separation of the data plane from the control

plane, SDN facilitates centralized network control, dynamic resource allocation, and swift service

provisioning. However, despite its numerous advantages, SDN faces critical challenges when it comes to

ensuring optimal QoS for diverse services and applications. The primary objective of QoS in SDN is to

guarantee reliable and predictable network performance, encompassing factors such as latency, bandwidth

allocation, packet loss, and overall service availability.

Achieving and maintaining optimal QoS levels in SDN networks is a complex task that requires

addressing various challenges, with one of the key challenges being the controller placement problem (CPP).

The CPP entails strategically positioning controllers within the network to effectively manage and control

network traffic [10]. As an non-deterministic polynomial-time hardness (NP-hard) problem, finding an

optimal solution for the CPP becomes computationally demanding, especially in large-scale SDN

deployments. The placement of controllers directly impacts QoS-related parameters, including reliability,

scalability, consistency, and load balancing. Consequently, thorough investigation and analysis of the CPP

and its implications on QoS performance are essential to design efficient SDN architectures. This paper

presents an in-depth and evaluative analysis of the obstacles within SDN and the CPP with the aim of

improving QoS in SDN networks. The controllers in SDN networks play a crucial role in maintaining QoS by

possessing a comprehensive network perspective, necessitating their proper placement. Challenges arising

from controllers that can influence QoS encompass aspects like network security, network management,

resource utilization, network programmability, and network service management. These challenges can be

mitigated by addressing reliability, scalability, consistency, and load-balancing concerns within the SDN

framework [11]–[14].

SDN has gained significant attention as a promising research area in modern computer network

communication. However, one of the primary challenges within this field is achieving QoS in terms of

controller management. Deploying controllers effectively becomes increasingly difficult in large-scale

networks, posing challenges related to scalability and reliability, which are crucial for ensuring QoS

inprogrammable networks.

To address these challenges, researchers are actively investigating various aspects. They aim to

determine the optimal number of controllers required for an SDN infrastructure, identify suitable deployment

locations for these controllers, and establish efficient communication between the controllers and attached

devices [15]. This research aims to overcome these obstacles and provide answers to fundamental questions

surrounding controller management in SDN.

This paper focuses on discussing the main objectives within this research domain, utilizing a

taxonomy approach. By examining these aspects, the paper aims to contribute to the understanding and

improvement of QoS in SDN networks, ultimately enhancing the overall performance and efficiency of

programmable networks. The structure of the remaining paper is as follows: section 2, presents the

architectural foundations of SDN and a summary of existing open-source controller platforms and

architectural issues related to them. Section 3 explores the research challenges associated with enhancing

QoS in SDN networks that utilize multiple controllers. Finally, section 4 concludes the paper, summarizing

the key findings and implications.

2. SDN ARCHITECTURE AND CONTROLLER PLATFORMS: AN OVERVIEW

2.1. Architecture of software-defined-networking

SDN is a network architecture that introduces a novel approach to network management and control

[16], [17]. Unlike traditional network architectures, SDN separates the control plane from the data plane,

thereby enabling centralized control and programmability of the entire network [18]. The architecture of a

SDN network is composed of three layers: the application layer, the control layer, and the infrastructure

layer. Each layer plays a distinct role in the functioning and management of an SDN network as shown

in Figure 1.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Quality of services in software defined networking: challenges and controller … (Siham Aouad)

953

Figure 1. Standard SDN architecture

2.1.1. Application layer

The application layer is the topmost layer of the SDN architecture and encompasses the

applications, services, and network management tools that leverage the capabilities provided by SDN.

This layer includes a wide range of network applications such as load balancing, traffic engineering, security,

and QoS management. These applications interact with the SDN controller through well-defined interfaces to

request network services and configure network behavior.

2.1.2. The control layers

The control layer is the central intelligence of the SDN architecture. It comprises the SDN

controller, which acts as the brain of the network. The controller communicates with the application layer and

the infrastructure layer to orchestrate network behavior. Its primary function is to receive high-level

instructions and policies from the applications in the application layer and translate them into low-level

network configurations. The control layer is responsible for tasks such as topology discovery, network

monitoring, and path computation. It maintains a global view of the network, making it possible to

dynamically configure and manage network resources. The controller enforces network-wide policies,

handles network events, and distributes the appropriate instructions to the infrastructure layer switches.

