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 Recognizing human emotions simultaneously from multiple data modalities 

(e.g., face, and speech) has drawn significant research interest, and 

numerous research contributions have been investigated in the affective 
computing community. However, most methods concentrate less on facial 

alignment and keyframe selection for audio-visual input. Hence, this paper 

proposed a new audio-visual descriptor, mainly concentrating on describing 

the emotion through only a few frames. For this purpose, we proposed a new 
self-similarity distance matrix (SSDM), which computes the spatial, and 

temporal distances through landmark points on the facial image. The audio 

signal is described through an asset of composite features, including 

statistical features, spectral features, formant frequencies, and energies.  
A support vector machine (SVM) algorithm is employed to classify both 

models, and the final results are fused to predict the emotion. Surrey audio-

visual expressed emotion (SAVEE) and Ryerson multimedia research lab 

(RML) datasets are utilized for experimental validation, and the proposed 

method has shown significant improvement from the state of art methods. 

Keywords: 

Acoustic feature 

Audio and video 

Decision level fusion 

Geometric features 

Key frames 

Multimodal emotion 

recognition 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Chennupati Sumanth Kumar 

Department of Electrical, Electronics and Communication Engineering, GITAM Deemed to be University 

Visakhapatnam-530045, AP, India 

Email: schennup@gitam.edu 

 

 

1. INTRODUCTION 

The emotions reveal a person's thoughts. Emotions can aid self-regulate jobs, including car safety, 

marketing, therapies, autonomous health feedback, assessments, games, and monitoring. Human-computer 

interaction (HCI) [1] and affective computing help automate tasks from humans to machines. HCI 

emphasizes human-machine interaction. Knowing human emotions makes the machine more effective.  

A system that makes decisions based on human mood would be great. Because congested roads make drivers 

angry, the car may take a quieter, longer route. 

Different methods can recognize emotions. Speech, faces, eye gaze, gestures, and physiological 

signals like electroencephalograms convey emotion. Each data model has pros and cons. For instance, 

illumination, viewpoint, scale, and orientation concerns affect face image emotion recognition. Ambient 

noise and speaker voices also affect speech emotion recognition. Multi-modal analysis improves emotion 

recognition. Humans emphasize speech with body, head, arm, and facial expressions [2]. The fundamental 

reason is that 93% of human communication is non-verbal, including body positions, facial emotions, and 

eye gazes. Multiple-modality emotion recognition systems have been developed. From facial images,  

P. Ekman introduced action units to identify the six basic emotions (disgust, fear, anger, happiness, sadness, 

and surprise). Most methods used face as a main model and speech, gestures, as cooperative models. 

https://creativecommons.org/licenses/by-sa/4.0/
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Automatic facial emotion detection requires face identification, tracking, feature extraction, and 

recognition. First, identify and track the face in a multi-frame video sequence. Piecewise beizer volume 

deformation tracker, resilient faces identification algorithm, AdaBoost learning algorithm, improved Kanade-

Lucas-Tomasi tracker method, and ratio template tracker. The following step extracts features from the 

detected faces that aid in recognizing expressions. The feature extraction methods are broadly classified as 

geometry and appearance-based approaches [3]. The first category uses face shapes and landmark points to 

convey expressions. Appearance-based approaches portray face expressions using classic computer vision 

algorithms. 

Problem statement: most methods have focused on the static face. But, currently, expression 

recognition from videos has gained significant interest. Unlike a static face image, the video shows facial 

muscles and voice. The main challenge is compactly representing images and speech to characterize video 

emotions accurately. To solve this issue, acoustic and visual geometry descriptors for multi-modal emotion 

recognition from videos. This paper proposes a face-speech-based multi-modal emotion recognition 

framework is proposed. The contribution of the proposed work is specified below.  

This framework first finds landmark points on non-frontal faces in a video to align them.  

Self-similarity distance matrix (SSDM) computes spatial and temporal Euclidean distances to identify key 

frames. A visual geometric descriptor represents an emotion over keyframes. We represent emotions in audio 

data using 68 features from different categories. Support vector machine (SVM) classified both models. 

Combining classifier outputs yields the final prediction. The structure of this article is specified below. The 

second portion describes the video data emotion recognition framework. The fourth portion shows 

experimental analysis details, and 5th section presents the conclusion of the paper. 

