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 Predictive maintenance (PM) is a data-driven approach to performing 

proactive maintenance by analyzing the condition of the equipment in any 

industrial setting. The high-precision sensors are widely adapted to 

meticulously analyze critical maintenance conditions using such a data-

driven approach. In a similar context, a fiber brag grating (FBG) sensor is a 

passive and high-precision sensor that is widely used in industries where 

conventional sensors are not preferred. Broadly, this article presents four sub 

elements of the proposed integrated system such as the design of the sensor 

element, signal processing scheme (SPS), machine learning (ML) model for 

predicting anomalies, and decision support system (DSS) to suggest 

maintenance actions. Also, this article highlights an experimental case study 

on vibration monitoring and analysis of real-time signals for making 

proactive maintenance decisions. An FBG vibration sensor of center 

wavelength 1,550 nm is designed and utilized to acquire real-time vibration 

signatures of a rotating machine under test. A piezoelectric vibration sensor 

is used with the FBG sensor to compare the vibration response obtained 

during the test. Pre-processing of raw signals is performed using a moving 

average filter (MAV) followed by a low pass filter to nullify the effect of 

noise. To obtain proactive maintenance decisions, a DSS model is prepared 

by considering the processed vibration signatures. Various maintenance 

conditions are tested during the experimental analysis and detailed results 

analysis are presented. 
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1. INTRODUCTION 

The shift in modern history from an agrarian and handicraft economy to one dominated by industry 

and machine production was known as the industrial revolution. Technology brought about new ways of 

living and working that changed society as a whole. With the introduction of mechanization, water power, 

and steam power, the first industrial revolution (Industry 1.0) began in the 18 th century. The second industrial 

revolution (Industry 2.0), which began in the 19th century and centered around mass production and assembly 

lines employing electricity, followed. Beginning in the 1970s of the 20th century, the third industrial 

revolution (Industry 3.0) was characterised by the introduction of electronics, information technology 

systems, and automation. These developments paved the way for the fourth industrial revolution (Industry 4.0), 

https://creativecommons.org/licenses/by-sa/4.0/
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which is associated with cyber-physical systems. Figure 1 highlights the concept of the industrial revolution 

from the era of the 18th Century to the 20th Century. 

 

 

 
 

Figure 1. Industrial revolution from Industry 1.0 to Industry 4.0 

 

 

Primary rotating machinery such as motors, compressors, generators, steam turbines, and high-speed 

engines are crucial to modern industrial processes under Industry 4.0 [1]-[3]. Precise operation and fault 

detection of these machines ensure stable industrial processes. Mechanical failures often manifest as 

vibrations [4], [5], which are key parameters for equipment health and safety evaluation [6], [7]. Therefore, 

measuring vibration signals for condition and fault diagnosis of rotating machinery is essential [8]. This 

article highlights the capability of fiber brag grating (FBG) sensors for vibration monitoring of rotating 

machines and interpreting the acquired vibration signature into useful machine fault diagnostics. FBG sensors 

are lightweight, corrosion-resistant, EMI-free, and smaller than traditional sensors. Being passive, they are 

suitable for dynamic distributed measurements [9], [10]. Thus, they are widely used for health monitoring 

and vibration measurement. Researchers have developed FBG-based vibration sensors to evaluate the 

performance of non-uniform FBGs under strain, temperature, and vibration loads. Chilelli et al. [11] 

explained a model of crack initiation and growth in embedded metal structures. Yao et al. [12] discussed 

FBG vibration tuning based on equal intensity beams and its optimization design. 

Modeling and simulation are crucial in sensor design. Two FBGs are used to enhance vibration 

sensitivity: one measures strain, and the other measures vibration and temperature, as mentioned by 

Kouhrangiha et al. [13]. Torre et al. [14] described underwater vibration frequency. Sensor technology for 

vibration monitoring has become a significant research area. The broad objectives of this experimental 

analysis are listed below, which is shown in Figure 2. 