2.1.3. Infrastructure layer

The infrastructure layer forms the foundation of the SDN architecture and comprises the physical

and virtual network devices, such as switches, routers, and gateways. These devices make up the data plane,

responsible for forwarding data packets within the network. In an SDN network, the infrastructure layer

switches are typically simpler in nature compared to traditional network devices.

2.1.4. The northbound interface

This interface serves as a mediator for communication between the upper and middle planes, as well

as management and control entities. It facilitates the transmission of instructions from the application plane to

the controllers. At present, OpenFlow is widely recognized as the prevailing southbound application

programming interface (API), while a standardized northbound API is yet to be established. As the

development of use cases is still ongoing, it may be premature to define a definitive standard for the

northbound API. However, it is anticipated that a common northbound API will emerge as SDN continues to

evolve. To fully harness the capabilities of SDN, it is crucial to have an abstraction layer that allows

applications applications to operate independently of particular implementations.

2.1.5. The southbound interface

The southbound interface (SBI) plays a vital role as a communication mediator between the control

layer and the infrastructure layer. It effectively facilitates the decoupling of these two layers through the

utilization of the OpenFlow protocol. Additionally, the southbound API supports various functionalities and

protocol plugins like simple network management protocol (SNMP), border gateway protocol (BGP), and

network configuration protocol (NetConf). These plugins enable the controller to manage both recently added

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 951-959

954

and pre-existing physical or virtual devices using southbound APIs like OpenFlow, OpFlex, OpenState, and

protocol-oblivious forwarding (POF). Currently, OpenFlow is commonly acknowledged as the standard for

the SBI in SDN systems.

2.1.6. OpenFlow protocol

The OpenFlow protocol is a key enabler of SDN, providing a standardized interface for

communication between the SDN controller and network devices. It defines how the controller can program

forwarding rules on network switches or routers, enabling centralized control over network flows [19].

OpenFlow operates on a simple premise: the controller maintains a flow table on each network device, which

contains flow entries specifying how to handle specific types of traffic. When a packet arrives at a network

device, it is matched against the flow table, and the corresponding action is taken as per the flow entry

instructions. This dynamic forwarding behavior allows the controller to control traffic flows, implement QoS

policies, and respond to network events in real-time [20].

2.2. Comparison of SDN controllers and architectural issues

2.2.1. Open source controllers platforms: enhancing QoS

A wide range of SDN controllers, both open source and commercial, are readily available. These

controllers offer distinct features tailored to specific applications. Broadly speaking, controllers can be

categorized as either distributed or centralized. Centralized controllers consolidate the logic of the control

plane in a single location; however, they frequently encounter scalability issues owing to restricted capacity.

On the other hand, distributed controllers do not encounter scalability issues and provide superior

performance, particularly under high traffic loads. Table 1 provides a concise comparison of various

controllers based on their distinct features. Beacon [21] is an open-source controller known for its focus on

scalability and high-performance networking. Built using Java and employing the OpenFlow communication

protocol. It prioritizes QoS parameters such as latency management and bandwidth allocation, ensuring

efficient resource utilization and network responsiveness.Beehive [22] is a controller that emphasizes fault

tolerance and scalability. It employs distributed architectures to handle large-scale networks, enabling

seamless scalability and ensuring uninterrupted network operation. DCFabric [23] is a controller designed for

data center networks. It excels in QoS parameters such as bandwidth allocation and latency management,

facilitating optimized data transmission and efficient resource utilization within data center environments.

Faucet [24] is an open-source SDN controller that emphasizes network security and QoS enforcement. It

allows for fine-grained control over network flows, enabling administrators to prioritize and allocate

resources based on QoS requirements. FloodLight [25] is a widely used and extensible SDN controller. It

offers comprehensive support for QoS parameters, including bandwidth allocation, latency management, and

load balancing. FloodLight provides a flexible platform for deploying QoS-aware network.

FlowVisor [26] is a controller that focuses on network slicing and resource isolation. It enables the

creation of virtual networks with dedicated QoS parameters, allowing for customized resource allocation and

isolation for different network slices. Kandoo [27] is a controller designed for multi-tenant environments.

