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 A crucial element in detecting unusual network system behavior is the 

network intrusion detection system (NIDS), which also helps to stop network 

attacks from happening. Despite the fact that a great deal of machine learning 

techniques has been used in intrusion detection, current solutions still struggle 

to provide accurate classification results. Furthermore, when dealing with 

imbalanced multi-category traffic data, a single classifier may not be able to 

produce a superior. Particularly, internet of things (IoT) gadgets is now a 

commonplace aspect of life. On the other hand, some problems are becoming 

worse and lack clear remedies. Convergence, communication speed, and 

security between various IoT devices are among the primary concerns. In 

order to achieve this goal, an enhanced artificial bee colony technique utilizing 

binary search equations and neural networks—known as the (BABCN) 

algorithm for intrusion detection in terms of convergence and communication 

speed—is presented in this study. The artificial bee is improved by the depth-

first search framework and binary search equations upon which the BABCN 

method is based. The suggested approach has a good ability to detect 

intrusions in the network and enhances categorization, according to the 

findings obtained by using the NSL-KDD dataset. 
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1. INTRODUCTION 

The internet is now a part of almost every area of modern life, thus the number of devices connected 

to it is growing quickly. In particular, internet of things (IoT) devices are becoming more and more ubiquitous 

in daily life. But some problems are getting worse, and several researchers are also talking about how to fix 

them [1], [2]. Intrusion detection is a technology used in cloud and IoT security methods to locate, confirm, 

and stop unauthorised access to a computer network or internetwork. There are significant network 

confidentiality conflicts to be resolved because of the remarkable advancements in data technology. As a result, 

an intrusion detection system (IDS) is essential for ensuring network security [3]. IDS are categorised into 

multiple unique techniques. There are two main categories: active and inactive. Threats that are newly 

appearing cannot be handled by the conventional active IDS. Finding and differentiating between regular and 

anomalous network connections is one of the main obstacles in detecting intrusions because of the vast number 

of components and properties of this type of network. IDS is widely used to identify the location and mode of 

intrusions. To achieve real-time intrusion detection, the scientists thoroughly investigated a number of element 

https://creativecommons.org/licenses/by-sa/4.0/
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selection methodologies [4], [5]. Reducing the amount of features by choosing only the most important ones 

is a strong case for increasing the speed and accuracy of categorization algorithms. Machine learning 

algorithms are frequently used to identify different kinds of attacks, and they can help network administrators 

respond to attacks by pointing them in the direction of the most effective course of action. However, most of 

these traditional machine learning methods fall into the shallow learning category and necessitate a thorough 

feature extraction and selection process [6], [7]. Finding and differentiating between regular and anomalous 

network connections is one of the main obstacles in detecting intrusions because of the vast number of 

components and properties of this type of network. IDS is widely used to identify the location and mode of 

intrusions. The core element of an IDS is the classifier, which employs a detection algorithm to differentiate 

between incursion and regular activities. Implementing a classifier with an accurate detection mechanism can 

be challenging, particularly in networks of cloud computing and the Internet of Things that have a large number 

of devices [8], [9]. The functioning conditions and structure of IoT and CC integration are shown in Figure 1. 

 

 

 
 

Figure 1. Structure of CC and IoT [10] 

 

 

The remainder of this essay is organised as follows: information regarding related work is presented 

in section 2. The suggested method is covered in section 3, the parameters are covered in section 4. The results 

are shown in section 5, and the conclusion is discussed in Section 6. 

 

 

2. RELATED WORK 

Anomaly-based and signature-based intrusion detection approaches are the two primary categories. 

When using signature-based techniques, the system stores a number of preconfigured signatures that have been 

evaluated and shown to be effective against intrusion patterns. The algorithm also matches the activities 

performed with these patterns; if a pattern is detected, the action will be classified as an incursion. Of course, 

these methods are unable to detect zero-day or newly discovered threats. On the other hand, these methods 

excel at recognising identified hazards and their trends [11], [12]. Using anomaly-based techniques, a vision 

of typical activity is created, and an anomaly may then indicate an incursion. It is well knowledge that abnormal 

incursions are very difficult to identify since there is no predetermined routine for monitoring. An event is 
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usually considered abnormal if it happens much more or less often than a predetermined threshold [13], [14]. 

