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 In the last few years, the development of renewable energies has increased on 

a large scale. At least, to guarantee the security and stability of the 

photovolataic system's production, it is imperative that the photovoltaic 
modules exhibit a high level of reliability. Therefore, the development of an 

intelligent detection environment to enable the identification of defects in 

solar cells during manufacturing has become an important issue for the growth 

of the photovoltaic (PV) sector. This work proposed a fault diagnosis of 
surface solar cells using deep learning methods for computer vision, using the 

eighth version of the you only look once (YOLOv8) algorithm. This detection 

method was applied to a dataset of electroluminescence (EL) images 

containing twelve PV cell defects on a publicly available heterogeneous 
background. Then, using this dataset, we trained, validated, and tested the 

YOLOv8, YOLOv5 models. The results show that YOLOv8 provides a high 

level of accuracy in fault diagnosis compared with YOLOv5, and also 

improves the detection speed of the model. Indeed, the average precision 
achieves 90.5% This suggested approach ensures high accuracy in fault 

identification which demonstrates the effectiveness of computer vision to 

identify multi-object cell defects. 
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1. INTRODUCTION  

Renewable energy sources such as solar will play an increasingly critical role in future energy systems 

with rapid cost reductions and high availability [1]. Photovoltaic (PV) power plants make efficient use solar 

cell energy, facilitate grid management and improve the quality of electricity [2]. PV power plants are 

composed of several PV panels, whose reliability is essential for the stability and safety of the system. Many 

factors, such as solar cell manufacturing defects, have an impact on these modules’ efficiency.  

One of the main sources of PV module failure during PV system operation is the verification of the 

production quality of the solar cells. In factories, this control is performed by humans using electroluminescent 

(EL) image capture machines [3]; this causes errors while evaluating the production quality of these solar cells. 

Therefore, it has become crucial for the expansion of the PV industry to perform intelligent testing for these 

solar cells’ flaws and thus develop an intelligent detection environment. Intelligent detecting defects in solar 

cells is very important to ensure that these defective cells do not progress to the next step in the production 

chain. Cracks, fingers, short circuits, and printing faults with intricate interferences in the backdrop are some 
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of the most common manufacturing flaws on the cells that are currently recognized. Indeed, PV cells are 

susceptible to hot spots and short circuits while in use [4]. An EL image’s surface has a complex random 

texture backdrop, and the closeness between the background and defect edges makes it difficult to extract 

defect features [3]. The same goes for the line-like crack, and star-like crack defects, which are similar and 

sometimes overlap, which makes manual detection of defects in EL images complicated. In the literature, we 

can find basic methods to detect surface defects on solar cells, such as [5] which uses fourier image 

reconstruction, [6] used electronic speckle interference (ESPI). Then, the potential introduction of artificial 

intelligence (AI) in the energy sector has given a new alternative to solve the problems of solar cell fault 

detection. In fact, some works have proposed various methods of machine learning to resolve the problem of 

classification and detection fault; [7]–[9] have used machine learning and ensemble methods for the detection 

of different solar panel defects by electrical measurement, [10] they used deep neural networks and infrared 

images to detect a fault on the surface, [11]–[13] they used convolutional neural network (CNN) to detect 

hotspot. Du et al. [14] use CNN with 3 branches based on the transfer learning strategy to identify PV cell 

faults using eddy current thermography, Korkmaz and Acikgoz  [15] have also used the multi-scale CNN and 

the transfer-learning technique to detect 11 different PV module flaws. Chen et al. [16] proposed a fault 

diagnosis method that can determine the time and location of a fault occurrence in real time and with accuracy 

using a hybrid diagnostic engine. 

In recent years, the two-step algorithm has been improved, [17] proposed fast regional convolutional 

neural network (RCNN), by reducing the spatial pyramid pooling layer and thus imcresing the detection rate of 

RCNN, subsequently, a new two-stage detector light-head RCNN was proposed by Li et al. [18] in an attempt to 

speed up detection and simplify the network. Nevertheless, the fully connected layer of the conventional CNN 

model has a very large number of neurons, as well as the number of training parameters, and the ability to make 

generalizations is low, which is not recommended for real-time detection. As one-step neural network, the you-

only look-once (YOLO) algorithm outperforms the RCNN in terms of real-time detection speed; in fact, YOLO 

treats the entire image in one pass, making it faster and more efficient. Yin et al. [19] they introduce lightweight 

YOLO for fault detection, and [2] they have used residual network (ResNet) and methods to identify PV cells 

faults. 