It ensures QoS by providing isolation and resource allocation mechanisms for different tenants, enabling

efficient management and control of network resources. Loom [28] is programmed in Java, Loom

emphasizes QoS parameters such as scalability, fault tolerance, and network management. Maestro [29] is a

controller that prioritizes scalability and fault tolerance. It employs distributed control plane architectures and

advanced load balancing techniques to ensure high performance and QoS in large-scale networks. NOX [30]

is an early SDN controller that offers flexibility and programmability. While it may lack some advanced QoS

capabilities, it provides a foundation for developers and researchers to investigate and incorporate features

related to QoS. Onix [31] is a controller known for its focus on network programmability and flexibility.

It enables the deployment of customized QoS policies and allows for fine-grained control over network

behavior.

Open network operating system (OnoS) [32] is an open-source controller that supports QoS

parameters such as latency management, bandwidth allocation, and network reliability. It offers a modular

architecture, allowing for easy integration and customization of QoS-related features. OpenContrail [33] is a

controller specifically designed for SDN in cloud environments. It emphasizes network virtualization and

QoS-aware resource allocation to ensure optimal performance and isolation for different cloud tenants.

OpenDaylight [34] is a widely adopted open-source SDN controller that provides extensive support for QoS

parameters. It offers a modular and customizable framework, enabling the implementation of various QoS-

related features and applications. OpenMUL [35] is an open-source controller designed for multi-layer

networks. It focuses on QoS parameters such as bandwidth allocation, latency management, and network

reliability, ensuring efficient resource utilization across multiple network layers. POX [36] is a lightweight

and extensible SDN controller. While it may lack some advanced QoS capabilities out of the box, it provides

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Quality of services in software defined networking: challenges and controller … (Siham Aouad)

955

a foundation for developers to implement and customize QoS-related features based. RYU [37] written in

Python and employing OpenFlow, RYU addresses QoS parameters such as flexibility, programmability,

efficient network management, and the ability to develop custom applications. These controllers offer various

features, programming language choices, and communication protocols, providing flexibility and enabling

efficient management of QoS parameters in SDN environments.

Table 1. SDN open source controller’s comparaison
Controller

name

Architecture Multithreading Programming

language

Modularity Consistency Fault Scalability

Beacon [21] Centralized Yes Java Fair No No Yes

Beehive [22] Distributed

Hierarchical

Yes Go Good Yes No No

DCFabric [23] Centralized Yes C, Javascript Good Yes Yes Yes

Faucet [24] Centralized Yes Python - Yes Yes Yes

FloodLight [25] Centralized Yes Java Fair Yes No Yes

FlowVisor [26] Centralized C - No No No

Kandoo [27] Distributed

Hierarchical

Yes C, C++, Python High No No No

Loom [28] Distributed Yes Erlang Good No

Maestro [29] Centralized Yes Java Fair No No Yes

NOX [30] Distributed Yes C++ Good No No Limited

Onix [31] Distributed Yes C++ Good No Yes Yes

ONoS [32] Distributed Yes Java High Yes Yes Yes

OpenContrail

[33]

Centralized Yes C, C++, Python High Yes No Yes

OpenDaylight

[34]

Distributed Yes Java High Yes No Yes

OpenMUL [35] Centralized Yes C High No No Yes

POX [36] Centralized No Python Low No No Yes

RYU [37] Centralized Yes Python Fair Yes No Yes

2.2.2. Architectural issues in controller-based SDN networks

Architetural issues play a essential role in the design and implementation of controller-based SDN

networks. With the advent of SDN, network architectures have undergone significant transformations,

offering enhanced programmability, flexibility, and control. However, the architectural decisions in

controller-based SDN networks can impact the QoS delivered to network applications and users. Enhancing

network performance remains a subject of ongoing research, focusing on both the design and placement of

controllers. Additional concerns such as adaptability, scalability, latency, security, and consistency also hold

significant importance [14].

2.2.3. Scalability and resource management

Scalability is a key architectural challenge in controller-based SDN networks. As the network

expands in complexity and size, the controller’s capacity to handle an increasing number of network devices

and flows becomes critical. Effective resource management techniques, such as load balancing, distribution

of control plane functions, and intelligent allocation of computational resources, are necessary to maintain

scalability and ensure optimal QoS [38], [39].