Researchers have improved multi-modal expression recognition based on audio and visual input 

modalities. Multi-modal fusion is divided into decision level, data model/feature level, kernel level, score 

level, and hybrid levels [4]. Recent and other multi-modal expression recognition algorithms are included in 

this survey. Video and text investigation of speech emotion recognition. Audio samples are transformed into 

spectrograms and then fed to modified AlexNet for feature extraction. They used bidirectional encoder 

representations from transformers (BERT) embedding for text data and long term short memory (LSTM) for 

categorization. Surrey audio-visual expressed emotion (SAVEE) and ryerson audio-visual database of 

emotional speech and song (RAVDESS) datasets are utilized for simulation experiments. A model-level 

fusion-based multi-modal emotion recognition framework combining video and audio data [5].  

After modeling audio data with mel frequency cepstrum coefficients (MFCCs) and video with spatiotemporal 

features, a deep learning feature and extractor are created for both data models. Experimental validation uses 

SAVEE and RAVDESS. Emotion recognition, and Javaid combined voice and infrared images [6]. In the 

first stage, two convolutional neural networks (CNNs) are trained with infrared (IR) and visible images. 

Transfer learning was utilized to fuse feature vectors supplied to SVM for classification. To train the artificial 

neural network (ANN), they employed another CNN model to understand speech emotions from audio 

spectrograms. The final class label is predicted by combining SVM and third CNN outputs. Experimental 

validation used RAVDESS. A multi-modal neural architecture that uses audio and video input for 

bidirectional long short term memory (BiLSTM) networks and two CNNs [7]. The MFCCs, energy, and 

spatio-temporal audio and video aspects are combined and sent to Bi-LSTM for outputs. For the final 

categories, they used a softmax classifier. Ryerson RML, SAVEE, and RAVDESS validate multi-modal 

emotion recognition [8]. They used the powerful attention mechanism to represent the audio-video sequence. 

They suggested an emotion-labeling audio-visual time windows architecture. Attention computes weights, 

and fusion predicts the result. 

Three data models to discern emotion: audio, text, and video. MFCCs, standard deviation, 

interquartile ranges, quartile ranges, arithmetic mean, quadratic root mean, amplitude mean, pitch, and voice 

intensity were retrieved from audio using CNN with different layers [9]. After testing on the interactive 

emotional dyadic motion capture (IEMOCAP) and CMU multi-modal opinion sentiment and emotion 

intensity (CMU-MOSI) datasets, decision and feature level fusions are used. A multi-modal expression 

recognition system: multi-level factorized bilinear pooling (MLFBP) [10]. They initially used a  

1-dimensional fully convolutional network (FCN) for the audio stream. Audio-visual information is fused in 

next global FBP. To calculate fusion weights for different modalities, they created an adaptive mechanism 

for FBP. Experimental validation using IEMOCAP. 

An informed segmentation and labeling approach (ISLA) for multi-modal emotion recognition using 

voice signals and facial regions [11]. The pitch helps predict upper and lower-face emotions. Experimental 

validation uses IEMOCAP and SAVEE datasets. A histogram of oriented gradient son three orthogonal 

planes (HOG-TOP) [12] to represent emotion from video data. They used a composite feature set of 38 low-

level and 21 functional descriptors for audio data. Feature level fusion was provided to the SVM algorithm 

for emotion classification [13]. The purpose of the Moodle platform and Zoom video conference mechanism 

is to influence Zoom and Moodle on learning skills [14]. This mechanism presents the scope of the cross-
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section’s correlational, valued, non-observational approach. Additionally, reliability is executed with 

Cronbach’s Alpha, receiving the value of 0.875. The emotion detection scheme discovered via body gestures 

uses PoseNet to generate emotional data for every student. The recognition results are treated and exhibited 

on an information system as a website [15]. Using images from the internet will evaluate the models to 

discover the best model for recognizing human emotions and detecting faces [16]. The high-level motion 

feature frames are forwarded to the pre-trained CNN to distinguish the 17 emotions in the Geneva 

multimodal emotion portrayals dataset [17]. 

 

 

2. PROPOSED FRAMEWORK 

2.1.  Overview 

Here in this section, we explore the complete details of the proposed multimodal emotion 

recognition framework. The proposed framework considers two data models, video and audio, and 

recognizes the emotion. This system benefits from the fusion of different classifier outputs, each focusing on 

an individual data model. The overall schematic of the proposed framework is depicted in Figure 1. 

