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Abstract 
The rapid development of plug-in electric vehicles (PHEVs) and wind power brings new 

challenges to power system security and economic operation. Traditional deterministic models fail to 
capture their extra characteristics. In this paper, PHEVs, wind power and thermal units are studied. The 
scheduling model with PHEVs and wind power is more complex, which minimizes the cost-emission while 
considering the uncertainty of wind power and load, the smart charging/discharging of PHEVs, the 
coordination of wind power and PHEVs. The multi-scenario simulation is presented in the random variable 
discretization. Numbers of representative scenarios is chosen, so that the original objective of the smart 
grid is within an acceptable level. Then the multi-agent system (MAS) technology is proposed to divided a 
day is into 24 time intervals, and each time interval is managed by a work agent to produce a solution set 
for the time interval. The wind power, PHEVs and thermal units are coordinated by the work agent. 24 
work agents are managed a coordination agent that would coordinate the solutions of the work agents. 
Finally, a smart grid of 10 thermal units, a wind farm and PHEVs are used to demonstrate the effective of 
the proposed model. The results show that the smart grid can use the wind power and PHEVs most 
effectively, can greatly cut the operation cost and carbon emission. By the tradeoff between the weight 
factor of cost and emission, the balance of cost and emission can reach.  
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1. Introduction 
The power and energy industry in term of economic importance and environmental 

impact is one of the most important sectors in the world, since every aspect of industrial 
productivity and daily life are dependent on electricity. It represents a major portion of global 
emission.  

With increasing concern over global climate change, policy makers are promoting 
renewable energy, which is considered as a means of meeting emission reduction targets. So 
environment friendly modern dispatching is essential. However, power system researchers have 
addressed only traditional unit commitment (UC) problems to minimize cost in the existing 
articles. They consider emission in UC problems rarely, though it is an important factor as 
mentioned above.  

A technical report from the National Renewable Energy Laboratory (NREL) has 
reported significant reductions in CO2 emissions from PHEVs [1]. Considering cost advantages, 
PHEVs have a significant potential market [2]. Because of its energy saving potential, PHEVs’ 
research and application has become the focus attention of countries. The corresponding 
researchers have mainly concerned on the interconnection of vehicle energy storage and grids. 
Ahmed Yousuf Saber considers the UC on CO2 emissions of V2G (Vehicle to Grid), and 
analyzes the influence of CO2 emissions and PHEVs discharge in different situations; electric 
vehicles (EV) can replace conventional small units for power generation, thereby reducing the 
operation cost and emission of pollutants. But it is assumed that the charging demand of EV has 
been provided by the renewable energy, and charging load characteristics of EV is not 
considered [3]. Several other research efforts of PHEVs in recent years [4-8] examine the 
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impact of PHEVs on the power system but do not take wind energy into account and do not 
propose operational methods.  

However, PHEVs can’t completely solve the emission problem alone; they need electric 
power, which is one of main source of emission. The NREL examines the long-term interaction 
between wind energy and PHEVs [9] by assuming increasing penetration of PHEVs compared 
with the current vehicle fleet for future years. The effective control of V2G charging, the 
formation of renewable energy and PHEVs effective are complementary [10]. Literature [11] 
takes the Danish power system as an example, analyzes the charging control for the promotion 
of wind power to absorb and reduce greenhouse gas emissions. Wang et al. [12] uses a 
deterministic method to address coordination of wind power and PHEV charging. Lisa [13] 
investigates consequences of integrating PHEVs in a wind-thermal power system. Four different 
PHEV integration strategies, with different impacts have been investigated. The study shows 
that PHEVs can impact the CO2 emission. Soares [14] analyzes PHEVs as a way to maximize 
the integration of variable renewable energy in power systems.  

Deterministic UC deals with the unit generation schedule in a power system. The 
purpose of such a schedule is to minimize operation costs and emissions while satisfying 
prevailing constraints such as load balance, system spinning reserve, et al over a set of time 
periods. Compared with deterministic UC and dispatch methods, stochastic UC studies have 
been mostly performed in academia. Literature [15] and [16] develop a stochastic UC model to 
study the impacts of PHEVs on power system operation and scheduling. The uncertainty is 
addressed in the proposed model by generating different scenarios.  