2.2.4. Centralized administration

Within the realm of SDN, the advent of a centralized control plane necessitates a heightened focus

on effective administration and management. This shift brings forth architectural challenges, requiring the

development of a robust and scalable framework for the centralized management of the network.

This framework must address multifaceted aspects, encompassing configuration management to ensure

network elements are appropriately set up, policy enforcement for maintaining compliance with defined

rules, security measures to safeguard against potential threats, and comprehensive system monitoring to track

and optimize overall performance. Successfully navigating these challenges is imperative to harness the full

potential of SDN, ensuring not only the efficient execution of network tasks but also the resilience and

security of the network infrastructure as a whole [40].

2.2.5. Controller placement problem

Determining the optimal placement of controllers in an SDN network is a critical architectural issue.

Placing controllers strategically across the network can impact the overall efficiency, scalability, and fault

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 951-959

956

tolerance of the system. Finding the right balance between the location and number of controllers is crucial

for efficient network management [41], [15].

2.2.6. Controller inconsistency

In expansive SDN deployments featuring multiple controllers, the imperative of ensuring

consistency and synchronization between these controllers emerges as a pronounced architectural challenge.

The coordination of state and policies across distributed controllers demands meticulous attention to maintain

a cohesive and unified perspective of the network. This challenge becomes particularly formidable in the face

of dynamic network changes or policy updates, where the need for real-time coordination intensifies.

Addressing this issue necessitates the development of robust mechanisms for communication and

synchronization, enabling controllers to seamlessly exchange information and collectively adapt to evolving

network conditions. In essence, the effectiveness of SDN in large-scale deployments hinges on the ability to

overcome these challenges, ensuring not only the consistency of network-wide policies but also the

responsiveness of the entire SDN ecosystem to dynamic shifts in network behavior [42].

2.2.7. Communication protocol

In the realm of SDN architectures, the establishment of efficient and reliable communication protocols

among controllers stands as a cornerstone for ensuring seamless operation and effective coordination [40].

This imperative extends to the challenge of designing a robust protocol capable of facilitating the efficient

exchange of control information, timely event notification, and seamless synchronization between diverse

controllers. The choice and implementation of such a protocol significantly influence the overall performance

and responsiveness of the SDN environment. Successfully addressing this architectural challenge is pivotal in

cultivating a network infrastructure that can adapt dynamically to changing conditions, fostering an agile and

responsive communication framework among controllers [41], [42].

2.2.8. Multiple controller scheduling

In scenarios where multiple controllers are involved in the orchestration of SDNs, the effective

coordination of tasks and the distribution of workloads among these controllers become critical architectural

considerations. Efficient load balancing, which involves the distribution of network tasks evenly among

controllers, is essential to prevent bottlenecks and optimize overall system performance. Moreover, effective

task allocation ensures that each controller is assigned responsibilities in a manner that leverages its specific

capabilities, contributing to optimal resource utilization. This intricate balance in workload distribution and

resource allocation is indispensable for achieving high-performance, fault-tolerant, and scalable SDN

environments, where the seamless operation of distributed controllers is paramount to the network’s overall

reliability and efficiency [42].

3. RESEARCH CHALLENGES: IMPROVING QOS IN MULTIPLE CONTROLLER SDN

NETWORKS

Although research in SDN has contributed to the improvement of QoS, there is still a need for

further investigation in this area. The two major challenges that require more research efforts are efficient

controller placement and network reliability. According to surveys, the following are the research challenges

aimed at enhancing QoS in multiple controller SDN networks:

 QoS-aware controller placement: designing algorithms and frameworks for optimal placement of

controllers in multiple controller SDN architectures to enhance QoS provisioning. This involves

considering factors such as network topology, traffic patterns, and QoS requirements to ensure efficient

control and management [43].

 Distributed QoS management: developing mechanisms for distributed QoS management across multiple

controllers to maintain consistent QoS policies and ensure seamless communication and coordination.

Addressing challenges related to synchronization, consistency, and policy enforcement across distributed

controllers is crucial for effective QoS provisioning.