 

 

 
 

Figure 1. The overall architecture of the proposed framework 

 

 

In this framework, we adopted decision-level fusion, which was performed after getting the 

classification results from individual classifiers. The confidence scores of individual classifiers are used to 

accompany the decision-level fusion. Next, we propose efficient features for each model through which the 

recognition system can discriminate between emotions. For video input, the proposed system initially 

extracts the frames and then extracts landmark positions for the face in each frame. Based on the obtained 

landmark positions, the faces are aligned in each frame and then subjected to keyframe selection. Then, the 

obtained keyframes are described through a visual geometry descriptor based on the landmark positions of 

the face in each frame. Here, we propose a new SSDM metric to identify the keyframes. This matrix is 

inspired by the self-similarity matrix (SSM), which was generally employed to find the similarity between 

pixels at the same positions in different frames. As another model, we considered speech; each speech sample 

is represented with a set of 88-dimensional feature vectors. We used common classifiers, and the obtained 

confidence scores obtainedowere used get the final expression label. 

 

2.2.  Visual features 

Several frames need to be processed to recognize an emotion from a video. Moreover, in most cases, 

similar facial expressions appear within the same video. Hence, we intended to represent an emotion with 

only a few sets of keyframes. If a video is processed entirely by the recognition system, the system 

misclassifies the emotions due to the similarity between the semantics of the faces in different videos. 

Generally, in any video, the starting frames have neutral faces, the emotion lies in only a few frames, and 

they generally lie in the center of the video. Hence, key frame selection is necessary to reduce 

misclassification and processing complexity. 

 

2.2.1. Landmarks 

Geometry features can discover 68 landmark points on the face image, as shown in Figure 2, to 

identify crucial frames in a film. FERA 2015 code [18] detects and tracks video facial features. Acquiring 

landmark locations in a video is difficult, which might lead to head pose issues. We considered just recorded 

video frames. Each frame of a video has 68 landmark points. The first 17 landmark points are the face 

contour, 18 to 22 are the left eyebrow, 23 to 27 are the right eyebrow, 37 to 42 are the left eye, and 43 to 48 
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are the right eye. Landmark points 28 to 30 symbolize the nose, and 49 to 68 indicate the mouth. 68 landmark 

points divide the face into six areas [19]. 
 

 

 
 

Figure 2. Landmark points on the face image 

 

 

2.2.2. Face alignment 

Face alignment has a significant role in the recognition of expressions from facial images.  

For a non-frontal view, encoding the strongest features of expression is impossible. Hence, the non-frontal 

view facial images in the video need to be aligned. To align the non-frontal views, we consider the landmark 

points assessed above. We use only three landmark points for the facial alignment: the left eye inner corner 

(LEIC), right eye inner corner (REIC), and nasal spine point (NSP) above the mouth. The landmark points 

used are 40 LEIC, 43 REIC, and 34 NSP. Since these have less impact on recognition and are stable,  

we considered them landmark points for alignment. Each landmark point is represented by two coordinates  

(x, y). Consider (𝐿𝐸𝑥 , 𝐿𝐸𝑦), (𝑅𝐸𝑥 , 𝑅𝐸𝑦) REy, and (𝑁𝑆𝑥; 𝑁𝑆𝑦) are the three representations of landmark 

points such as LEIC, REIC, and NSP based on these three Landmark points. Initially, we construct a rotation 

matrix R of size 3×2 as follows (1) to (4); 
 

𝑅 = [

𝑅1𝑥 𝑅1𝑦

𝑅2𝑥 𝑅2𝑦

𝑅3𝑥 𝑅3𝑦

] (1) 

 

𝑅1𝑥 =
𝑅𝐸𝑥−𝐿𝐸𝑥

√(𝑅𝐸𝑥−𝐿𝐸𝑥)2+(𝑅𝐸𝑦−𝐿𝐸𝑦)
2
&𝑅1𝑦 =

𝑅𝐸𝑦−𝐿𝐸𝑦

√(𝑅𝐸𝑥−𝐿𝐸𝑥)2+(𝑅𝐸𝑦−𝐿𝐸𝑦)
2
 (2) 

 

𝑅2𝑥 =
𝑁𝑆𝑥−𝐿𝐸𝑥

√(𝑁𝑆𝑥−𝐿𝐸𝑥)2+(𝑁𝑆𝑦−𝐿𝐸𝑦)
2
&𝑅1𝑦 =

𝑁𝑆𝑦−𝐿𝐸𝑦

√(𝑁𝑆𝑥−𝐿𝐸𝑥)2+(𝑁𝑆𝑦−𝐿𝐸𝑦)
2
 (3) 