Traditional UC only can dispatch generator but not load. Load dispatch can play an 
important role in reducing the operation cost of power system by shaving the peak and filling the 
valley of load profiles. The success of practical application of PHEVs greatly depends on the 
maximum utilization of renewable energy in the smart grid so that emission and cost are 
reduced. In this paper, the PHEVs, wind power and thermal units are studied, the uncertainty 
smart grid dispatching model is formulated as a stochastic cost-emission reduction model. In the 
scheduling, the forecasting load and wind power are used, but the actual wind power and load 
usually differs from the forecasted ones. So the uncertainties of load and wind power are taken 
into account. The PHEVs charge/discharge control, the coordination of PHEVs and wind power 
are considered. First, the multi-scenario simulation is used in the random variable discretization. 
Numbers of representative scenarios is chosen, so that the original objective of the smart grid is 
within an acceptable level. Then a day is divided into 24 time intervals, and each time interval is 
managed by a work agent to produce a solution set for the time interval. The work agent is 
presented to coordinate the wind power, PHEVs and thermal units. The adjustment of weight 
factors can reach the effective coordination between CO2 emissions and costs. 

 
 

2. Stochastic Cost-emission Reduction Model 
2.1. Multi-scenario Simulation 

In multi-scenario, a large number of discrete probability distributions are formed to 
simulate the uncertainty of random variables. It generally has two steps to generate scenarios.  

The probability distribution of random variable is obtained by Monte Carlo simulation. 
In order to minimize the information loss, the probability distribution of the random 

variable is dispersed by the approximate method. 
Due to the stochastic properties of wind power and load, the wind power and the load is 

very difficult to predict precisely. Under multi-scenario simulation, some representative discrete 
scenarios are extracted for the optimization in a smart grid with wind generator and PHEVs 
under uncertainty, as it is hard to consider all continuous states. However, the total number of 
scenarios grows exponentially with state variable.  

For uncertainty, discrete probability distribution sets for load demand (D ) and wind 

resource (w ) are given as follows: 

 

          1 1 2 2{( , );( , ); ( , ); ( , )}s s nd nd
D d d d d d d d dp p p p                               (1) 
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( , )s s
d dp  is load and the corresponding probability of uncertain load at scenario s ; nd  

is the set of possible scenarios derived from load.  
 

        1 2 1nd
d d d                                                         (2) 

 

             1 1 2 2{( , );( , ); ( , ); ( , )}s s nw nw
w wind wind wind windp p p p                          (3) 

 

( , )s s
windp  is wind and the corresponding probability of uncertain wind at scenario s ;

nw  is the set of possible scenarios derived from wind power.  
 

          1 2 1nw                                                         (4) 

 
SC is a set of possible scenarios derived from wind power and load. 

 
  D wSC                                                                 (5) 

 

 


 1d
s SC

                                                                (6) 

 
  s d w                                                                   (7) 

 
D ,w  are sets of discrete distribution of load, wind power; d ,   are the 

corresponding probability of uncertain load, wind; s  is the corresponding probability of the 

smart grid system at scenario s . Difference between the scenario model and the original model 
is a discrete probability distribution adopted. Curves representing the original probability density 
distribution, rectangular bars represent the scenarios; the rectangular bar height represents 
probability of corresponding scenario. Because of wind power and load uncertainty, and EV 
charging/discharging in smart grid control, so the traditional optimization problem is transformed 
into uncertainty smart grid dispatching. To capture volatility, we assume the wind power and 

load are subject to the distribution 2( , )N  with their expected value (  ) and their volatility ( ). 

Five scenarios are considered for the wind power and load uncertainty, the scenario distribution 
of wind power and load are shown in Figure1 and 2 respectively. 
 

    

 

{( 100% ,0.5 );( 99% ,0.15);( 101% ,0.15);

( 97.5% ,0.1);( 102.5% ,0.1)}
w w d d

d d

p p p

p p
                       (8) 

 
    

 

{( 100%,0.6);( 98.5%,0.15);( 102%,0.15);

( 98%,0.05);( 103%,0.05)}
D d d d

d d

p p p

p p
                     (9) 

 

wp , dp  are the predict value of wind power and load. 

 

 
 

Figure 1. The Scenario Distribution of Wind Power 
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Figure 2. The Scenario Distribution of Load 
 
 
2.2 Cost-emission Reduction Model under Uncertainties 

A quadratic function is considered for the fuel function of thermal units under the 
deterministic case: 
 

   2( ) ( )t t t
i i i i i i iFC P a b p c p                                                  (10) 

 
Considering the uncertainty of load and wind power, the fuel cost function is converted 

into the scenario model: 
 

    2[ ( ), ] [ ( ) , ]t st st
i i s i i i i i sFC P a b p c p                                         (11) 

 
st
ip  is the power of thermal unit i  at time t  considering scenario s , s  is the 

corresponding probability; ia , ib , ic  are cost coefficients of unit; i .It is assumed that 

conventional thermal units are coal-fired. A quadratic function is considered for the emission 
curve [17] as follows: 