Certain AI techniques use tree-based algorithms, such as random forests and decision trees, to create a 

framework for effectively identifying infiltration. A decision tree algorithm makes decisions in accordance 

with the problem's parameters one step at a time. To model an issue, a decision tree might not be enough in 

every situation. Consequently, random forest algorithms use many decision trees in order to increase the overall 

accuracy of decision-making. 

Awan et al. [15], B. Akay and D. Karaboga [16] has presented an anomaly-based method (IDSML) 

for software-defined networks that combines multiple different tree-based algorithms to improve detection 

performance. In other AI techniques, neural networks are used to precisely identify if a certain event resembles 

recognised patterns. Networks of neurons are composed of several interconnected nodes with pattern 

recognition skills. Due to the numerous parameters involved in decision-making problems, computations in a 

neural network take a long time in [17], [18]. In several research, the main technique for detection has been 

neural networks. Karaboga developed the artificial bee colony algorithm in 2005 as a heuristic swarm 

intelligence system designed to mimic honeybee group behaviour. It was first developed to solve some 

numerical optimisation problems. The artificial bee colony algorithm (ABCA) was applied to multivariate 

function optimisation in [19] and contrasted with other techniques such as particle swarm optimisation (PSO) 

and genetic algorithm (GA). The outcomes demonstrate that ABC is the best algorithm out there. As opposed 

to that, the artificial bee colony algorithm is good at exploring the solution but suffers from exploitation and 

tends to settle into a local optimum. An improvement on the ABC method was presented with the GABC 

algorithm [20], which improves exploitation by incorporating information on the global optimal solution into 

the solution search equation. A method known as the multi-strategy ensemble artificial bee colony (MEABC) 

was proposed in [21]. Throughout the search process, a range of distinct solution search strategies coexist and 

vie for progeny in MEABC. When the MEABC technique is used for continuous optimisation problems, ABC 

performs noticeably better. DFSABC Elite, an artificial bee colony method with a depth-first design and Elite-

Guided Search Equations, was introduced in [22], [23]. The exploitability of the algorithm is enhanced by 

allocating more computational resources to the best possible solutions [24]. 

 

 

3. PROPOSED ALGORITHM  

The iterative, population-based ABC technique is a potent strategy for solving problems involving 

numerical optimisation. The previously referenced papers are [25]. For exploration, equations are more 

powerful than for exploitation. Furthermore, the convergence performance of the ABC method is not very 

good. To better balance exploration and exploitation, a Binary Search (BSF) architecture and two search 

equation solutions, as shown in (1), were therefore proposed in [26], [27]. The BSF procedure is employed to 

increase the algorithm's exploitability. When assigning more computing resources, the BSF framework can 

prioritise better solutions more highly. Training of the algorithm is accelerated by the search equations that 

keep the solution with the highest fitness value on each iteration [28], [29]. 

 

𝑉𝑖,𝑗 = 𝑋𝑒,𝑗 + 𝜙𝑒,𝑗 × (𝑋𝑒,𝑗 − 𝑋𝑘,𝑗) (1) 

 

𝑉𝑒,𝑗 =
1

2
(𝑋𝑒,𝑗 + 𝑋𝑏𝑒𝑠𝑡,𝑗) + 𝜙𝑒,𝑗 × (𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑘,𝑗) (2) 

 

Where the binary search solution and the current population were used to randomly select the solutions X_e 

and X_k, respectively. There is no equivalence between e and k. Right now, X_best is the best option. In the 

interval [-1, 1], there exist two random real numbers, i, j and e, j. The issue that the candidate solution search 

equation in paper [30], [31] has an excessively significant disruption to the search solution is addressed in 

paper [30] in an effort to better balance ABC's exploration and exploitation capacities. After that, a binary 

search equation is shown. For the accepted solutions and the candidate solutions, separate search equations 

should be applied. In the present population, X_k represents a randomly selected solution, and X_e represents 

a randomly selected solution from the solution for binary search. Terms e and k cannot be used interchangeably. 