− Design and test an FBG vibration sensor by utilizing low-cost polymers readily available 

− Acquiring real-time signals from the developed FBG vibration sensor by installing it on an experimental 

setup consisting of a rotating motor 

− Developing a signal processing scheme (SPS) for nullifying the effect of noise in the sensor signal 

− Developing a machine learning (ML) model for understanding the machine anomalies of the rotating 

machine under laboratory test 

− Developing a decision support system (DSS) scheme for generating adequate suggestions on machine 

maintenance operation 

The signal processing and analysis are performed to understand the accurate vibration information 

of a motor under a vibration test. The proposed architecture of the predictive maintenance strategy with the 

model is described in Figure 3. This article is composed of eight sections including the introduction.  

The second section explains how FBG functions and how temperature affects wavelength sensitivity, 

including a thorough numerical analysis. SPSs are discussed in the third section, followed by statistical 

parameter extraction in the fourth section. The fifth section describes the proposed ML model for anomaly 

detection. The sixth section discusses a proposed ML model and DSS model, followed by an experimental 

setup, where the integration of FBG interrogator with an internet-based model is presented. The summary of 

the results is in section eight and is portrayed in the conclusion, followed by the reference section. 
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Figure 2. Proposed architecture 

 

Figure 3. Proposed architecture of the predictive 

maintenance (PM) strategy 

 

 

2. WORKING PRINCIPLE OF FIBER BRAGG GRATING 

FBG technology is highly regarded for optical fiber sensors due to its simple manufacturing and 

strong reflected signal. The “grating” refers to the periodic change in the core’s refractive index. When light 

passes over the grating, some is reflected while the rest reaches the fiber’s output. The combined reflected 

light forms a single beam that meets the Bragg condition. When exposed to external forces like strain and 

temperature, the FBG changes in its grating period and Bragg refractive index. In (1) explains how the 

effective index of refraction of the core, 𝑁𝑒𝑓𝑓  and the grating period 𝛬 determine the wavelength of light 𝐵. 

 

𝐵  =  2 𝑁𝑒𝑓𝑓   (1) 

 

Where 𝑁𝑒𝑓𝑓  denotes the effective core refractive index, 𝛬 is the grating period that determines the separation 

between two adjacent grating planes, and 𝜆𝐵 denotes the Bragg wavelength [15]-[18]. The principle of FBG 

is explained briefly and represented in Figure 4. 

 

 

 
 

Figure 4. Basic working principle of FBG 

 

 

The backward reflected peak [19], [20], whose central wavelength is defined by 𝜆𝐵, forms when the 

Bragg condition is met. The relationship between the shift in the Bragg wavelength and the variations in the 

grating period (𝛥𝛬) and refractive index (𝛥 𝑁𝑒𝑓𝑓), which are both strongly correlated with the original 

wavelength, is shown in (2). 

 

𝛥𝜆𝐵 = 2 𝛥 𝑁𝑒𝑓𝑓  Ʌ +  2 𝑁𝑒𝑓𝑓 𝛥Ʌ (2) 

 

The effective change in B can be calculated using the ratio of (2) with (1). 

 
ΔλB

 λB
=

 2 Δ Neff  Ʌ + 2 Neff ΔɅ 

2 Neff  Ʌ
 (3) 

 
ΔλB

 λB
=

Δ Neff 

Neff 
+

ΔɅ

Ʌ
 (4) 
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Bragg wavelength shifting (𝐵) is dependent on the FBG’s temperature variation, where 
ΔɅ

Ʌ
≪

Δ Neff 

Neff 
. When considering the change in refractive index (𝑁𝑒𝑓𝑓) with a temperature variation, the Bragg 

period is much smaller. Considering the reasons mentioned above, a slab-type structure was employed in the 

design of the FBG sensor to achieve larger fiber elongation. This resulted in a higher range of sensitivity for 

the sensor. In (5) and (6) can be utilized to demonstrate how temperature influences the Bragg wavelength 

shift (𝐵). 

 
∆λB

λB
= (1 − 𝑃𝑒)Δε + [

1

Ʌ

∂Λ

∂T
+

1

Neff 

∂Neff 

∂T
] ΔT (5) 

 
∆λB

λB
= (1 − 𝑃𝑒)Δε + (α + ξ) ΔT (6) 

 

The change in strain is represented by 𝛥𝜀, and the strain coefficient is indicated by 𝑃𝑒. The temperature 

change is represented by 𝛥𝑇, and the thermal expansion coefficient and thermo-optic coefficient of the fibre 

are indicated by 𝛼 and 𝜉, respectively. 