 Load balancing and task allocation: designing intelligent load balancing and task allocation techniques to

distribute the workload among multiple controllers [44]. This involves considering factors such as

controller capabilities, network dynamics, and QoS requirements to optimize resource utilization and

prevent overload situations [45].

 QoS monitoring and measurement: developing efficient methods for QoS monitoring and measurement in

multiple controller SDN environments. This includes identifying appropriate QoS metrics, designing

scalable monitoring frameworks, and analyzing QoS data to detect anomalies and proactively address

performance degradation issues.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Quality of services in software defined networking: challenges and controller … (Siham Aouad)

957

 Dynamic QoS adaptation: investigating adaptive QoS strategies that can dynamically adjust QoS

parameters based on network conditions, traffic demands, and application requirements. This involves

exploring techniques such as traffic engineering, bandwidth allocation, and congestion control to optimize

QoS performance in real-time.

 QoS-aware traffic engineering: researching QoS-aware traffic engineering approaches to efficiently route

traffic across the network, considering QoS requirements and resource availability. This includes

developing algorithms that can dynamically adjust traffic paths to meet QoS objectives and mitigate

congestion or performance bottlenecks.

 Controller security: the security of an entire network can be compromised due to security vulnerabilities

in an SDN controller [46]. To mitigate potential attacks such as spoofing, tampering, denial of service

(DoS) [47][49], and privilege elevation, it is essential to implement measures within the controller itself.

These measures include processing an application permission framework, containment, and monitoring of

resource utilization. By implementing these safeguards, the risks associated with security vulnerabilities

can be minimized [50].

4. CONCLUSION AND PERSPECTIVES

In conclusion, this paper has delved into the importance of QoS within the realm of controller

management in SDN. QoS plays a crucial role in ensuring optimal network performance, reliability, and user

satisfaction. The results of this investigation underscore the significance of effective controller management

for improving QoS provisioning in SDN environments. Throughout the paper, various research challenges

and considerations regarding QoS in controller management have been identified and discussed. The issues

of controller placement, synchronization, load balancing, and dynamic adaptation have emerged as critical

areas that demand further investigation. Looking ahead, several promising research perspectives emerge in

the domain of QoS and controller management in SDN. Researchers can explore and develop advanced QoS

algorithms that consider not only traditional QoS metrics but also factors such as network dynamics,

application requirements, and user preferences. This can enable more dynamic and personalized QoS

provisioning in SDN environments. Moreover, incorporating artificial intelligence (AI) and machine learning

(ML) techniques into SDN can reveal the new opportunities for optimizing QoS. AI-based approaches can

enhance decision-making processes, traffic engineering, and proactive QoS management in real-time, leading

to improved network performance. Furthermore, investigating autonomous management techniques, where

SDN controllers have self-configuring, self-optimizing, and self-healing capabilities, can revolutionize QoS

provisioning. Autonomous decision-making can adapt to network changes, resolve issues promptly, and

maintain desired QoS levels.

REFERENCES
[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An Architecture for differentiated services, RFC 2475, 1998.

[2] R. Braden, D. Clark, and S. Shenker, Integrated services in the internet architecture: an overview, RFC 2475, 1994.

[3] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz, “OverQoS: offering internet QoS using overlays,” Computer

Communication Review, vol. 33, no. 1, pp. 11–16, Jan. 2003, doi: 10.1145/774763.774764.

[4] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: high bandwidth data dissemination using an overlay mesh,” in

Proceedings of the nineteenth ACM symposium on Operating systems principles, Oct. 2003, pp. 282–297,

doi: 10.1145/945445.945473.

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control for unicast applications,” ACM SIGCOMM

Computer Communication Review, vol. 30, no. 4, pp. 43–56, Aug. 2000, doi: 10.1145/347057.347397.

[6] J. Yan, W. Muhlbauer, and B. Plattner, “Analytical framework for improving the quality of streaming over TCP,” IEEE

Transactions on Multimedia, vol. 14, no. 6, pp. 1579–1590, Dec. 2012, doi: 10.1109/TMM.2012.2187182.

