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 Healthcare data analysis has become essential after epidemic outbreaks. The 

manual examination of medical images such as X-rays and computed 

tomography (CT) scans became one of these challenges. This paper 

introduces a healthcare architecture that tackles the analysis efficiency and 

accuracy challenges by harnessing artificial intelligence (AI) capabilities. 

This architecture utilizes fog computing and presents a modified 

convolutional neural network (CNN) designed specifically for image 

analysis. Different architectures of CNN layers are thoroughly explored and 

evaluated to optimize overall performance. To demonstrate the effectiveness 

of the proposed approach, a dataset of X-ray images is utilized for analysis 

and evaluation. Comparative assessments are conducted against recent 

models such as VGG16, VGG19, MobileNet, and related research papers. 

Notably, the proposed approach achieves an exceptional accuracy rate of 

99.88% in classifying normal cases, accompanied by a validation rate of 

96.5%, precision and recall rates of 100%, and an F1 score of 100%. These 

results highlight the immense potential of fog computing and modified 

CNNs in revolutionizing healthcare image analysis and diagnosis, not only 

during pandemics but also in the future. By leveraging these technologies, 

healthcare professionals can improve the efficacy and accuracy of medical 

image analysis, leading to improved patient care and outcomes. 
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1. INTRODUCTION 

The field of healthcare data analysis has undergone a significant transformation, particularly in 

response to pandemics, which have heightened the demand for efficient solutions. During such critical times, 

healthcare professionals and researchers face a significant challenge in manually analyzing medical images, 

including X-rays and computed tomography (CT) scans [1]. This task is time-consuming and complicated by 

the logistical hurdles of transferring these large image datasets to centralized cloud computing servers. 

Moreover, the speed and accuracy of image analysis are crucial factors in effective healthcare image 

management. 

Cloud computing, a technology which permits users to access computing resources which include 

data storage and processing power via the internet, has the likelihood to enhance the safety, quality, and 

efficiency of healthcare. One application of cloud computing in healthcare involves storing and analyzing 

extensive patient data to identify trends and patterns which could aid in more efficient disease diagnosis and 

management [1]. Additionally, cloud computing can facilitate the remote delivery of healthcare services, 

https://creativecommons.org/licenses/by-sa/4.0/
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particularly benefiting patients residing in rural areas or those facing challenges in visiting a doctor's office [2]. 

However, the traditional cloud computing architecture for medical and healthcare purposes relies on a 

centralized approach for data transmission, which poses several challenges [3]: 

i) Security: centralized data storage increases vulnerability to cyberattacks.  

ii) Scalability: scaling centralized data storage to meet the needs of a growing number of users can be 

challenging. 

iii) Compliance: healthcare organizations must adhere to strict regulations governing the privacy and security 

of patient data, which can be difficult with a centralized storage system. 

iv) Latency: the time it takes for data to travel from the network's edge to the cloud and back may be too long 

for time-sensitive healthcare applications, particularly those requiring rapid response in emergency 

situations. 

v) Cost: transferring huge amounts of data to the cloud can be expensive. 

These challenges have led some healthcare organizations to adopt fog computing as an alternative to 

cloud computing. Fog computing, a distributed cloud computing architecture, is better suited for healthcare 

applications. Fog computing nodes are positioned closer to the network's edge, reducing latency and 

improving security. Moreover, fog computing could be a more cost-effective solution for health care 

applications that involve significant data transfer. Fog computing holds great promise for healthcare and is 

expected to witness increased adoption in the future [4]. 

Deep learning (DL), a subset of artificial intelligence (AI), is being leveraged to enhance healthcare 

in various ways. DL algorithms can analyse medical images and data to diagnose diseases, develop new 

treatments, and deliver personalized care [5], [6]. It is also instrumental in developing healthcare applications 

which include virtual assistants as well as chatbots. DL is a rapidly evolving field that is poised to have a 

significant impact on healthcare in the years to come [7], [8]. 

The advancement of science and technology has historically been driven by medicine and healthcare 

[9], [10]. Recent research has focused on integrating fog computing into internet of health technology (IoHT) 

applications, yielding positive outcomes such as reduced service response time, improved system 

performance, and increased energy efficacy. For instance, Xue et al. [11] developed the analytic network 

technique to identify and rank fog computing-based internet of things (IoT) solutions for health system 

supervising. Fog computing in health care includes establishing a distributed intermediate layer between the 

cloud and sensor hubs using IoT frameworks. 