 

 

3. SIGNAL PROCESSING SCHEME 

The acquired FBG signal is affected by noise due to artifacts and surrounding vibrations. This noise 

is mitigated by using a moving average filter (MAV). The MAV smooths time-series data by averaging N 

input samples. The filter’s response depends on the convolution sum of the input signal 𝑥[𝑛] and the filter’s 

impulse response, producing the output 𝑦[𝑛]. This operation is expressed in (7). 

 

𝑦[𝑛] =
1

𝑁
∑ 𝑥[𝑛 − 𝑘]𝑁−1

𝑘=0  (7) 

 

Here, 𝑦[𝑛], 𝑥[𝑛 − 𝑘] are represent the smoothed output and input signal respectvely. The filter coefficients 

are uniform and equal to 
1

𝑁
 by confirming evenly distribution across the samples. By adjustment of window 

size, the noise can be reduced and there is trade-off between preserving finer details in the signal and reduced 

noise. 

 

 

4. STATISTICAL PARAMETER EXTRACTION 

The signal processing methods are used to obtain statistical parameters that quantify the statistical 

properties of raw data. These parameters are essential for extracting meaningful information from the data. 

Table 1 highlights the machine faults with their categories and the statistical parameters considered to train 

the ML model for anomaly detection. 

 

 

Table 1. Statistical parameters considered to train ML model for anomaly detection 
Machine faults Category Statistical parameters 

Loose mounting F1 Maximum 

Shaft alignment F2 Minimum 

Bent shaft F3 Mean 

Damaged bearings F4 Median 

Rotor rub F5 Mode 
Broken rotor bar F6 Standard deviation 

Stator damage F7 Variance 

Shaft imbalance F8 Deviation from mean 

 

 

5. PROPOSED MACHINE LEARNING MODEL FOR ANOMALY DETECTION 

ML methods are employed in predictive maintenance for industrial machinery to enable proactive, 

data-driven practices. These algorithms analyze real-time and historical data from machinery to forecast 

probable failures and schedule maintenance tasks before breakdowns occur [21]. By using historical failure 

data, equipment usage, environmental factors, and other relevant information, these models predict 

maintenance needs with high accuracy. This approach minimizes downtime, reduces the likelihood of 

catastrophic failures, and optimizes maintenance costs, thereby enhancing overall equipment reliability and 

operational effectiveness. 
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6. PROPOSED MACHINE LEARNING MODEL AND DECISION SUPPORT SYSTEM 

The proposed predictive maintenance scheme aims to enhance the reliability and performance of 

rotating machinery by combining fast fourier transform (FFT)-based frequency analysis with advanced ML 

models such as partial least squares regression (PLSR) and radial basis function (RBF). Leveraging an 

internet of thing (IoT)-based framework, the scheme enables real-time monitoring and analysis of critical 

frequency components associated with various fault conditions [20]-[22]. The integration of DSS further 

enhances the system’s intelligence, providing actionable insights for maintenance personnel [23]-[26].  

The PLSR model establishes a relationship between a dependent variable, ‘Fault’, and independent variables 

consisting of statistical characteristics and frequency components, maximizing covariance while considering 

multicollinearity [15]. For instance, a negative coefficient for ‘Min’ indicates a negative correlation between 

an increase in the minimum value and a decrease in the projected fault, while a positive coefficient for 

‘Mean’ suggests a higher mean value is linked to a greater likelihood of the fault occurring. The intercept of 

65.0530 represents the baseline fault value when all input variables are zero. The radial basis function neural 

network (RBFNN), with its unique three-layer configuration, uses a RBF in the hidden layer, making it 

effective for data processing, learning, and analysis in predictive maintenance. Initially, a gaussian 

distributed function determines the center and width of RBFs, followed by gradient descent for adjusting 

output weights. RBFNNs can approximate complex nonlinear functions, making them suitable for time-series 

fault prediction, accurately forecasting potential breakdowns by processing previous equipment data. This 

capability reduces maintenance costs, improves machinery efficiency, and minimizes downtime, despite the 

necessity for proper adjustment of characteristics such as number, width, center, and output weights of RBFs. 