[7] J. Yan, K. Katrinis, M. May, and B. Plattner, “Media-and TCP-friendly congestion control for scalable video streams,” IEEE

Transactions on Multimedia, vol. 8, no. 2, pp. 196–206, Apr. 2006, doi: 10.1109/TMM.2005.864265.

[8] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching architecture,” IETF RFC3031, p. 61, 2001.

[9] T. D. Nadeau and K. Gray, SDN: software defined networks. USA: O’Reilly Media, Inc., 2013.

[10] A. Shirmarz and A. Ghaffari, “Taxonomy of controller placement problem (CPP) optimization in software defined network

(SDN): a survey,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 12, pp. 10473–10498, Jan. 2021,

doi: 10.1007/s12652-020-02754-w.

[11] M. Karakus and A. Durresi, “Quality of service (QoS) in software defined networking (SDN): a survey,” Journal of Network and

Computer Applications, vol. 80, pp. 200–218, Feb. 2017, doi: 10.1016/j.jnca.2016.12.019.

[12] W. Wang, Y. Tian, X. Gong, Q. Qi, and Y. Hu, “Software defined autonomic QoS model for future Internet,” Journal of Systems

and Software, vol. 110, pp. 122–135, Dec. 2015, doi: 10.1016/j.jss.2015.08.016.

[13] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: a

comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015, doi: 10.1109/JPROC.2014.2374752.

[14] F. X. A. Wibowo, M. A. Gregory, K. Ahmed, and K. M. Gomez, “Multi-domain software defined networking: research status and

challenges,” Journal of Network and Computer Applications, vol. 87, pp. 32–45, Jun. 2017, doi: 10.1016/j.jnca.2017.03.004.

[15] A. K. Singh and S. Srivastava, “A survey and classification of controller placement problem in SDN,” International Journal of

Network Management, vol. 28, no. 3, Mar. 2018, doi: 10.1002/nem.2018.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 2, February 2024: 951-959

958

[16] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intellectual history of programmable networks,” Computer

Communication Review, vol. 44, no. 2, pp. 87–98, Apr. 2014, doi: 10.1145/2602204.2602219.

[17] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure and dependable software-defined networks,” in HotSDN 2013 -

Proceedings of the 2013 ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Aug. 2013, pp. 55–60,

doi: 10.1145/2491185.2491199.

[18] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A survey on the security of stateful SDN data planes,” IEEE

Communications Surveys and Tutorials, vol. 19, no. 3, pp. 1701–1725, 2017, doi: 10.1109/COMST.2017.2689819.

[19] N. McKeown et al., “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Computer Communication Review,

vol. 38, no. 2, pp. 69–74, Mar. 2008, doi: 10.1145/1355734.1355746.

[20] ONF, “OpenFlow switch specification version 1.4.1,” Open Network Foundation, p. 227, 2015.

[21] D. Erickson, “The Beacon OpenFlow controller,” in HotSDN 2013 - Proceedings of the 2013 ACM SIGCOMM Workshop on Hot

Topics in Software Defined Networking, Aug. 2013, pp. 13–18, doi: 10.1145/2491185.2491189.

[22] S. H. Yeganeh and Y. Ganjali, “Beehive: towards a simple abstraction for scalable software-defined networking,” in Proceedings

of the 13th ACM Workshop on Hot Topics in Networks, HotNets 2014, Oct. 2014, pp. 1–7, doi: 10.1145/2670518.2673864.

[23] “An open source SDN controller for cloud computing data centers,” GitHub, 2023. https://github.com/China863SDN/DCFabric.

[24] J. Bailey and S. Stuart, “Faucet: deploying SDN in the enterprise,” Communications of the ACM, vol. 14, no. 1, pp. 45–49, Oct.

2016, doi: 10.1145/3012426.3015763.

[25] “Project Floodlight,” danetsoft.com, 2023. http://data.danetsoft.com/projectfloodlight.org.

[26] R. Sherwood et al., “FlowVisor: a network virtualization layer,” Network, p. 15, 2009.

[27] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and scalable offloading of control applications,” in

HotSDN’12 - Proceedings of the 1st ACM International Workshop on Hot Topics in Software Defined Networks, Aug. 2012, pp.

19–24, doi: 10.1145/2342441.2342446.

[28] A. Kazarez, “LOOM Controller,” GitHub, 2023. https://github.com/FlowForwarding/loom.