YOLOv8 is the most recent version of YOLO that has surpassed all existing object detectors in terms 

of velocity and accuracy (accuracy of 56.8 mAP) [20]. In this research, the YOLOv8 algorithm was adopted 

for the diagnosis of solar cell surface defaults and applied to the photovoltaic electroluminescence dataset 

(PVED) to detect twelve types of defaults namely: scratches, cracks (line and star), printing errors, finger 

interruptions, thick lines, fragments, corners, horizontal dislocations, vertical dislocations, black cores, and 

short circuit defects, with 90.5% mean average precision compared to YOLOv5 detection algorithms; apart 

from enhancing diagnostic accuracy, the speed of pattern detection is significantly improved. As best we can 

tell, this is the first research to examine how the YOLOv8 algorithm can be used to detect surface defects on 

PV modules during factory production; the main contribution of this study is propose an improved approach 

to solar cell surface faults detection on YOLOv8. 

Using the suggested YOLOv8-based method, the accuracy of solar cell manufacturing flaw detection 

will be increased. The new technique has a number of benefits that will be helpful for learning and identifying 

the distinct traits of various flaws (12 defects have been highlighted), which may be challenging to identify 

using conventional methods. 

Real-time object detection is made possible via the YOLOv8 algorithm, which is renowned for its 

quickness. As a result, the suggested method is ideally suited for industrial applications, where precise defect 

detection is crucial for producing high-quality solar panels. The suggested solution can be more affordable than 

conventional defect detection techniques since it can be adopted with simple hardware equipements, 

eliminating the requirement for conventional, unreliable faults detection techniques. 

The dataset presents a diverse range of defects, 12 defects were highlighted. Our deep learning model 

collects essential data from large data sets to produce accurate predictions and reduce over-fitting. The other 

sections are organized as follows. In section 2 we expose the related work, and illustrates, specifies the detection 

framework of this paper YOLOv8 and YOLOv5, we introduce also the dataset ans instrument. Section 3 is 

devoted to presenting the results and engaging in detailed discussion, and section 4 concludes this article. 

 

 

2. METHOD 

This section of the paper provides an overview of the methodology employed in our research project. 

In order to identify and classify solar cell surface defects, we have chosen to use state-of-the-art computer 

vision techniques. More specifically, our approach involves the use of the YOLOv8 algorithms, which have 

demonstrated outstanding performance in object detection tasks; we will conduct a comparative analysis with 

YOLOv5. To ensure transparency and facilitate a thorough understanding of our research methodology,  

we will devote a significant part of this section to a detailed description of the experimental procedures 
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implemented throughout this study. This will include a meticulous description of each step, from data collection 

to training and model evaluation. In addition, before that, we will present a comprehensive literature review. 

This review will serve to highlight existing research and knowledge in the field of solar cell fault detection. 

 

2.1.  Literature review 

Many research studies on EL image defect detection focus on image classification or object detection: 

Akram et al. [21] suggest a classification by neural network architecture CNN using just four convolutional 

layers. Additionally, they apply data augmentation to increase the network’s robustness and reduce the size of 

the input image to save processing time. Tang et al. [22] have considered four classes of fault are seen to be 

the best solutions for categorizing flaws, and generative adversarial network (GAN) are utilized to produce a 

large enough database of photos and improve classification accuracy. Similarly, this classification technique 

has been used for fault detection in photovoltaic installations based on thermography and electroluminescence 

PV images. In wor [12], [13] to find hotspots, they used CNN, [14], [15], [23] utilize multi-scale and transfer 

learning techniques CNN. 

To increase the detection precision and location accuracy of solar cells surface defects, faster-RNN, 

efficientNet, and autoencoder are three deep learning technologies that [23] perfectly combine to create an end-

to-end deep learning pipeline, that locates and segments anomalies at the cell level of PV modules using EL 

images. Zhang et al. [24] developed a detection technique that integrates the output of faster RCNN, and RFCN. 