As of right moment, the best choice is X_best. I, j and e, j are two random real variables in the interval [-1, 1]. 

In order to better balance ABC's exploration and exploitation capacities, the problem that the candidate solution 

search equation in paper [32] has an overly severe disruption to the search solution is addressed in article [20]. 

Next, a binary search equation is shown. For the accepted answers and the candidate solutions, separate search 

equations should be used [33], [34]. 

 

𝑃𝑖 =
𝑐1×𝑝𝑏𝑒𝑠𝑡𝑖+𝑐2×𝑔𝑏𝑒𝑠𝑡

𝑐1+𝑐2
 (3) 
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𝑋𝑖 = 𝑁 (
𝑔𝑏𝑒𝑠𝑡+𝑝𝑏𝑒𝑠𝑡𝑖

2
, 𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑏𝑒𝑠𝑡𝑖 ) (4) 

 

The Gaussian distribution in this case is denoted by N, the mean by gbest+ [pbest]_i, and the standard 

deviation by gbest, [pbest]_i. We utilise the Gaussian distribution in (3) to benefit from the data surrounding 

pbest and gbest. A similar Gaussian search equation is proposed [35], [36], based on (4). 

 

𝑉𝑒,𝑗 = 𝑁 (
𝑋𝑏𝑒𝑠𝑡,𝑗+𝑋𝑖,𝑗

2
, 𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑖,𝑗 ) (5) 

 

𝑉𝑒,𝑗 =  
1

2
(𝑋𝑒,𝑗 + 𝑋𝑏𝑒𝑠𝑡,𝑗) + 𝜙(𝑋𝑒,𝑗 + 𝑋𝑏𝑒𝑠𝑡,𝑗)  + 𝜙𝑒,𝑗(𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑒,𝑗) (6) 

 

𝑛𝑒𝑡𝑗 = ∑ 𝜔𝑖,𝑗𝜒𝑖 + 𝜃𝑖
𝑚
𝑖=1  (7) 

 

Finally, the neural network is trained using the back propagation method using the initial weight and 

threshold values produced by the BABCN algorithm. The back propagation method uses gradient descent in 

an attempt to reduce the training error. The neural network's parameters for network traffic intrusion detection 

will be determined by utilising the weights and thresholds that have the lowest training error [37], [38].  

The following are the working criteria for the neural network and suggested back propagation: After selecting 

a training sample of data, the weight values for the connections (ω_jk) between the hidden layer neurons and 

the output layer neurons and (ω_j) between the hidden layer neurons and the input layer neurons are generated 

at random. Create the j threshold values for the neurons in the hidden layer as well [39], [40]. 

 

𝑉𝑒,𝑗 =  
1

2
(𝑋𝑒,𝑗 + 𝑋𝑏𝑒𝑠𝑡,𝑗) + 𝜙(𝑋𝑒,𝑗 + 𝑋𝑏𝑒𝑠𝑡,𝑗)  + 𝜙𝑒,𝑗(𝑋𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑒,𝑗) (8) 

 

𝑛𝑒𝑡𝑗 = ∑ 𝜔𝑖,𝑗𝜒𝑖 + 𝜃𝑖
𝑚
𝑖=1  (9) 

 

𝑦𝑗 = 𝜗1(𝑛𝑒𝑡𝑗) (10) 

 

𝑛𝑒𝑡𝑘 = ∑ 𝜔𝑗𝑘𝑦𝑗 + 𝜃𝑘
ℎ
𝑗=1  (11) 

 

𝑍𝑘 = 𝜗2(𝑛𝑒𝑡𝑘) (12) 

 

The error of the neural network is evaluated using (8). If the mistake meets the requirements, in (9) 

and (10) are applied; if not, (11) and (12) are applied [41], [42]. 