 

𝑅3𝑥 =
𝑅𝐸𝑥−𝑁𝑆𝑥

√(𝑅𝐸𝑥−𝑁𝑆𝑥)2+(𝑅𝐸𝑦−𝑁𝑆𝑦)
2
&𝑅3𝑦 =

𝑅𝐸𝑦−𝑁𝑆𝑦

√(𝑅𝐸𝑥−𝑁𝑆𝑥)2+(𝑅𝐸𝑦−𝑁𝑆𝑦)
2
 (4) 

 

Based on the values in the rotation matrix, the new coordinates of three landmark points are calculated using 

(5) to (7). (𝐿𝐸𝑥
′ , 𝐿𝐸𝑦

′ ), (𝑅𝐸𝑥
′ , 𝑅𝐸𝑦

′ ) and (𝑁𝑆𝑥
′ , 𝑁𝑆𝑦

′ ) represent the new LEIC, REIC, and NSP coordinates in 

the aligned face. 
 

(𝐿𝐸𝑥
′ , 𝐿𝐸𝑦

′ ) = (𝐿𝐸𝑥 , 𝐿𝐸𝑦) × 𝑅𝑇 (5) 

 

(𝑅𝐸𝑥
′ , 𝑅𝐸𝑦

′ ) = (𝑅𝐸𝑥 , 𝑅𝐸𝑦) × 𝑅𝑇 (6) 

 

(𝑁𝑆𝑥
′ , 𝑁𝑆𝑦

′ ) = (𝑁𝑆𝑥 , 𝑁𝑆𝑦) × 𝑅𝑇 (7) 

 

2.2.3. Key frames selection 

Keyframes contain the most critical face expression data. Most frames in long videos are 

superfluous and should be deleted to portray an expressive video. The video starts with neutral frames and an 

on-set frame where the expression begins. The peak frame is where the expression peaks and the offset frame 
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is where it stops. Keyframes are onset, offset, and peak frames. We calculate SSDM using Euclidean 

distances between landmark locations in the frame to identify crucial frames. First, the landmark points in 

each frame are compared to others. They are aggregated to calculate frame distance. Hence, we first create a 

distance matrix; 

 

 𝑑𝑖𝑗 = [

𝑑11 𝑑11 … 𝑑1𝑁

𝑑21 𝑑22 … 𝑑2𝑁

⋮     ⋮ ⋱ ⋮
𝑑𝑁1 𝑑𝑁2 … 𝑑𝑁𝑁

] (11) 

 

where 𝑑𝑖𝑗 represents the aggregated distance between two frames at i and j instances, the aggregated distance 

is obtained by accumulating distances between individual landmark points at different frames. Consider 

(𝑥𝑡, 𝑦𝑡), and (𝑥𝑝, 𝑦𝑝) to be the coordinates of a single landmark point in two different frames located at time 

instances t and p, respectively; the Euclidean distance between them is calculated as: 

 

𝑑𝑝𝑡 = √(𝑥𝑝 − 𝑥𝑡)
2

+ (𝑦𝑝 − 𝑦𝑡)
2
 (12) 

 

Then, we found the frames with the highest deviation using the distance matrix. After applying the 

maximum rule to the first row of the distance matrix, we get one value whose index indicates that the 

corresponding frame has a maximum distance from the first frame. This operation is performed across the 

distance matrix, yielding N frames. The input video has N frames. The (13) determines it. 

 

𝐹𝑖
𝑗

= max
𝑗

(𝑑𝑖𝑗) (13) 

 

𝐹𝑖
𝑗
 consists of the jth frame with a maximum deviation from the ith frame. The keyframes are now identified 

from 𝐹𝑖
𝑗
 by applying the sorting rule. The sorting rule sorts the distances in descending order. Finally, we 

select the keyframes based on the mean and maximum deviations. Consider 𝜇𝐹  as the mean of deviation of 

frames in 𝐹𝑖
𝑗
 and 𝑀𝐹 as the maximum deviation; a threshold T is calculated as follows. The threshold are 

finally selected as keyframes: 

 

𝐹𝑖
𝑗

= max
𝑗

(𝑑𝑖𝑗) (14) 

 

𝑇 = 𝑀𝐹 − 𝜇𝐹  (15) 

 

2.2.4. Visual descriptor 

After completing the keyframe selection, they are described through a geometric descriptor. For this 

purpose, we compute the Euclidean distances between consecutive landmark points in each frame. Consider 

two consecutive landmark points 𝑙𝑖, li and 𝑙𝑖+1. The Euclidean distance between them is calculated as (16). 