Recently, the use of novel object detection methods based on YOLO algorithms has drawn the attention of 

researchers, integrating visible and infrared images, applied YOLOv5 algorithm to detect module defects of 

PV plants [2], utilize YOLOv7 to diagnose photovoltaic modules faults in real-time [25], and in [25] they 

develop a YOLO-PV technique to detect defects in solar cell surfaces. 

Existing techniques have greatly shortened inspection times, but they still fall short of the 

requirements for inspection and the real-time processing of EL pictures. In some contexts, with high real-time 

requirements and delicate material resources, it is still challenging to apply. In addition, a significant number 

of false detections brought on by low accuracy substantially impair the dependability of the algorithms, and 

call for additional study and applications of new and recent algorithms like YOLOv8 to resolve this problem.  

 

2.2.  YOLOv5 algorithms  

YOLO is an algorithm that integrates the best features of ResNet, denseNet, and feature pyramid 

networks (FPN) to provide real-time object recognition [2]; The YOLO method uses CNNs to detect objects, 

the algorithm only needs one forward propagation through a neural network to do so. This means that the 

algorithm is run only once to make a prediction on the entire image as shown in Figure 1. 

YOLOv5, was published in February 2020; first backbone pulls the features from the CNN-generated 

input image, and the neck then controls the feature regression for the bounding box. The bounding box is then 

extended by the prediction portion. The predicted bounding boxes are then non-maximally suppressed (NMS) 

for 1-2 milliseconds for each image by YOLOv5 [26]. 

 

 

 
 

Figure 1. One stage detector architecture 

 

 

Dimension clusters are used as anchor boxes in the YOLOv5 algorithm to anticipate bounding boxes. 

The network predicts four coordinates for each bounding box, tx, ty, tw, and th [2], as shown in Figure 2. When 

the bounding box prior has dimensions width and height, pw, ph, and the cell is offset from the image’s top left 

corner by (cx, cy), the predictions match according to [27]: 

 

𝑏𝑥 = (2. 𝜎(𝑡𝑥) − 0.5) + 𝐶𝑥 (1) 

 

𝑏𝑦 = (2. 𝜎(𝑡𝑦) − 0.5) + 𝐶𝑦 (2) 
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𝑏𝑤 = 𝑝𝑤 . (2. 𝜎(𝑡𝑤))
2 (3) 

 

𝑏𝑤 = 𝑝𝑤 . (2. 𝜎(𝑡𝑤))
2 (4) 

 

2.3.  YOLOv8 algorithms 

The YOLOv8, is the latest version of the YOLO system developed by Ultralytics [20]. Until now, 

there is no article about YOLOv8 architecture; only some differences between YOLOv8 architecture and 

YOLOv5 architecture are listed by [20]: replace the C3 module with the C2f module, replace the first 6×6 

convolution (Conv) with 3×3 convolution in the Backbone, delete two convolutions layer (N°10 and N°14 in 

the YOLOv5 config), replace the first 1×1 convolution with 3×3 Conv in the Bottleneck, and use decoupled 

head and delete the objectness branch [20]. The module C2f is summarized in the diagram as shown in  

Figure 3, where "f" represents the number of features, "e" represents the rate of expansion, and CBS is a block 

made up of a Convolution, a BatchNorm, and a sigmoid linear unit (SiLU) later [28]. All of the bottleneck’s 

outputs are concatenated in C2f. C3 solely utilized the output of the previous bottleneck. Figure 4 provides a 

visual diagrammes summarizing of YOLOv8 module [29]. 

 

 

 
 

Figure 2. Bounding boxes with position prediction and dimension priors 

 

 

 
 

Figure 3. Yolov8 C2f module [29] 

 

 

There are five scale variants have been made available by YOLOv8: YOLOv8n (nano), YOLOv8s 

(small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x (extra large). It can be launched using the 

command line interface (CLI) or deployed as a PIP package. Additionally, it offers numerous integrations for 

deployment, training, and labeling. We can adjust the models to find any fault in solar cells through transfer 

learning. 