 
       （ 2

ci[ ( ), ] [( ) ) , ]st st st t
i s ci ci i c i i i sE P p p u                                   (12) 

 
ci , ci ,  ci  are CO2  emission coefficients of unit i .Therefore, the objective function for 

cost-emission optimization considering a set of scenarios s  in a smart grid is:  
 



  



  
     

 

 

（

2 1

1 1

2

min [ ( ( ) ) (1 )

( ) ) ]

T N
s st st t t t

s c i i i i i i i i i
s S t i

st st t
e ci ci i ci i i

TC W a b p c p u S u u

W p p u

              (13) 

 
t
iu is decision variable of unit i  at time t , 1 for up, 0 for down; iS  is start-up cost of unit 

i . N  is total numbers of thermal units;T  is numbers of periods under study; cW , eW is the 

weight factor of operation cost (fuel cost plus startup cost), CO2 emission; 
 

cW + eW =1                                                                 (14) 

 
Constraints: 
PHEVs are considered as loads or sources. Power supplied from distributed generations must 
satisfy the load demand: 
PHEVs discharging 
 


      2

1

1,2, ,
N

t t t t
i i v v G d

i

p u p N p t T                                           (15) 
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PHEVs charging 
 



      2
1

1,2, ,
N

t t t t
i i d v v G

i

p u p p N t T                                           (16) 

 
All registered PHEVs take part in smart grid operations during a scheduling period, 
 


     max

2 2
1

1,2, ,
T

t
v G v G

t

N N t T                                                (17) 

 
max
2v GN is the total registered PHEVs; 2

t
v GN is number of vehicles connected to the grid at 

hour t To maintain system reliability, adequate spinning reserves are required: 
PHEVs discharging 
 



       max 2
1

1,2, ,
N

t max t t t
i i v v G d

i

u p p N p R t T                                   (18) 

 
PHEVs charging  
 



       max 2
1

1,2, ,
N

t t max t t
i i d v v G

i

u p p p N R t T                                   (19) 

 

maxip  is the maximum output limit of unit; i , max
vp  is the capacity of PHEVs; t

dp  is 

system demand at time t ; tR  is system spinning reserve requirement at time t ; maxip / minip  is 

maximum/ minimum generation level of unit i ;·Number of charging/discharging PHEVs limit. 
 

    max
2 2 1,2, ,t t

v G v GN N t T                                                  (20) 

 
All the PHEVs cannot charge/discharge at the same time. For reliable operation and 

control, limited number of vehicles will charge/discharge at a time. max
2

t
v GN  is the maximum 

number of charging/discharging at hour t . 
Generation limits, ramp rate, minimum up and down time constraints are also 

considered. 
 
 

3. Proposed Solution Approach 
The total scheduling period is 24h, and it contains 24 work agents in the scheduling 

period. Each work agent uses genetic algorithm to produce a solution set for the time interval. 
24 work agents are managed by a cooperative agent that would coordinate the solutions of the 
work agents. The relationship among all the agents is shown in Error! Reference source not 
found..  

As shown in the figure, except relating with the coordination agent every work agent 
had information exchanged with the previous and following adjacent work agents. Each work 
agent is responsible for coordinating the static scheduling of wind power, thermal units and 
PHEVs, their relationship is shown in Figure 4. Its goal is the minimum of fuel consumption and 
emissions in this period, the constraints are static for the corresponding time interval, without 
considering the dynamic time coupling constraints. Then the genetic algorithm is used. The 
target of the cooperative agent is the minimum of cost and emissions for the whole scheduling 
cycle, the constraints are the dynamic coupling constraints on the entire scheduling period. 
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Figure 3. MAS Architecture of the Smart Grid 
Optimal Dispatching 

Figure 4. The Work Agent Synergistic Effect 
Diagram 

 
 

4. Numerical Example  
An independent system operator of 10-unit system is considered for simulation with 

wind power and 50000 PHEVs. Load demand and unit characteristic of the 10-unit system are 
collected from [18]. Assume the reserve to be 10% of the load demand. It is necessary to 
integrate wind in the sustainable smart grid to reduce cost and emission. The amount of cost 
and emission reductions mainly depends on maximum utilization of renewable energy through 
PHEVs. PHEVs are charging/discharging intelligently so that both cost and emission are 
minimum. Load demand and constraints are fulfilled. Maximum battery capacity=25kWh, 
minimum battery capacity=10kWh, average battery capacity=15kWh, maximum number of 

charging/discharging PHEVs at each hour, max
2

t
v GN =10% total PHEVs. Total number of PHEVs in 

the system, max
2v GN =50000. Charging-discharging frequency=1 per day; scheduling period=24h, 

departure state of charging/discharging  =50%, efficiency  =85%. A PHEV needs 

8.22kWh/day, an excess of 8.22*50000=411MWh power will be needed for the smart grid [19]. 
And the wind farm can provide 500MWh/day energy. A typical day forecasts of wind are given in 
[20]. This paper analyzes two cases, one does not consider the uncertainty of load and wind 
power, the other considers the uncertainty of load and wind power for smart grid. 