 

𝐽(𝑤) =
1

2
∑ (𝑡𝑘 − 𝑧𝑘)𝑞

𝑘=1

2
 (13) 

 

In (13) and (14), when applied to the output layer and hidden layer, modify the threshold and weight 

values. The weight and threshold settings between the input layer and the hidden layer are changed using (15) 

[43], [44]. 

 

𝛻𝜔𝑗𝑘 = 𝜂(𝑡𝑘 − 𝑧𝑘)𝜗2′(𝑛𝑒𝑡𝑘)𝑦𝑗 (14) 

 

𝛻𝜃𝑘 = 𝜂(𝑡𝑘 − 𝑧𝑘)𝜗2′(𝑛𝑒𝑡𝑘) (15) 

 

𝛻𝜔𝑖,𝑗 = 𝜂[∑ 𝜔𝑗𝑘𝛿𝑘
𝑞
𝑘=1 ]𝜗1′(𝑛𝑒𝑡𝑗)𝜒𝑖 (16) 

 

𝛻𝜃𝑗 = 𝜂[∑ 𝜔𝑗𝑘𝛿𝑘
𝑞
𝑘=1 ]𝜗1′(𝑛𝑒𝑡𝑗) (17) 

 

𝛿𝑘 = −
𝜕𝐽

𝜕𝑛𝑒𝑡𝑘
= −

𝜕𝐽

𝜕𝑧𝑘

𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘
= (𝑡𝑘 − 𝑧𝑘)𝜗2′(𝑛𝑒𝑡𝑘) (18) 

 

The outcomes of (16) [45], [46] can be used to derive the new weight standards ω_ij and the new 

threshold values j between the input layer and the hidden layer, as well as the new weight values ω_jk and the 

new threshold values k between the hidden layer and the output layer. The new weight values ω_ij and the new 

threshold values j between the input layer and the hidden layer, as well as the new weight values ω_jk and the 
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new threshold values k between the hidden layer and the output layer, may be recovered after learning the 

findings from (17) [47], [48]. 

 

𝑓𝑖𝑡𝑖 = {
1+ 𝑓(𝑋𝑖) 𝑓(𝑋𝑖)<0

1

1+𝑓(𝑋𝑖)
𝑓(𝑋𝑖)≥0

 (19) 

 

With the adjusted weight and threshold values, rerun step and (18). If the fault matches the 

specifications, end the training process. If not, use the current weights and thresholds as neural work input 

signals to retrieve the pertinent output signal from the neural network. The loss function of a neural network 

(19), is the target function of (18). Determine the appropriate max cycle number (MCN) [49], [50]. 

 

 

4. EVALUATION METRICS 

The following evaluation parameters are measured in this paper, which are as (20). 

 

𝐴𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (20) 

 

Accuracy (AC) is defined by (20) as the proportion of samples that have been correctly identified to all samples 

(41) [45]. 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (21) 

 

The true positive rate (TPR), which is the percentage of correctly identified anomaly samples over all anomaly 

samples, is equal to the detection rate (DR) [51], [52]. 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (22) 

 

The ratio of the total number of normal samples to the number of normal samples that were incorrectly labeled 

as anomaly samples is known as the false positive rate (FPR) [53]. 

 

 

5. RESULTS AND DISCUSSION 

The multiclass classification results are compared with the suggested algorithm in Table 1 and Figure 

1 present the result of different paramaters are used and these parameters are used in testing process for different 

purpose section. Comparing the correctness of the model constructed with all the features and the 13 features 

that were chosen is the main goal of the modelling stage as it is presented in the Intrusion Detection System. 

The accuracy comparison between all features and 13 features using a Decision Tree classifier is displayed in 

the accompanying Figure 1. 