[29] Z. Cai, A. Cox, and E. T. S. Ng, “Maestro: a system for scalable OpenFlow control,” Cs.Rice.Edu. p. 10, 2011.

[30] N. Gude, T. Koponen, J. Pettit, and B. Pfaff, “NOX : towards an operating system y for networks introduction,” ACM SIGCOMM

Computer Communication Review, vol. 38, no. 3, pp. 1–17, Jul. 2008, doi: 10.1145/1384609.1384625.

[31] T. Koponen et al., “Onix: a distributed control platform for large-scale production networks,” in 9th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 10), 2010, p. 14.

[32] P. Berde et al., “ONOS: towards an open, distributed SDN OS,” in HotSDN 2014 - Proceedings of the ACM SIGCOMM 2014

Workshop on Hot Topics in Software Defined Networking, Aug. 2014, pp. 1–6, doi: 10.1145/2620728.2620744.

[33] G. Ferro “Considering the future of Juniper’s contrail and OpenContrail/Tungsten,” packetpushers, 2018. packetpushers.net

https://packetpushers.net/considering-future-junipers-contrail-opencontrail-tungsten/.

[34] “OpenDaylight: a linux foundation collaborative project,” opendaylight.org, 2023. https://www.opendaylight.org/.

[35] D. Saikia, S. Kong, N. Malik, and D. Kim, “OpenMUL SDN platform,” openmul.org, 2023. http://www.openmul.org/openmul-

controller.html.

[36] “POX controller manual current documentation,” nexrepo.github.io, 2023. https://noxrepo.github.io/pox-doc/html/.

[37] A. A. Alashhab, M. S. M. Zahid, M. A. Azim, M. Y. Daha, B. Isyaku, and S. Ali, “A survey of low rate DDoS detection

techniques based on machine learning in software-defined networks,” Symmetry, vol. 14, no. 8, p. 1563, Jul. 2022, doi:

10.3390/sym14081563.

[38] B. J. van Asten, N. L. M. van Adrichem, and F. A. Kuipers, “Scalability and resilience of software-defined networking: an

overview,” arXiv preprint, Aug. 2014.

[39] S. H. Alnabelsi, H. A. B. Salameh, and Z. M. Albataineh, “Dynamic resource allocation for opportunistic software-defined IoT

networks: Stochastic optimization framework,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10,

no. 4, pp. 3854–3861, Aug. 2020, doi: 10.11591/ijece.v10i4.pp3854-3861.

[40] S. J. Rashid, A. M. Alkababji, and A. S. M. Khidhir, “Performance evaluation of software-defined networking controllers in wired

and wireless networks,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 21, no. 1, pp. 49–59, Feb.

2023, doi: 10.12928/TELKOMNIKA.v21i1.23468.

[41] M. H. H. Khairi, S. H. S. Ariffin, N. M. A. Latiff, and K. M. Yusof, “Generation and collection of data for normal and conflicting

flows in software defined network flow table,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS),

vol. 22, no. 1, pp. 307–314, Apr. 2021, doi: 10.11591/ijeecs.v22.i1.pp307-314.

[42] Y. Zhang, L. Cui, W. Wang, and Y. Zhang, “A survey on software defined networking with multiple controllers,” Journal of

Network and Computer Applications, vol. 103, pp. 101–118, Feb. 2018, doi: 10.1016/j.jnca.2017.11.015.

[43] H. H. Saleh, I. A. Mishkal, and D. S. Ibrahim, “Controller placement problem in software defined networks,” Indonesian Journal of

Electrical Engineering and Computer Science (IJEECS), vol. 27, no. 3, pp. 1704–1711, Sep. 2022, doi:

10.11591/ijeecs.v27.i3.pp1704-1711.

[44] I. Choukri, M. Ouzzif, and K. Bouragba, “Fault tolerant and load balancing model for software defined networking controllers,”

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 31, no. 1, pp. 378–385, Jul. 2023,

doi: 10.11591/ijeecs.v31.i1.pp378-385.

[45] C. Fancy and M. Pushpalatha, “Traffic-aware adaptive server load balancing for software defined networks,” International Journal of

Electrical and Computer Engineering (IJECE), vol. 11, no. 3, pp. 2211–2218, Jun. 2021, doi: 10.11591/ijece.v11i3.pp2211-2218.