After that, they are normalized by performing division operations through the length as (17). 

 

𝑑(𝑙𝑖, 𝑙𝑖+1) = √(𝑙𝑖+1,𝑥 − 𝑙𝑖,𝑥)
2

+ (𝑙𝑖+1,𝑦 − 𝑙𝑖,𝑦)
2
 (16) 

 

�̂�(𝑙𝑖, 𝑙𝑖+1) =
𝑑(𝑙𝑖,𝑙𝑖+1)

∑ 𝑑(𝑙𝑗,𝑙𝑗+1)𝑗
 (17) 

 

According to the landmark points shown in Figure 2, j varies from 18 to 26 if the normalization is 

intended on the eyebrow region. Next, j varies from 37 to 41 or 43 to 46 for the eye region. Next, j varies 

from 49 to 59, 30 to 35, and 6 to 11 if the normalization is intended on mouth, nose, and chin regions, 

respectively. In addition, we also compute the angles between two lines connected by two landmark points 

with a common landmark point. Table 1 explains a landmark point at different regions and triplets. Consider 

such kind of triplet as 𝑙𝑖 − 𝑙𝑗 − 𝑙𝑘 , then the angle is computed as (18). 

 

𝑙𝑗 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑑(𝑙𝑖,𝑙𝑗)

2
+𝑑(𝑙𝑖,𝑙𝑘)2−𝑑(𝑙𝑗,𝑙𝑘)

2

2𝑑(𝑙𝑖,𝑙𝑗)𝑑(𝑙𝑖,𝑙𝑘)
) (18) 
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Many investigations found that the mouth and ocular areas were crucial to every expression. 

Normalization gives the system scale invariance. Eyebrows, eyes, and lips are shown in the Table 1. 

Normalized distances and calculated angles form the final descriptor. 

 

 

Table 1. Landmark points at different regions and triplets 
Region Landmark points Region Triplets 

Chin 6, 7, 8, 9, 10, 11, 12 Mouth  52-55-58, 53-49-58 

Nose 28, 29, 30, 31, 32, 33, 34, 35, 36 Eyes  45-43-47, 43-45-46, 45-46-47, 38-40-42, 37-38-

40, 38-37-42 

Mouth 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 

64, 65, 66, 67, 68 

Eyebrows  23-25-27, 18-20-22 

Eyebrows 18, 19, 20, 21, 22, 23, 24, 25, 26, 27   

Eyes 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48   

 

 

2.3.  Audio features 

Audio also conveys video emotion. Pitch frequency, high energy, and speech tempo can describe 

anger. Most writers used frequency band energys (FBEs), MFCCs, spectral energy distribution, duration, 

intensity, and pitch to recognize audio-based emotions. These traits represent prosodic patterns to distinguish 

speakers. These patterns affect intonation, pitch, range, phrasing, speaking tempo, and accentuation. Short 

voice samples are used to extract spectral characteristics. We analyze 11 features: pitch, intensity, zero 

crossing rate (ZCR), autocorrelation, standard deviation MFCC, ∆MFCC, FBEs, cepstrun coefficients (CCs), 

formant frequencies (FFs), and harmonic to noise ratio (HNR). We explain features here. 

 Intensity: it computes the peak of a syllable, representing the speech signal's loudness. In general, the 

peak of a syllable lies at the center, and it is a vowel. For a given input speech sample x, the intensity 

feature is computed as (19), 𝐻𝑤
𝑛  is the hamming window, and it is computed as (20). 

 

𝐼𝑖(𝑥) =
∑ (𝑥𝑖+𝑛).𝐻𝑤

𝑛𝑁
𝑛=1

∑ 𝐻𝑤
𝑛𝑁

𝑛=1
 (19) 

 

𝐻𝑤
𝑛 = 0.54 − 0.46cos (

2𝜋𝑛

𝐿
) , 1 ≤ 𝑛 ≤ N − 1 (20) 

 

 Pitch: it can be determined in frequency or time domains. For the speech signal x the pitch is computed as 

(21). Where ln denotes the length of x. 