Gia et al. [12] demonstrated the use of fog computing as a gateway to enhance health monitoring 

systems. They created fog computing features, including interoperability, a distributed database, a real-time 

notification mechanism, position awareness, and a graphical user interface with access management. 

Additionally, they presented a lightweight, customizable framework for extracting electrocardiography 

(ECG) features (such as pulse, P, and T waves). Elhadad et al. [13] have suggested a fog-based health 

monitoring framework which utilizes fog gateways in the context of medical decision-making according to 

data collected from sensors embedded in wearable devices. These sensors which include temperature sensors, 

ECG sensors, and blood pressure (BP) sensors, measure a patient's temperature, pulse, and BP respectively. 

Al-Khafajiy et al. [14] introduced the concept of IoT-fog computing in IoT-based healthcare 

systems, suggesting a methodology for improving fog performance through collaborative policies among fog 

nodes for optimal workload and job distribution. Similarly, El-Rashidy et al. [15] presented a detailed 

strategy to monitor pregnant females by utilizing a data replacement and prediction framework (DRPF) 

divided into three layers: (i) IoT, (ii) fog, and (iii) cloud. Their findings indicated strong associations between 

patient age, body mass index (BMI), BP, lymphocyte vitamin E levels, and the diagnosis of gestational 

diabetes. 

Quy et al. [16] presented an all-in-one computer architectural framework and conducted a survey of 

IoT applications according to fog computing in the health care industry. They explored the application 

potential, challenges, and future research objectives in this field. Similarly, Shi et al. [17] evaluated the 

vision and essential characteristics of fog computing, which aims to address the latency issue caused by IoT 

by distributing processing, storage, and networking resources to the network edge, interacting with the cloud. 

Arunkumar et al. [18] recommended HealthFog-CCNN, a fog-based smart healthcare system to 

automatically diagnose cardiac disorders that combines DL and IoT. Their research focused on the medical 

aspects of heart disease patients, utilizing DL in edge computing devices for real-time analysis of cardiac 

problems. Lastly, Mutlag et al. [19] aimed to contribute to the existing knowledge by providing specific 

examples categorized into four groups: fog computing approaches in healthcare applications, system 

development in fog computing for healthcare applications, and evaluation and surveys of fog computing in 

healthcare applications. 

While fog computing and artificial intelligence (AI) have been effectively utilized in the healthcare 

field, no effective framework has been used for heavy healthcare processing, particularly during a pandemic. 
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Furthermore, most papers examine small datasets for efficiency testing. Therefore, the current paper suggests 

a new framework according to a distributed data ingestion/collection layer, with distributed data processing 

and integration layers to simplify the processing of similar data on specific devices. The collected data is then 

forwarded to fog nodes for additional analysis. The next section offers a detailed description of the proposed 

framework. 

To address these formidable challenges, this research paper introduces an innovative healthcare 

architecture that aims to achieve both analysis efficiency and accuracy. At its core, this architecture harnesses 

the power of AI. Specifically, it presents a novel framework that combines the fog computing paradigm with 

a meticulously designed modification of convolutional neural networks (CNNs), tailored explicitly for image 

analysis. A comprehensive exploration of various CNN layer architectures is conducted and subjected to 

rigorous evaluation to optimize performance. 

To empirically validate the efficiency of the recommended approach, a curated dataset of COVID-

19-related X-ray images is used for analysis and evaluation. These images serve as a practical testbed to 

enable comparative assessments against contemporary models such as VGG16, VGG19, and MobileNet. The 

outcomes of these assessments unequivocally demonstrate the exceptional potential of the proposed 

framework. 

These compelling results underscore the transformative potential that emerges from the intersection 

of fog computing and modified CNNs in the domain of healthcare image analysis. In a world grappling with 

the challenges posed by pandemics, the convergence of cutting-edge technology and medical science holds 

the promise of revolutionizing healthcare image analysis and diagnosis, not only during times of crisis but 

also in the broader landscape of healthcare delivery. This research represents a critical step forward in 

realizing this promise and provides a glimpse into a future where the fusion of AI and healthcare unlocks 

boundless potential. 

The remainder of the current paper is planned as follows: section two discusses previous work in the 

field. Section three defines the proposed framework. Section four presents the CNNs architecture. Section 5 

introduces mathematical formulas for the proposed model. Section 6 discusses database for chest X-rays 

(CXR). Section 7 discusses the experimental results. Section 8 evaluation of three layers of the CNN model 

with different epochs. Finally, section 9 concludes the paper by summarizing the outcomes and outlining 

upcoming research directions. 