Overall, the scheme effectively handles high-dimensional data and offers computational efficiency benefits. 

 

 

7. EXPERIMENTAL SETUP 

Machine vibration can be caused by a variety of factors, including bearings, gears, unbalance, and so 

on, and even small amplitudes can have a significant impact on overall machine vibration. The proposed 

model for the vibration measurement and analysis of a machine is shown in Figure 5. The Ibsen I-MON high-

speed FBG Interrogator captures the continuously changing wavelength 𝜆𝐵 due to machine vibrations. Real-

time signals are acquired by interfacing the FBG Interrogator with the National Instruments LabVIEW 

environment. Figure 6 shows the experimental setup for the proposed vibration sensing procedure. Signal 

processing is then used to achieve precise response data. Vibration sources have characteristic frequencies, 

which can be discrete or combined frequencies. Vibration measurement, a common sensing technique, 

detects, diagnoses, and prognoses by measuring the overall vibration level across a frequency range  

(10-1,000 Hz or 10-10,000 Hz). Minimal vibration machines, excluding bearing vibration, exhibit spikes in 

the vibration signal, indicated by the crest factor (Peak/RMS), signaling incipient failure, while high RMS 

levels indicate critical failure. Rolling bearings without defects generate minimal vibration, whereas defects 

cause high natural frequencies. Single defects, like raceway fracturing, dominate the frequency spectrum with 

impulsive events at raceway passing frequencies. Characteristic defect frequencies and sidebands increase 

with damage but eventually decrease as broadband noise and significant oscillations at shaft rotation 

frequency increase. Bearings at slow machine speeds produce low-energy signals that are hard to detect, and 

those in gearboxes are challenging to monitor due to high energy. 

 

 

  
 

Figure 5. Proposed model for the vibration measurement 

and analysis of a machine 

 

Figure 6. Experimental setup of the FBG sensor 

for vibration analysis 

 

 

8. RESULTS ANALYSIS AND DISCUSSION 

This section details the implementation of a FBG interrogator with a personal computer to acquire 

real-time vibration signatures under various fault conditions. Integrating the FBG interrogator with a PC 

enables robust data acquisition, allowing for precise monitoring and recording of vibration patterns during 
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different fault scenarios. The raw signals recorded using an FBG sensor installed on the vibrating machine 

under conditions such as loose mounting (Fault: F1), broken rotor bar (Fault: F2), damaged bearing (Fault: F3), 

and bent shaft (Fault: F4) are shown in Figure 7. Similarly, Figure 8 displays the raw signals for shaft 

alignment (Fault: F5), shaft imbalance (Fault: F6), stator damage (Fault: F7), and rotor rub (Fault: F8).  

The application of a MAV is a key aspect of signal processing that functions to smooth out fluctuations and 

irregularities in the data. This proves invaluable in enhancing the accuracy and reliability of the information 

derived from the FBG sensor, as it effectively reduces the impact of random noise, which can often distort 

the true underlying signal. Figure 9 shows the smoothed signal during removal of random noise from FBG 

vibration signal during loose mounting condition (Fault: F1), broken rotor bar (Fault: F2), damaged bearing 

(Fault: F3), bent shaft (Fault: F4). Similarly, removal of random noise from FBG vibration signal during 

Shaft alignment (Fault: F5), shaft imbalance (Fault: F6), shaft damage (Fault: F7), and stator rub (Fault: F8) 

faults are briefly explained in Figure 10. 