 

𝜁(𝑠) = 𝐷𝐹𝑇{𝑙𝑜𝑔|𝐷𝐹𝑇(𝑥. 𝐻𝑤
𝑛 . 𝑙𝑛)|} (21) 

 

 Autocorrelation (𝑟(𝜏)): 𝑟(𝜏) is measured concerning delay 𝜏, and it maximizes the inner product of x(n) 

by its shifted variation x(n+ 𝜏). 

 FBEs: FBEs and their derivatives are calculated with the help of the 1st order finite impulse response 

(FIR) filter. For a given input speech signal x(n), the output y(n) is calculated as (22). Where 𝑎𝑖 = ℎ(𝑖) 

and M denote the filter function order, here, 𝑚 = 0,1 … , 𝑁 − 𝑙 and L denote the pulse length. Then, the 

FBEs are calculated as; 

 

𝑦(𝑛) = ∑ 𝑎𝑖𝑥(𝑛 − 1)𝑀
𝑖=0 + ∑ 𝑏𝑖𝑦(𝑛 − 𝑗)𝑁

𝑗=1  (22) 

 

𝑦(𝑚) = ∑ ℎ(𝜃)𝑥[(𝑚 − 𝜃)𝑚𝑜𝑑(𝑁)]𝐿−1
𝜃=0  (23) 

 

 HNR: itsive feelings can be expressed through HNR. The H for a rough voice of younger speakers is 

approximately 20 DB, which means only one percent is noise, and the remaining 99% is a periodic signal. 

 CCs: these coefficients separate the original signal from the filter signal. Sometimes, the signal needs to 

be truncated to fetch the spectra details. For instance, the vocal tract can be analyzed through low 

coefficients calculated by finding the DFT of the log magnitude of the DFT of the signal.  

 FFs: these frequencies are used to describe the resonating frequency of the speaker's vocal tract. Consider 

𝐹𝑠 as the sampling frequency; the FFs are calculated as (24). Where F(x) is the transformed speech signal, 

𝑅𝑒𝐹(𝑥) is the real part, and 𝐼𝑚𝐹(𝑥) is the imaginary part. Here, we considered the 3rd and 4th FFs and 

computed their mean, minimum, maximum, and standard deviation. 
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 ∆MFCCs are calculated as the DCT version of the FBEs log. 

 

𝐹𝐹𝑠 =
𝐹𝑠

2𝜋
𝑎𝑟𝑐𝑡𝑎𝑛

𝑅𝑒𝐹(𝑥)

𝐼𝑚𝐹(𝑥)
 (24) 

 

 

3. SIMULATION RESULT 

Here, in the current section, we discuss the details of simulation experiments of the proposed 

framework. For simulation purposes, we used two datasets, namely SAVEE and RML. Initially, we explore 

the details of datasets and then the results obtained. Finally, we explore the effectiveness of the proposed 

framework by comparing its performance with several existing methods. 

 

3.1.  Datasets 

SAVEE: based on British English utterances, the SAVEE database was built. Four male actors aged 

27 to 31 in the visual media lab helped create this audio-visual database. This database includes surprise, 

sadness, neutral, pleasure, fear, disgust, and fury. There are 480 native British English utterance files at 441.1 

kHz, and 16 bits exist in this database. Sixty samples per emotion and 120 for neutral. The participant was 

positioned in front of the monitor to record text cues. Three images and one video accompany each emotion 

request. Each emotion has three written suggestions to avoid tiredness. This dataset has ten subjects. The 

current simulation used all samples but just 60 neutral samples to maintain emotion consistency. So, 

60×7=420 samples were tested. 

RML: this dataset is constructed at the ryerson multimedia lab, which includes 720 audio-visual 

samples. There are six basic emotions: surprise, sadness, happiness, fear, disgust, and angry. For recording, 

they used a digital camera and captured it in a bright environment with a plain background. The total subjects 

used for recording this dataset are eight, and they spoke different languages like Chinese, Italian, Persian, 

Punjabi, Urdu, Madarin, and English, along with different accents. The samples were recorded at 22,050 

MHz through a 16-bit single channel. The sampling rate of videos is kept at 30 frames per second (FPS), and 

the duration of each video is between three and six seconds. 

 

3.2.  Results 

Here, we conduct a three-phase simulation by varying the data models. In the first phase, we used 

only visual geometric descriptors from video files to train the system. Next, the second phase considers only 

audio features extracted from the audio files. Finally, the third phase simulation considers both data models, 

and the obtained results are fused to produce the final results. We formulate the confusion matrix at every 

simulation based on the results obtained. They are explored below. After the simulation of the proposed 

mechanism on SAVEE and RML datasets, the results are shown as a confusion matrix. Tables 2 to 4 show 

the confusion matrix of the simulation study through only audio, visual, and fused features, respectively. 