 

 

2. METHOD 

The integration of fog computing, cloud resources and AI technologies in the proposed healthcare 

framework creates a comprehensive and efficient healthcare ecosystem [9], [10] as depicted in Figure 1. The 

framework aims to improve patient care, streamline healthcare processes, and support research and 

innovation. It consists of several interconnected layers, each with its unique roles and functionalities. 

The first layer is the end layer, which has an essential role in collecting and assimilating diverse data 

from sources which include medical devices, sensors, electronic health records, and patient-generated data. 

Its main functions include data collection, transformation, quality assurance, and aggregation. This layer 

ensures data compatibility, reliability, and security through encryption and authentication. It also prioritizes 

scalability, reliability, adherence to healthcare regulations, and interoperability for efficient data sharing and 

collaboration [11], [12]. 

The second layer is the edge/fog computing layer, that serves as a critical bridge between the data 

sources and the centralized cloud infrastructure. Positioned closer to the data sources, this layer allows real-

time or near-real-time data processing, in particular essential for low-latency healthcare applications like 

patient monitoring and emergency care. It leverages distributed edge or fog computing nodes to execute data 

analytics and computational tasks at the source, reducing the burden on central cloud resources and 

optimizing bandwidth usage. This layer ensures local data processing, secure data storage, and efficient 

resource allocation to enhance system scalability, reliability, and rapid decision-making [13]−[16]. The 

proposed model is in this layer in order to analyse images to detect disease. 

The third layer is the cloud layer, which serves as the central component of the healthcare system, 

providing hardware resources and high-capacity computer services as data centres for data computation and 

storage. It encompasses data analysis and pre-processing procedures, supporting medical professionals in 

making long-term treatment decisions. This layer involves various processing tasks, including normalization 

and data preparation, before training machine learning algorithms such as CNN for disease diagnosis, 

predictive modeling, anomaly detection, and data-driven decision support. It contributes to improved 

healthcare outcomes and drives innovation within the healthcare ecosystem [18], [19]. This layer contains the 

pre-trained CNN model to ensure the validity of the results. 
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In summary, the proposed healthcare framework integrates fog computing, cloud resources, and AI 

technologies to create a holistic and efficient healthcare ecosystem. The framework consists of the data 

ingestion layer, data processing and integration layer, edge/fog computing layer, and cloud layer, each 

playing an essential role in collecting, processing, analyzing, and storing healthcare data to support improved 

patient care and decision-making. 

 

 

 
 

Figure 1. The framework based on IoT fog-cloud computing architecture 

 

 

2.1.  The CNN architecture 

Like other domains, the healthcare field has successfully implemented several DL applications that 

have revealed significant results in various medical scenarios. This success can be attributed to two main 

factors: i) the ability of DL models to learn from labeled or unlabeled datasets and ii) the inherent risk of 

human error in diagnosing cases, regardless of the doctors' expertise level. Consequently, the medical 

research community has developed numerous healthcare systems based on DL methods. 

One specific DL technique, called CNN, has been designed to excel in image identification, 

classification, and prediction tasks. CNN's ability to automatically extract features from images and perform 

in-depth analysis makes it ideally suited for training in the recommended architecture. In this study, a CNN-

based model is proposed for detecting chest diseases in patients using chest radiography images. The model's 

objective is to classify and identify chest diseases by distinguishing between normal X-rays and abnormal 

CXR, as depicted in Figure 2. 

For CNN to operate effectively, the input images must undergo processing to extract visual patterns. 

This process involves a linear operation where two functions represented by matrices are multiplied to 

produce an output. Initially, the images are transformed into a matrix format to facilitate information 
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extraction. CNN comprises several layers that work together to perform these operations efficiently, 

including as shown Figure 3: 

i) Input data layer: this layer reads a pre-processed collection of images. In our case, the X-ray and CT 

images are pre-processed separately. 

ii) Convolutional layer: serving as the core of our proposed model, this layer is responsible for extracting 

features from the image collection while preserving the spatial relation between pixels. 

iii) Batch normalization layer: this layer is a crucial training strategy in deep neural networks as it ensures the 

stability and proper training of convolutional features. 

iv) Rectified linear unit (ReLU) layer: This layer replaces negative pixel values in the convolved features 

with zero, generating a non-linearity map of the CNN network's features. 

v) Fully connected layer: this layer categorizes the convolved features from the image datasets into the 

desired classes. 

vi) Softmax layer: interpreting the probability values of the activation function from the previous layer, this 

layer is particularly relevant for illness diagnosis. The results can be interpreted as two classes: '0' for 

negative (normal CXR or CT) and '1' for positive disease. 

vii) Output layer: this final layer of the CNN model labels the results obtained from the previous layer 

accordingly [20]. 