 

 

Table 1. Shows the results of different parameters in classification 
Algorithm AUC DDOS AUC DOS AUC reconnaissance Auc normal AUC theft 

Mlp algorithm 0.98 0.98 0.99 1 0.96 

Abc algorithm 0.98 0.98 0.99 1 0.92 
Bat algorithm 0.96 0.95 0.98 1 0.93 

Proposed BABCN algorithm 0.98 0.98 0.98 1 0.97 

 

 

Selecting a model's threshold gives rise to categorization problems. Table 1 lists the two ROC curve 

parameters: the rate of false positives and the true positives. The strongest predictor of a model when it comes 

to selecting which data to use for classification analysis is its area under the curve (AUC). One example of its 

application is the ROC curve. In this instance, the true positive rate and false positive rate are contrasted.  

Table 2 and Figures 2-3 shows the overall good performance of the RF for multiclass classification. 

A receiver operating characteristic (ROC) curve shows the performance measurement instrument. 

Selecting a model's threshold gives rise to categorization problems. This ROC curve has two parameters: the 

rate of false positives and the true positives. The results for a 32-batch operation are shown in Table 2. In this 

instance, as the number of study epochs rose, the mean accuracy of the proposed BABCN algorithm classifier 
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decreased. The accuracy dropped as the number of epochs rose from 10 to 32. The batch operation of several 

algorithms is shown in Figure 4 and Table 3. 

 

 

Table 2. Metrics batch size 32 
Algorithm Epoch Mean accuracy Elapsed time 

MLP algorithm 10 0.98 0.99 

ABC algorithm 30 0.97 0.98 
Bat algorithm 27 0.83 0.94 

Proposed BABCN algorithm 32 0.99 0.97 

 

 

 
 

Figure 2. Different parameters in classification result 

  

 

 
 

Figure 3. Metrics batch size 32 

 

 

The results are shown in Tables 3 and 4 for batch sizes of 64 and 128. With an increase in study 

epochs, the proposed BABCN method classifier's mean accuracy appeared to rise. The BABCN somewhat 

decreased as the number of epochs climbed from 15 to 45, and then it increased at 45 epochs. Table 4 illustrates 

that a lower duration time may be achieved with a bigger batch size. Figure 5 and Table 4 shows the accuracy 

of several methods. 
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Table 3. Metrics batch size 128 
Algorithm Epoch Mean accuracy Elapsed time 

MLP algorithm 25 0.98 0.99 
ABC algorithm 35 0.97 0.99 

Bat algorithm 36 0.89 0.98 

Proposed BABCN algorithm 45 0.98.8 0.99 

 

 

 
 

Figure 4. Metrics batch size 128 

 

 

Table 4. Accuracy of different approaches 
Algorithm Epoch Mean Accuracy Elapsed Time 

MLP algorithm 35 0.98 0.99 
Bat algorithm 37 0.96 0.98 

ABC algorithm 40 0.98 0.99 

Proposed BABCN algorithm 49 0.99 0.99 

 

 

 
 

Figure 5. Accuracy of different approaches 

 

 

6. CONCLUSION 

In order to offer a thorough comparison and create more effective IDS, numerous other machine 

learning methods and feature selection strategies may be used in future research. Since the current IDS can 

only forecast known assaults, it can also be used to identify novel attacks in other scientific and technological 

domains. In this study, we examined several deep learning and machine learning methods on an Internet of 

Things network and compared them with our suggested methodology. We considered RF, CNN, MLP, and the 
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suggested BABCN algorithm analyses. CNN and random forests produced the greatest results in terms of 

multiclass classification accuracy and AUC. The accuracy increased marginally in trials with 128 batches but 

declined slightly in trials with 32 and 64 batches as more epochs were added. We also found that increasing 

the batch size accelerated the computation. Increasing the batch size by two could result in 1.3-2.4 times faster 

calculation for the proposed BABCN algorithm and 1.8-2.4 times faster computation for CNN. Our extended. 
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