 

 

  
 

Figure 7. FBG vibration signal during loose 

mounting (Fault: F1), broken rotor bar (Fault: F2), 

damaged bearing (Fault: F3), bent shaft (Fault: F4) 

 

Figure 8. FBG vibration signal during shaft alignment 

issue (Fault: F5), shaft imbalance (Fault: F6), stator 

damage (Fault: F7), rotor rub (Fault: F8) 

 

 

 
 

Figure 9. Removal of random noise from FBG vibration signal during loose mounting condition (Fault: F1), 

broken rotor bar (Fault: F2), damaged bearing (Fault: F3), and bent shaft (Fault: F4) 

 

 

The FFT on the refined FBG sensor signal [27] provides insights into vibrations related to different 

fault conditions [28]. This approach transforms time-domain signals into frequency-domain representations, 

facilitating a detailed exploration of vibrational patterns linked to specific faults. It proves crucial for fault 
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detection, condition monitoring, and structural integrity analysis [27], [28]. Similarly, FFT is used to analyze 

vibration signatures for various predefined faults such as loose mounting (F1), broken rotor bar (F2), 

damaged bearing (F3), bent shaft (F4), shaft alignment (F5), shaft imbalance (F6), shaft damage (F7), and 

stator rub (F8) [27], [28]. Additionally, Figure 11 illustrates the frequency response of the time domain signal 

during these fault conditions, showcasing the effectiveness of FFT in analyzing vibration signatures. 

 

 

  
 

Figure 10. Removal of random noise from FBG 

vibration signal during shaft alignment (Fault: F5), 

shaft imbalance (Fault: F6), shaft damage (Fault: F7), 

and stator rub (Fault: F8) 

 

Figure 11. FFT spectrum of FBG vibration signal 

during different fault condition 

 

 

The PLSR model is utilized to predict fault types by considering statistical parameters and frequency 

components [27]. PLSR effectively handles multicollinearity and establishes strong correlations between 

variables, aiding real-time fault identification [27]. Additionally, a radial basis type neural network is 

employed for fault prediction and correlation establishment like PLSR [27]. Table 2 categorizes 

measurements and parameters under different fault types like damaged bearings, broken rotor bars, and loose 

mountings, providing a comprehensive overview of the data [27]. 

 

 

Table 2. Statistical parameters of the pre-processed FBG vibration signal during different fault conditions  
Loose 

mounting 

Broken 

rotor bar 

Damaged 

bearing 

Bent shaft Shaft 

alignment 

Shaft 

imbalance 

Stator 

damage 

Rotor rub 

Faults 1 2 3 4 5 6 7 8 

Min (nm) 1552.09 1552.14 1552.16 1552.161 1552.1609 1552.1612 1552.162 1552.1614 

Max (nm) 1552.23 1552.19 1552.169 1552.171 1552.1693 1552.165 1552.167 1552.1634 
Mean (nm) 1552.2 1552.16 1552.164 1552.166 1552.1627 1552.163 1552.1645 1552.1622 

Median (nm) 1552.22 1552.21 1552.2 1552.2 1552.21 1552.21 1552.21 1552.21 

Mode (nm) 1552.1 1552.201 1552.208 1552,205 1552.2207 1552.23 1552.202 1552.203 

SD 0.0405 0.0139 0.0013 0.0014 0.0015 6.6965×10-4 9.954×10-4 3.114×10-4 

Variance 0.0016 0.0001927 0.756×10-6 1.9911×10-6 2.241×10-6 4.4844×10-7 9.1137×10-7 9.698×10-8 

Mean of 
deviation 

0.0366 0.0122 9.83×10-4 0.0010 0.0012 5.4067×10-4 7.82×10-4 2.493×10-4 

F0 (Hz) 6.87 6.75 3.12 3.25 3.22 3.12 3.25 3.5 

F1 (Hz) 13.62 13.65 5.62 5.67 5.62 6.5 6.7 4 

 

 

Numerical parameters like amplitudes, frequencies, and statistical values are included for each fault 

type, creating a comprehensive dataset for fault analysis. The diverse nature of measurements and 

characteristics associated with different types of machinery faults is evident from the numerical values under 

each fault type. Figure 12 depict the comparative analysis between predicted fault types using two 

methodologies: PLSR and a radial basis type neural network. These figures showcase the outcomes of the 

research’s dual approach to fault classification based on the pre-processed FBG sensor signal. 
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Figure 12. Estimated fault types using PLSR model and RBF neural network 

 

 

Figure 12 graphically depicts the PLSR model’s predictions for fault types, with each fault category 

represented as a distinct bar or data point on the graph. The x-axis corresponds to different fault types, while 

the y-axis represents predicted fault probabilities or classifications, indicating the model’s confidence in 

predicting specific fault types. This visualization aids researchers and readers in understanding the PLSR 

model’s performance in fault identification and differentiation among fault conditions. Analyzing the 

bars/data points in Figure 12 provides insights into the neural network’s fault classification performance and 

enables a side-by-side evaluation with the PLSR model. In (7) presents the mathematical model incorporating 

statistical parameters and frequency components. 