 

 

 
 

Figure 2. The proposed model is according to CNN architecture 

 

 

 
 

Figure 3. The CNN architecture layers 

 

 

In conclusion, the healthcare field has embraced DL applications, leveraging the remarkable 

capabilities of DL models in various medical scenarios. The proposed architecture incorporates CNN, a 

specialized DL technique for image identification, classification, and prediction, to detect chest diseases from 
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chest radiography images. The CNN model consists of multiple layers, each playing a distinct role in 

efficiently processing and analyzing the input data to classify and identify chest diseases [20]. 

 

 

3. RESULTS AND DISCUSSION 

The experiments were conducted on an HP EliteBook operating on Windows 10 Pro 64-bit. The 

system specifications included a 3.8 GHz Core i7 processor, 16 GB of RAM, an Intel HD Graphics 4600 

GPU, and 1 TB of storage. The experiments were implemented using Python 3.9 with the Keras and 

TensorFlow libraries within the PyCharm program. 

 

3.1.  Database for chest X-rays 

A collaborative team of authors from Qatar University, the University of Dhaka in Bangladesh, 

besides their partners from Pakistan and Malaysia, collaborated with medical professionals to develop a 

comprehensive database of CXR image. This database includes cases of COVID-19-positive individuals, as 

well as normal and viral pneumonitis cases. The dataset is being made available in stages, with the initial 

release comprising 219 COVID-19, 1,341 normal, and 1,345 viral pneumonia CXR images. Subsequently, 

the COVID-19 class was expanded to include 1,200 CXR images in the first update. In the second update, the 

database was further expanded to encompass 1,345 viral pneumonia cases, 3,616 COVID-19 positive cases, 

10,192 normal cases, 6,012 instances of lung opacity (non-COVID lung infections), and an additional 6,012 

COVID-19 positive cases. For our research, we are specifically interested in two datasets: one containing 

10,192 normal CXR and another containing 3616 COVID-19 positive CXR [21]. 

The dataset curated by Chowdhury et al. [22] consists of 13,808 chest images captured in the 

posterior/anterior (PA) or anterior-posterior (AP) view. Each sample in the database has a resolution of 

1,024×1,024 pixels and is stored in portable network graphics (PNG) format. To facilitate compatibility with 

popular CNNs, the images were resized to standard dimensions of 224×224 or 227×227. 

In this study, the dataset of 13,808 images was divided into training, validation, and test sets with a 

ratio of 80:10:10. The corresponding counts for each dataset are as follows: 

i) Training dataset: this dataset comprises a total of 13,808 images, with 2,894 being COVID-19 positive 

CXR and 8,154 being normal CXR. 

ii) Validation dataset: the validation dataset consists of 1,381 images, including 361 COVID-19 positive 

CXR and 1,019 normal CXR. 

iii) Testing dataset: the testing dataset contains 1,381 images, with 361 COVID-19 positive CXR and 1,019 

normal CXR. 

Table 1 provides an overview of the distribution of images across the training, validation, and test sets. In the 

dataset, normal cases equal (0), and COVID-19 positive cases equal (1), as shown in Figure 4. 

 

 

Table 1. Distribution of chest X-ray images after splitting 
Classes Training set Validation set Testing set Total 

COVID-19 2,894 361 361 3,616 

NORMAL 8,154 1,019 1,019 10,192 

 

 

 
 

Figure 4. The dataset of normal cases and COVID-19-positive cases 
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3.2.  Performance measures 

In this paper, to evaluate our model, the cross-entropy log loss function between correct and 

predicted labels is used as an evaluation criterion. The mathematical formula for calculating log loss is 

written as (1): 

 

Log Loss =  − 
1

𝐾
  ∑ ∑ 𝑔𝑖𝑗

𝑆
𝑗=1  𝑙𝑜𝑔 (𝐹𝑖𝑗)𝐾

𝑖=1  (1) 

 

here, K denotes the number of samples, and S denotes the number of classes. The true label of the class is 

represented by g, and the probability of the given sample is represented by F. The natural logarithm is used in 

the formula.  

In terms of the current model assessment, we used the next classification metrics: true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN). We calculate recall, TP rate (TPR), false 

positive rate (FPR), precision, specificity, sensitivity, F1 score, and accuracy using these measures. 