YOLOv8 is anchor-free, which lowers the number of box forecasts and accelerates the non-maximum 

impression (NMS) [29]. Additionally, when traninig YOLOv8 employs mosaic augmentation, but it is disabled 

during the last ten epochs due to research showing that using this augmentation throughout the whole training 

period can be harmful [30]. In the whole YOLO series, YOLOv8 managed to strike the perfect balance between 

detection speed and detection effect. YOLOv8x achieved an AP of 53.9 evaluated on the MS COCO test-dev 

2017 dataset for an image size of 640 pixels (compared with 50.7 for YOLOv5 with the same image size) [29]. 
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Figure 4. YOLOv8 module [29] 

 

 

2.4.  Proposed method  

The methodology adopted in our work is the use of the detection model YOLOv8; which avoids the 

need of a local suggetion network and enables fast and precise detection of objects. The algorithm is tweaked 

to increase detection accuracy by reducing the number of parameters required. We have utilized computer 

vision algorithm to automatically identify faults in EL images while manufacturing solar modules. The process 

is broken down into a number of phases, as seen in Figure 5. 

First, data collection has been done, this phase consists in collecting a large dataset of surface images 

of photovoltaic modules during their manufacture in factories, in our case the images of photovoltaic cell 

defects were collected from the global public dataset of EL images published by the Hebei University of 

Technology and Beijing University of Aeronautics and Astronautics [30]. We need to check that there are no 

duplicates and that the labeling has been done correctly. It is important to make sure that the data set is balanced. 

Then, preparation of the data; the dataset of 12 surface defects is prepared for training and testing the 

smart faults detection system. This consistes labeling the images with boundingboxes all over the faults in a 

surface cell, which is done in the case of our data set. The data that has been labled are then devide into training, 

validation, and testing sets, to make sure both are representative of the full set of data. It could also be essential 

to perform other pre-processing processes, including shrinking or standardizing the data. 
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After that, agorithm selection, the appropriate object detection algorithm is chosen to train the defect 

surface cell detection model. There are a number of algorithms, each with unique advantages and 

disadvantages, including YOLOv8, YOLOv5, YOLOv7, and RCNN. Depending on the needs of the intelligent 

defect detection system, the algorithm chosen must perform well on all the data collected and be capable of 

handling a variety of defects. Because of its efficiency and speed, YOLOv8 is a very popular option, but other 

algorithms can also be used depending on the situation. We have also worked on the YOLOv5 algorithm in 

order to make a performance comparison with YOLOv8. 

Model training is then conducted; in which the two models YOLOv8 and YOLOv5 are trained on the 

previously prepared labeled dataset. Model training consists of training the model using deep learning to 

identify the image features of the various defects on the surface and locate them accurately. The two models 

are developed using a deep learning framework, such TensorFlow or PyTorch, which gives users the resources 

they need to create and develop neural networks. 

Finally, evaluation of modele. We use multiple metrics, such as accuracy, recall, precision, and  

F1 score, to assess the effectiveness of the trained model. These measures give an indication of how accurately 

the model distinguishes between different faults. If the model's performance is unsatisfactory, it is possible to 

modify the hyperparameters or add training data to improve them (data augmentations). 

 

 

 
 

Figure 5. Proposed method 

 

 

2.5.  Data set and metrics  

As part of this study, a sample of high-resolution images of PV cell defects was collected from the 

global public dataset of EL images that the Hebei University of Technology and Beijing University of 

Aeronautics and Astronautics jointly published [30]. This collection data set had anomalies with a higher 

resolution, greater variety, and greater completeness, contains 12 various aberrant flaws, including cracks (line 

and star), black cores, finger interruptions, thick lines, scratches, fragments, corners, printing errors, horizontal 

dislocations, vertical dislocations, and short circuit defects. The flaws in the data set are depicted in Figure 6. 