 

 

Table 2. Confusion matrix of audio descriptor with SVM on SAVEE 
 Neutral Surprise Sad Happiness Fear Angry Disgust Total 

Neutral 56 0 2 0 2 0 0 60 

Surprise 0 58 0 1 0 0 1 60 

Sad 2 0 53 0 3 0 2 60 

Happiness 1 0 0 56 0 2 1 60 

Fear 2 0 4 0 54 0 0 60 

Angry 0 2 0 2 0 55 1 60 

Disgust 1 1 1 0 2 0 55 60 

Total 62 61 60 59 61 57 60 420 

 

 

Table 3. Confusion matrix of visual geometric descriptor with SVM on SAVEE 
 Neutral Surprise  Sad Happiness Fear Angry  Disgust Total  

Neutral  60 0 0 0 0 0 0 60 

Surprise 0 58 0 1 0 0 1 60 

Sad 1 0 55 0 2 0 2 60 

Happiness 0 1 0 58 0 1 0 60 

Fear 1 0 3 0 56 0 0 60 

Angry  0 0 1 0 1 58 0 60 

Disgust  1 0 1 0 2 0 56 60 

Total  63 59 60 59 61 59 59 420 
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Table 4. Confusion matrix of audio-visual geometric descriptor with SVM on SAVEE 
 Neutral Surprise  Sad Happiness Fear Angry  Disgust Total  

Neutral  60 0 0 0 0 0 0 60 

Surprise 0 60 0 0 0 0 0 60 

Sad 1 0 57 0 2 0 0 60 

Happiness 0 0 0 60 0 0 0 60 

Fear 1 0 2 0 57 0 0 60 

Angry  0 0 0 1 0 58 1 60 

Disgust  0 0 1 0 1 0 58 60 

Total  62 60 60 61 60 58 59 420 

 

 

Similarly, the results of the RML dataset with audio, visual, and audio-visual features are shown in 

Tables 5 to 7, respectively. Both case studies show that the maximum recognized samples are observed in the 

simulation of audio-visual features. Next, the visual features showed better contribution than the audio 

features. 
 
 

Table 5. Confusion matrix of audio descriptor with SVM on RML 
 Neutral Surprise  Sad Happiness Fear Angry  Disgust Total  

Neutral  116 1 3 1 1 0 120 116 

Surprise 0 106 0 7 3 4 120 0 

Sad 3 0 112 0 3 0 120 3 

Happiness 1 6 1 108 1 3 120 1 

Fear 4 0 4 0 110 2 120 4 

Angry  0 4 1 4 1 110 120 0 

Disgust  124 117 121 120 119 119 720 124 

Total  116 1 3 1 1 0 120 116 

 

 

Table 6. Confusion matrix of visual geometry descriptor with SVM on RML 
 Neutral Surprise  Sad Happiness Fear Angry  Disgust Total 

Neutral  116 0 2 0 2 0 120 116 

Surprise 0 110 1 6 1 2 120 0 

Sad 2 0 116 0 0 2 120 2 

Happiness 1 5 0 112 1 1 120 1 

Fear 2 0 2 0 116 0 120 2 

Angry  1 3 0 3 1 112 120 1 

Disgust  122 118 121 121 121 117 720 122 

Total  116 0 2 0 2 0 120 116 

 
 

Table 7. Confusion matrix of audio-visual descriptor with SVM on RML 
 Neutral Surprise Sad Happiness Fear Angry Disgust Total 

Neutral  120 0 0 0 0 0 120 120 

Surprise 0 114 0 3 1 2 120 0 

Sad 0 0 120 0 0 0 120 0 

Happiness 1 3 0 114 0 2 120 1 

Fear 2 0 2 0 116 0 120 2 

Angry  0 2 0 2 0 116 120 0 

Disgust  123 119 122 119 117 120 720 123 

Total  120 0 0 0 0 0 120 120 

 

 

The audio-visual features have good performance for dull emotions like sad and fear compared with 

other emotions. For example, the number of true positives (TPs) of sad in Table 2 is 53, while the same 

expression has 57 TPs in Table 4. Similarly, the TPs of fear emotion in Table 5 are observed as 108, while in 

Table 7, their count is increased to 114. Due to the consideration of multiple features to describe an emotion, 

the recognition system gains sufficient knowledge about the characteristics of emotion and recognizes them 

properly. Figure 3 shows the emotion recognition rates and Figure 4 shows F1-score for different emotions of 

SAVEE. 