 

Fault =  65.0530 − (0.0084 × Min) − (0.0898 × Max) + (0.3218 × Mean) − 

(0.2502 × Median) − (0.0084 × Mode) + (0.0426 × SD) − (0.0001 × Variance) − 
(0.0384 × Mean variance) − (0.0522 × F1) − (0.4258 × F2) (7) 

 

Table 3 compares error parameters between two fault prediction models: PLSR and RBF neural 

network, crucial for accuracy assessment. The metrics include root mean squared error (RMSE), residual 

standard error (RSE), and MSE. The table highlights RBF’s superior predictive accuracy over PLSR. These 

metrics aid researchers and practitioners in selecting the most effective model for fault prediction based on 

their needs and data characteristics. 

 

 

Table 3. Error parameters of fault prediction models 
 RMSE RSE MSE 

PLSR 0.079966 0.998781 0.006395 

RBF 0.000025 1.000000 0.000437 

 

 

Table 4 outlines a DSS employing fuzzy logic to link machine faults with fault categories and 

suggest repair and maintenance actions [25]. This integration enhances adaptability and interpretability, 

addressing uncertainties in industrial applications. The article promotes proactive maintenance strategies with 

real-time monitoring and decision support in industrial settings. 

 

 

Table 4. Input and output parameters of fuzzy logic DSS model for different fault conditions 
Machine faults Fault category Suggestion for repair and maintenance Suggestion type 

Loose mounting 1 Tighten bolts, ensure alignment 11, 12 

Shaft alignment 2 Precision alignment, regular checks 21, 22 
Bent shaft 3 Replace or repair, investigate cause 31, 32 

Damaged bearings 4 Prompt replacement, proactive maintenance 41, 42 

Rotor rub 5 Investigate cause, ensure clearance 51, 52 
Broken rotor bar 6 Motor analysis, replace bars 61, 62 

Stator damage 7 Inspect and replace stator windings 71, 72 

Shaft imbalance 8 Dynamic balancing, regular monitoring 81, 82 
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Figure 13 illustrates input and output membership functions corresponding to maintenance 

suggestions (Sugg1 and Sugg2) of the fuzzy DSS model, showing how fault categories (F1 to F8) are 

linguistically characterized within the fuzzy logic framework. Table 5 presents the fuzzy DSS rulebase, 

detailing logical relationships between faults and maintenance suggestions. This integration of graphical 

representations and a well-defined rulebase aligns with the article’s objective of developing a robust fuzzy 

logic-based DSS for predictive maintenance as shown in Table 6, enhancing proactive maintenance decision 

support in industrial practices. Table 6 provides a concise overview of the testing phase for the fuzzy DSS 

model, connecting seamlessly with the previously discussed concepts. This table outlines specific fuzzy 

inputs and their corresponding fuzzy outputs, which represent the system’s recommendations for proactive 

maintenance actions. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 13. The input and output membership functions (MF) of the fuzzy inference system (FIS) 

 

 

Table 5. Fuzzy DSS rulebase 
Rule Number Fault Sugg1 Sugg2 Confidence 

1 F1 11 12 1 
2 F2 21 22 1 

3 F3 31 32 1 

4 F4 41 42 1 

5 F5 51 52 1 

6 F6 61 62 1 

7 F7 71 72 1 
8 F8 81 82 1 

 

 

Table 6. Testing of fuzzy DSS model 
Fuzzy input Fuzzy output 1 (Suggestion 1) Fuzzy output 2 (Suggestion 2) 

2 21: Conduct precision alignment using laser 

alignment tools. 

22: Regularly check and adjust the alignment to prevent future 

issues. 

4 41: Replace damaged bearings promptly. 42: Implement a proactive maintenance schedule for bearing 
lubrication and inspection. 