Figure 7 shows the distribution of the twelve defect types in train and validation data set [30]. On the 

basis of the distribution of the defect categories, an imbalance in the number of samples between the different 

types can be noted initially, with significant variations (38% for finger fault, 0.11 for corner fault). So, we have 

chosen to use data augmentation techniques and category weighting strategies to address these challenges 

effectively. This approach aims to correct sample distribution disparities and maximize the usefulness of the 

limited datasetThe training set consists of 80% of the EL images, while the validation and test sets are made 

up of the remaining 20%. 
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Figure 6. Original solar cell defect types 

 

 

 
 

Figure 7. The distribution of 12 defect categories 

 

 

One often used metric in object detection is intersection over union (IoU), the detection is deemed 

successful when the IoU exceeds a predetermined threshold. It refers to the intersection ratio between the 

ground truth and the bounding box predicted by the model, which is given as: 

 

𝐼𝑜𝑈 =
𝑋∩𝑌

𝑋∪𝑌
 (5) 

 

where, X represents the bounding box’s area, and Y is the ground truth that the model predicts. 

Precision (P), Recall (R), and mean average precision (mAP) are metrics commonly used to evaluate 

and compare the model’s performance. TP and TN are respectively the numbers of true positives and true 

negatives, and FP and FN are the numbers of false positives and false negatives, respectively. A measurement 

called precision is calculated as the ratio of true positives to all positive results. 

This formula is used to compute it: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
 (6) 

 

The proportion of correctly identified positives (true positives) to all positives is known as the recall 

metric. It is computed using the following formula: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
 (7) 
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The AP represents the area under precision-recall curve. Finding the AP for each class and then the 

average across all classes yields the mean average precision (mAP): 

 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖𝑁
𝑖=1  (8) 

 

 

3. RESULTS AND DISCUSSION 

The object detection challenge in computer vision aims at finding and identifying items in an picture 

or video. Single-stage and two-stage object detection algorithms are the two basic types of object detection 

techniques. The one-stage object detection methods, carry out object categorization, and bounding-box 

regression without the use of pre-generated region proposals. In the present study, we trained YOLOv8 and 

YOLOv5 one-stage object detection algorithms. 80 trainings epochs in al has been chosen, with a training batch 

size of 16, and the beginning learning rate is 0.01. The detection performance of models of different sizes was 

studied after training the most sophisticated one-step object identification algorithms, YOLOv5 and YOLOv8. 

Table 1, displays the test set’s YOLOv8 and-YOLOv5 detection results. 

 

 

Table 1. Results comparison of different methods 
Method Precision Recall mAP@0.5 mAP@0.95 

YOLOv5s 0.803 0.864 0.86 0.566 

YOLOv5n 0.818 0.785 0.805 0.504 

YOLOv8s 0.856 0.88 0.905 0.575 

YOLOv8n 0.813 0.861 0.871 0.603 

 

 

YOLOv8s demonstrated an advantage over the other models in terms of accuracy and efficiency. 

Indeed, it presents a map of 90,5% compared with YOLOv8n with 87% and both outperform YOLOv5s and 

YOLOv5n which presents a map of 86%, same for precision metrics and recall, the YOLOV8s showed 

superiority than the other YOLOv5 algorithms. Figure 8 displays the final visualizations of the YOLOv8s 

detection model, and Figure 9 displays those of YOLOv5 detection model, for the same testing of several types 

of solar cell defect photos.  

Table 2 and Figure 6 demonstrate the YOLOv8s detection results for various classes. The YOLO 

series’ mean mAP (IoU=0.5:0.95) is higher than that of the other algorithms, indicating that its prediction boxes 

are more accurate at locating and matching objects at greater IoU thresholds. The mAP score of the faults 

printing error, short-circuit, star crack, and horizontal dislocation is more than 99.4, for the faults finger, think 

line varies from 76 to 85, which reveals that YOLOv8 applied can classify with precision the various types of 

faults studied. 