[46] S. Aouad, I. El Meghrouni, Y. Sabri, A. Hilmani, and A. Maizate, “Security of software defined networks: evolution and

challenges,” International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 12, no. 3, pp. 384–391, Nov. 2023,

doi: 10.11591/ijres.v12.i3.pp384-391.

[47] B. Mladenov and G. Iliev, “Optimal software-defined network topology for distributed denial of service attack mitigation,”

Bulletin of Electrical Engineering and Informatics (BEEI), vol. 9, no. 6, pp. 2588–2594, Dec. 2020, doi: 10.11591/eei.v9i6.2581.

[48] H. Kamel and M. Z. Abdullah, “Distributed denial of service attacks detection for software defined networks based on

evolutionary decision tree model,” Bulletin of Electrical Engineering and Informatics (BEEI), vol. 11, no. 4, pp. 2322–2330, Aug.

2022, doi: 10.11591/eei.v11i4.3835.

[49] M. I. Kareem and M. N. Jasim, “Entropy-based distributed denial of service attack detection in software-defined networking,”

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 27, no. 3, pp. 1542–1549, Sep. 2022,

doi: 10.11591/ijeecs.v27.i3.pp1542-1549.

[50] S. Ahmad and A. H. Mir, “Scalability, consistency, reliability, and security in SDN controllers: a survey of diverse SDN

controllers,” Journal of Network and Systems Management, vol. 29, no. 1, p. 59, Nov. 2021, doi: 10.1007/s10922-020-09575-4.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Quality of services in software defined networking: challenges and controller … (Siham Aouad)

959

BIOGRAPHIES OF AUTHORS

Siham Aouad holds a Ph.D. in Computer Engineering from Mohammadia

School of Engineers EMI in 2014. She obtained her network engineering degree from the

National School of Applied Sciences ENSA Tangier in 2005. Currently, she works at the

department of communication networks at the National School of Computer Science and
Systems Analysis ENSIAS. Her research interests span across various areas including

wireless communications, WSN, smart cities, SDN, AI, virtualization, cloud computing,

and security. She can be contacted at email: siham.aouad@ensias.um5.ac.ma.

Issam El Meghrouni is currently a Ph.D. student in the RITM (Networks, IT,

Telecommunications and Multimedia) Laboratory at Hassan II University. Recognition

gesture, machine learning, and deep learning are among his research interests. He can be
contacted at email: magrouni@gmail.com.

Yassine Sabri was born on October 28, 1984, in Rabat, Morocco. He pursued

his Ph.D. in the field of WSN Technology at the Laboratory of Science and Technology. In
2013, he joined the Department of Science and Technology at ISGA Rabat, Morocco, as an

Assistant Professor. Yassine’s research interests encompass a broad range of topics,

including wireless sensor networks, evolutionary computation, internet of things (IoT), and

mobile computing. He can be contacted at email: yassine.sabri@isga.ma.

Adil Hilmani after completing his diploma in Network and
Telecommunication engineering from the University of Seville in Spain, he went on to

obtain his doctorate in computer engineering from ENSEM in Casablanca-Morocco in

2021. Currently, he serves as a professor at OFPPT in Kénitra, Morocco. His research

interests lie in the areas of mobile networks and computing, wireless sensor networks, and
embedded systems software for IoT. He can be contacted at email: adilhilmani@gmail.com.

Abderrahim Maizate after completing his diploma in Network and

Telecommunication engineering from the University of Seville in Spain, went on to obtain

his doctorate in computer engineering from ENSEM in Casablanca-Morocco in 2021.

Currently, he serves as a professor at OFPPT in Kénitra, Morocco. His research interests lie
in the areas of mobile networks and computing, wireless sensor networks, and embedded

systems software for IoT. He is a member of IEEE. He can be contacted at email:

maizate@outlook.com.

https://orcid.org/0009-0003-0024-5868
https://orcid.org/0000-0002-7039-5728
https://orcid.org/0000-0002-2083-5422
https://orcid.org/0000-0003-4930-9749
https://orcid.org/0000-0002-7992-4112