6 61: Perform a motor current signature analysis to 

identify broken rotor bars. 

62: Replace the damaged rotor bars and inspect the rotor for other 

issues. 
8 81: Use dynamic balancing techniques to correct 

shaft imbalance. 

82: Regularly monitor and balance the rotor to prevent future 

issues. 
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9. PREDICTIVE MAINTENANCE SOLUTION ARCHITECTURE 

The article extensively explores FFT-based frequency analysis [29], a well-established technique in 

IoT-based predictive maintenance. Frequency components corresponding to various vibration conditions are 

stored in a cloud-based distributed platform, facilitating prolonged monitoring and comprehensive machine 

health understanding over time. To address data transmission latency, a pre-processing scheme is introduced 

[30]. This scheme effectively mitigates latency issues, and processed information is systematically transmitted 

to the cloud platform at periodic intervals [31]. Figure 14 illustrates the proposed architecture integrating a DSS 

with the existing FBG interrogation system [32]. The architecture, designed for predictive maintenance of 

rotating machines using IoT, delineates technologies involved in this integrated distributed FBG sensing system, 

emphasizing interconnected elements for efficient and proactive machine health monitoring. 

 

 

 
 

Figure 14. IoT-based solution architecture for predictive maintenance of rotating machines 

 

 

The table provides insights into potential faults and their primary locations within a rotating machine 

[32]-[35]. One identified fault is “impeller imbalance” located in the impeller, likely caused by high 

vibration, indicating irregularities in weight distribution and necessitating close monitoring and corrective 

action. Potential faults associated with the bearing housing, such as “bearing damage” leading to a PA fan 

trip, can result from wear or lubrication issues, posing critical operational risks. The table also identifies 

potential shaft-related faults like “shaft runout” linked to high vibration or wobbling, which can significantly 

impact machine performance [32]-[35]. In industrial scenarios, fault identification in rotating machines using 

PLCs and advanced control systems, coupled with temperature and vibration data collection, enables 

historical performance tracking and proactive issue spotting [36]-[38]. Table 7 outlines potential failure 

scenarios, their primary locations, and associated causes in a rotating machine [32]-[35]. Identified faults 

include impeller imbalance, bearing damage, shaft damage, housing damage, and shaft runout, each with 

distinct causes and implications for machine reliability. This comprehensive matrix supports targeted 

predictive maintenance strategies, aiding in optimal machine performance and preventing severe disruptions. 
 

 

Table 7. Fault identification matrix for rotating machine components 
Primary location Potential failure Causes 

Impeller Impeller imbalance High vibration 
Bearing housing Bearing damage PA fan trip 

Shaft damage 

Housing damage 
Shaft Shaft runout High vibration or Wobbling of the shaft 

 

 

10. CONCLUSION 

The study employs passive, non-contact sensors to analyze electric motor vibration, showcasing 

accurate fault detection. It operates effectively across diverse conditions and captures intentional faults’ 

vibration patterns with remarkable sensitivity. The FBG sensor-based predictive maintenance scheme 

integrates FFT analysis and ML, offering robust fault detection. Statistical parameters and fundamental 

frequency components are leveraged in constructing mathematical models using PLSR and a radial basis type 

neural network, providing a sophisticated approach to fault classification. Comparisons between models 

along with error metrics, highlight the superior predictive accuracy of the RBF model. IoT and DSS enhance 

real-time decision-making, aiding targeted maintenance strategies. Overall, the research advances predictive 

maintenance, providing a comprehensive methodology for industrial real-time monitoring and decision 

support. 
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The study’s conclusion suggests significant future potential in predictive maintenance and fault 

detection for industrial applications. The use of passive, non-contact sensors for electric motor vibration 

analysis showcases a robust approach that can be further optimized and expanded across different industries. 

Future research can focus on enhancing fault detection algorithms, incorporating advanced signal processing 

techniques, and exploring new sensor technologies to improve predictive accuracy and fault classification 

capabilities. Additionally, the integration of IoT and DSSs offers opportunities for real-time monitoring and 

targeted maintenance strategies, promising advancements in industrial maintenance and reliability. 
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