Audio-visual descriptors perform best, while audio descriptors perform worse. The visual descriptor 

recognized certain emotions 100%, but not others. Especially when melancholy and fear have similar muscle 

movements, it confuses them. Hence, audio-visual descriptors outperform separate descriptors because they 

improve the recognition rate. Auditory, visual, and audio-visual descriptions are recognized at 92.1429%, 

95.4762%, and 97.6190%, respectively. Figure 4 shows the average F1-score of audios, visual, and audio-

visual descriptors as 92.1517%, 95.4777%, and 97.6169%. 
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Figures 5 and 6 show the recognition rate and F1-score of RML dataset emotions at different 

descriptions. Surprise and happiness have 100% recognition rates. The proposed visual descriptor perfectly 

distinguishes them from other emotions due to their unique muscle movements. 

 

 

  
 

Figure 3. The recognition rate for different emotions 

of SAVEE 

 

Figure 4. F1-score for different emotions of SAVEE 

 

 

  
 

Figure 5. The recognition rate for different emotions 

of RML 

 

Figure 6. F1-score for different emotions of RML 

 

 

 

Sad and fear emotions had the lowest F1-scores for audio-visual descriptors, 95.33% and 93.33%, 

respectively. Happy has the highest F1-score, 99.53%. The proposed fusion description worked for all 

emotions. Auditory, visual, and audio-visual recognition rates are 91.0205%, 94.7123%, and 97.2315%, 

respectively. The average F1-score of audio, visual, and audio-visual descriptors is 90.2144%, 993.4578%, 

and 96.4471%. Table 8 compares proposed and existing SAVEE and RML dataset techniques. LSTM and 

multimodal classification to distinguish emotions from audio-video footage. Several data models yielded 

83.7% accuracy for audio-textual data. Video emotion using facial landmark points and speech signal 

emotion using spectral and prosodic features. They predicted emotion using feature-level fusion and 

classifiers. 

 

 

Table 8. Comparative analysis 
Reference Method Dataset Accuracy 

Begadi [20] Modified Alexnet, LSTM BERT embedding  SAVEE 83.7000 

Abdulmohsin et al. [21] Geometrical, prosodic and spectral features, PCA, and LDA SAVEE 84.000 

Rahdari et al. [22] Facial landmarks, prosodic and spectral features, and fuzzy rough neural network SAVEE 91.6000 

Chen et al. [23] K-means clustering and KCCA SAVEE 93.0600 

Yang et al.  Fusion of Kernel matrix  RML 82.2200 

Fadil et al. [24] Deep networks with multi-layer perceptron  RML 79.7200 

Seng et al. [25] BDPCA, LSLDA, OKL, and RBF-SVM RML 90.8300 

Proposed  Geometrical and composite features and SVM SAVEE 97.1600 

  RML 97.2200 
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Figure 7 explains the accuracy of SAVEE and RML at different descriptors. FRNN was classified 

with 91.60% accuracy. K-means clustering [26] and Kernel canonical correlation analysis (KCCA) to 

recognize emotions from audio-visual characteristics. SAVEE dataset accuracy was 93.06%. Using 420 

samples, the proposed strategy outperformed these algorithms with 97.16% accuracy. For the RML dataset, 

the proposed strategy achieved 97.2% accuracy, far higher than existing methods. 

 

 

 
 

Figure 7. Accuracy of SAVEE and RML at different descriptors  

 

 

4. CONCLUSION 

This paper introduced an efficient multimodal emotion recognition system that considers audio and 

video data models as inputs and recognizes the emotion in audio-video clips. Audio feature descriptor 

includes MFCCs, statistical features, formant frequencies, and energy features. The visual descriptor includes 

landmarks acquisition, non-frontal view faces alignment, key frame selection, and visual geometry based on 

self-similarity distance. For classification, SVM is employed. Finally, at fusion, this work applied decision-

level fusion and combined the confidence scores of individual classifiers to get the final prediction. 

Simulation experiments on two datasets, SAVEE and RML, explore the effectiveness. The approximate 

accuracies over the mentioned datasets are 97.16% and 97.20%, respectively. The average improvement from 

the existing methods is approximately 4% for SAVEE and 7% for RML. 
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