 

 

Table 2. Results of YOLOv8s detection for several classes on this dataset 
Method Precision Recall mAP@0.5 mAP@0.95 

Black-core 0.778 0.889 0.915 0.906 

Crack 0.476 0.769 0.64 0.441 

Finger 0.763 0.758 0.766 0.423 

Horizontal-dislocation 0.984 0.978 0.994 0.564 

Printing-error 0.921 1 0.995 0.619 

Short-circuit 1 1 0.995 0.989 

Star-crack 1 0.859 0.995 0.38 

Thick-line 0.823 0.757 0.848 0.479 

Vertical-dislocation 0.956 0.907 0.984 0.38 

 

 

As observed in Figure 9, YOLOv5s exhibits an incomplete detection with a modest degree of 

confidence when complicated background noise is present. While the non-uniform, complicated background 

in Figure 10 does not interfere with the new YOLOv8s model, in this study all image defects are detected. For 

example, the start crack has been detected by YOLOv8 but for YOLOv5 there is no fault in the cell, the same 

for the printing error defect there is some fault not detected by YOLOv5. The comparison demonstrates that 

the new version of the YOLOv8s model has outstanding generalization performance, more precise detection 

outcomes, and may record the essential faults details. 
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Figure 8. The result of YOLOv8s defects detection 

 

 

 
 

Figure 9. YOLOv5s detection fault result 

 

 

 
 

Figure 10. YOLOv8s detection fault result 
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The confusion matrix for classifying PV faults is shown in Figure 11, which performs really well, that 

the model is extremely well-trained, and that it does so properly with the unobserved dataset. Evidently, there 

is a minor ambiguity between the start crack and background, and also between the black core and background, 

for all defects that are taken into consideration. The performance of the model as a whole is unaffected by this. 

 

 

 
 

Figure 11. The confusion matrix achieved by YOLOv8s 

 

 

Figure 12 makes it evident that the precision-recall curve is approaching the space’s upper right  

corner (1.1), demonstrating the high precision of the model at high recall levels. This indicates that the model 

is performing well at detecting positive samples while reducing the impact of false positives. The YOLOv8s 

models improve our dataset somewhat over YOLOv5. When compared to the other models, YOLOv8s showed 

superiority in terms of accuracy and effectiveness. This outcome was anticipated because YOLOv8 is the most 

advanced object detection algorithm currently available, offering the best accuracy while also requiring a 

manageable amount of training time. These attributes make it a powerful tool for enhancing the quality control 

and inspection processes in industries where object detection is critical. 

Figure 13 demonstrates that the YOLOv8s curve is higher than the YOLOv8n, YOLOv5s, and 

YOLOv5n curves. This signifies that the YOLOv8s detection accuracy is higher than the YOLOv5s detection 

accuracy, hence showing that the model exhibits greater stability. Overall, the YOLOv8s detection model 

described in this article has excellent accuracy and has improved the network’s detection efficiency- in order 

to enhance applications for detecting faults in solar cells. Despite being less accurate than YOLOv8s, 

YOLOv5s performed well, placing third with strong general detection rates and training. Therefore, it is evident 

that YOLOv8 is the preferable algorithm. 
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Figure 12. Test results of the YOLOv8s model, precision–recall curve 

 

 

 
 

Figure 13. Metric/mAP 0.5 results 

 

 

4. CONCLUSION 

This study employs computer vision techniques to detect various errors in solar cell manufacture using 

the YOLOv8 architecture; this new technique can address the drawbacks of conventional detection techniques, 

including their rigidity, slowness, and reduced accuracy. The experimental findings prove that the proposed 

approach can effectively and accurately detect numerous defaults that are present on solar cell surfaces, short-

circuit, fracture, and horizontal dissolution. According to the test results, the faulty solar cell has been preciserly 

determined, in fact, the two object detection algorithms applied, namely YOLOv5 and YOLOv8, have shown 

high precision in the detection of twelve solar cell faults. The mean average precision in YOLOv8s is 90.5%, 

and the recall rate is 85.2%. The YOLOv8s model exhibited superior performance in terms of both accuracy 

and efficiency compared to the other models. YOLOv8 has proven to be the most advanced object detection 

system. The best accuracy is achieved while requiring a reasonable training time. Indeed, the optimal balancing 

of speed and accuracy can be accomplished using YOLOv8; this algorithm is best suited for field use in large-

scale solar photovoltaic cell production. Due to the effectiveness of YOLOv8’s detection, this framework is 

very helpful in the practice of smart factories to perform intelligent tests to detect flaws in these solar cells, 

which is crucial to ensuring reliability, which is essential for the stability and safety of the system.  
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