1) Cost-emission reduction dispatching without the uncertainty of load and wind power  
Cost-emission reduction weights can give decision-makers the intuitive analysis of the 

concerned factors. The effect of the weight changes on the optimization scheduling is analyzed 
below.By this way, it verifies the effectiveness of the cost-emission reduction model. 

CO2 is one of the main discharge in the electric power production process, it has a 
significant impact on the environment. The relationship of thermal cost-emission objectives and 
weights without/with PHEVs can be seen in Table 1, 2. 

 
 

Table 1. The Relationship of Thermal Cost-emission Objectives and Weights without PHEVs  
weights 

 
objective 

(1,0) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) (0.6, 0.4) (0.5, 0.5) (0.4, 0.6) (0.3, 0.7) (0.2, 0.8) (0.1, 0.9) 

F/$ 562877.68 565223.52 565277.32 566047.70 567142.24 569650.16 571398.77 573509.10 574978.12 580665.09
Ec/t 269906.39 258751.20 258511.43 256140.50 254110.02 251107.34 249687.99 248611.43 248061.91 247206.69

 
 

Table 2. The Relationship of Thermal Cost-emission Objectives and Weights with PHEVs 
weights 

 
objective 

(1, 0) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) (0.6, 0.4) (0.5, 0.5) (0.4, 0.6) (0.3, 0.7) (0.2, 0.8) (0.1, 0.9) 

F/$ 558296.90 558820.94 563374.18 566955.17 570939.72 576805.18 585359.22 595455.63 601028.84 627416.16
Ec/t 273326.41 265999.73 239229.49 228502.65 221747.58 214312.78 206959.47 202141.48 200350.52 197259.18
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From Table 1 and 2, the weight factors of cost and emission are (1,0), (0.9,0.1), 
(0.8,0.2), (0.7,0.3), (0.6,0.4), (0.5,0.5), (0.4,0.6), (0.3,0.7), (0.2,0.8), (0.1,0.9) respectively. With 
the weight factor of the operation cost c decreasing, cost is increasing, but the variation is 

small which can be accepted. Increasing the weight factor e , CO2 emission can be reduced 

substantially. When (c ,e ) is (0.8,0.2), the operation cost is 563374.18$, CO2 emission is 

239229.49t (Table 2). On the other hand, when PHEVs are not considered in the same system, 
the operation cost is 565227.32$, CO2 emission is 258511.43t in the same system (Table 1). 
PHEVs save 1853.14$ and reduce 19281.94t emission. Compared with Table 1, CO2 emissions 
substantially reduce in Table 2 with others weights. It shows that the scheduling with PHEVs 
can effectively reduce the difference between peak and valley power system, save costs and 
reduce emission, increase the comprehensive benefit in the 10-unit thermal system. By 
choosing proper weight factors of cost and emission on the basis of the decision-makers’ 
willingness, satisfactory scheduling results of coordinating cost and emission can be reached. 

The relationship of smart grid cost-emission objective and weights with PHEVs and 
wind power is shown in Table 3. PHEVs optimal charge/discharge power under the deterministic 
load and wind power with weights (0.9, 0.1) is shown in Figure 5  

 
 

Table 3. The Relationship of Smart Grid Cost-emission Objectives and Weights 
with PHEVs and Wind Power 

weights 
 

objective 
(1, 0) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) (0.6, 0.4) (0.5, 0.5) (0.4, 0.6) (0.3, 0.7) (0.2, 0.8) (0.1, 0.9) 

F/$  548891.79 549546.20 554252.04 557302.88 562802.51 570160.03 572150.96 580846.21 600041.87 616846.89

Ec/t 272720.36 260372.43 232846.27 223181.17 213111.80 206424.36 204699.40 200816.72 195108.10 193441.20

 
 

Effect of both cost and emission in the deterministic model with PHEVs and wind power 
is shown in Table 3. Compared with Table 2, in the same weights of costs and emission, the 
operation costs and emission are rapidly decreasing (Table 3); cost is reduced by 9122.14$, 
and emission is reduced by 6383.22t in the weight of (0.8,0.2) (Table 3). Compared with Table 
1, cost is reduced rapidly, emission increases slowly ((1,0), (0.9,0.1)); the cost is reduced by 
11025.28$, the emission is reduced by 25665.15t ((0.8,0.2)) . Both the cost and emission are 
reduced in Table 3 than those of Table 1 and 2. Proper using of PHEVs and wind power, 
PHEVs can charge from the grid with wind power at off-peak hours and discharge to the grid at 
peak hours, which are complementary for each other.  
 
 

 
 

Figure 5. PHEVs Optimal Charge/Discharge Power under the Deterministic Load and Wind 
Power 

 
 

As you can see from Figure 5, PHEVs charging in the low load period, in the peak load 
stage discharge, charge/discharge power through effective control of PHEVs, can realize the 
minimization of cost-emission in the smart grid. 

2) Cost-emission reduction dispatching considering the uncertainty of load and wind 
power 
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The relationship of cost-emission objectives and weights with the uncertainty of 
PHEVs/PHEVs and wind power can be seen in Table 4 and Table 5. PHEVs optimal 
charge/discharge power under the uncertainty of load and PHEVs with the weights (0.9, 0.1) is 
shown in Figure 6. 

 
 

Table 4. The Relationship of Thermal Cost-emission Objective and Weights with the Uncertainty 
of PHEVs 

weights 
 

objective 
(1,0) (0.9,0.1) (0.8,0.2) (0.7,0.3) (0.6,0.4) (0.5,0.5) (0.4,0.6) (0.3,0.7) (0.2,0.8) (0.1,0.9) 

F/$ 578223.53 578936.68 582329.60 586481.65 592218.67 599284.96 605292.07 615894.74 636482.46 647222.85
Ec/t 280108.44 268564.82 248920.36 236654.97 225603.96 217572.76 212967.85 206250.55 202943.65 198771.44

 
 

Table 5. The Relationship of Cost-emission Objective and Weights with the Uncertainty of 
PHEVs and Wind Power 

weights 
 

objective 
(1, 0) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) (0.6, 0.4) (0.5, 0.5) (0.4, 0.6) (0.3, 0.7) (0.2, 0.8) (0.1, 0.9) 

F/$ 568647.30 569399.55 573136.83 577366.93 582508.40 589849.29 596051.48 598441.91 617921.86 635898.43
Ec/t 274933.62 263843.80 242164.38 229576.25 219953.49 211218.50 206218.27 205242.61 198209.91 196459.40

 
 

Table 4 shows the results of cost and emission when only PHEV is considered, similarly 
Table 5 shows the results of costs and emission when both PHEV and wind power are 
considered. Compared with the results of Table 4, the cost and emission are cut with the same 
weights (Table 5). Wind power saves 9192.77$, and reduces 6755.98t with the weight (0.8,0.2). 
Because of the uncertainty, the system cost and emissions are increased, but it is closer to the 
actual situation. 

PHEVs can reduce dependencies on small expensive units in existing systems, 
resulting in reduced operation cost and emission. It can also increase reserve and reliability of 
existing power systems.  

 
 

 
 

Figure 6. PHEVs Optimal Charge/Discharge Power under the Uncertainty of Load and Wind 
Power  

 
 
5. Conclusion 

Wind power and PHEV grid-connected capacity expansion has become an inevitable 
trend, will exert a far-reaching influence on power system. To bring the opportunity to power grid 
cost-emission reduction operation, random and load demand and output of wind power has 
increased the difficulty of scheduling.  

The optimal scheduling with wind power, PHEVs and conventional thermal units under 
uncertainty is presented in this paper to illustrate cost and emission reductions. The uncertainty 
of wind power and load, PHEVs charge/discharge control, the coordination of PHEVs and wind 
power is considered. The multi-scenario simulation is used for accommodating the volatility of 
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wind power and load. Then the MAS is used to generate a successful schedule. It contains 24 
work agents in the scheduling period. Each work agent uses genetic algorithm to produce a 
solution set for the time interval. Wind power, PHEVs and thermal units are coordinated. 24 
work agents are managed by a cooperative agent that would coordinate the solutions of the 
work agents. Valid scenarios are derived from prior statistics, heuristics and the experience. The 
results show that the algorithm is an efficient approach and the solution is reasonable. This 
optimization with uncertainties for scheduling needs more cost and longer execution time; 
however, it is more reliable in real environment. 
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