Recall: it represents a model's ability to find all relevant cases within a dataset. Mathematically, recall is 

defined as the number of TP divided by the total number of TP plus the number of FN. 

 

Recall =  TPR =
TP

TP+FN
 (2) 

 

Precision: it indicates a classification model's ability to identify only relevant data points. Precision is defined 

as the number of TP divided by the number of TP plus the number of false positives. 

 

Precision =
TP

TP+FP
 (3) 

 

Specificity refers to the number of correctly predicted negative records. It helps determine how well our 

model predicts the class that we want to label as the negative class. In some ways, it is like Recall for the 

negative class. 

 

Specificity =
TN

TN+FP
 (4) 

 

Sensitivity refers to the number of positive records correctly predicted. For the class that we want to declare 

as the positive class, sensitivity is the same as recall. 

 

Sensitivity =
TP

TP+FN
 (5) 

 

Additionally, accuracy is another evaluation metric used to assess the performance of our model. It is 

mathematically defined as (6). 

 

Accuracy =
Tp+Tn

Tp+TN+FP+FN
 (6) 

 

The F1-score is the harmonic mean of precision and recall, using the following equation to account for both 

metrics as (7). 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

 

The results of our proposed framework showcased exceptional performance in classifying COVID-

19 and normal cases, accomplishing an accuracy of 99.88% and a validation rate of 96.50%. A summary of 

the classification results is presented in Table 2. According to Table 2, our proposed approach achieves the 

highest accuracy of 99.88% in classifying COVID-19 and normal cases. It is accompanied by a validation 

rate of 96.5%, precision and recall rates of 100%, and an F1-score of 100% based on the training rate. 

However, for the validation rate, the precision and recall rates are 98%, and the F1-score is 98.45% with a 

precision of 98.88% and recall rate of 98%. 

Figure 5 provides a visual representation comparing the pooling of a 3-by-3 image with a stride of 2 

and the pooling of a 2-by-2 image with a stride of 3. The illustration concludes that while reducing the image 

features, minimal information loss occurs. Before the completely linked CNN layer, feature maps from the 

three sequential layers are concatenated. Weights are calculated using the Glorot technique [23], the Adam 
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optimizer [24], and a learning rate of 0.001, 400 epochs, and 32 mini-batch sizes. Table 3 depicts the 

proposed model based on CNN's structure. 

 

 

Table 2. Classification results 
Metrics Precision Recall F1-score Accuracy 

Training 100% 100% 100% 99.88% 

validation 98.88% 98% 98.45% 96.50% 

 

 

 
 

Figure 5. Effect of stride and pooling on image resolution 

 

 

Table 3. Proposed model based on CNN 
Layer (type) Output shape Parameter 

Conv2d (Conv2D) (None, 200, 200, 64) 6,976 

Max_pooling2d (Maxpooling2D) (None, 100, 100, 64) 0 
Dropout (Dropout) (None, 100, 100, 64) 0 

Conv2d_1(Conv2D) (None, 100, 100, 128) 295,040 

Max_pooling2d_1(Maxpooling2D) (None, 50, 50, 128) 0 
Dropout_1 (Dropout) (None, 50, 50, 128) 0 

Conv2d_2(Conv2D) (None, 50, 50, 256) 1,179,904 

Max_pooling2d_2(Maxpooling2D) (None, 25, 25, 256) 0 
Dropout_2 (Dropout) (None, 25, 25, 256) 0 

Flatten (Flatten) (None, 160,000) 0 

Dense (Dense) (None, 512) 81,920,512 
Dropout_3 (Dropout) (None, 512) 0 

Dense_1 (Dense) (None, 1) 513 
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3.3.  Evaluation of three layers of the CNN model with 400 epochs 

To validate the output of the presented approach, we implemented and tested the approach using 

(400) epochs with three layers of the CNN model. A series of experiments were conducted to assess the 

performance of the proposed model. The results encompass different performance metrics, comprising 

accuracy, precision, recall, and F1-score. 

 

3.3.1. Using 400 epochs 

Deep-COVID-19, our proposed model according to CNN, was trained for 400 epochs with early 

stopping. It was tested on the remaining 20% of the dataset after all models were trained on 80% of it. Figure 6 

demonstrates the relation between the number of epochs and the loss value. At the first epoch, the loss values 

for the training and validation sets are 0.3852 and 0.4419 for the three-layer model. The loss values for the 

three-layer model decrease dramatically to 0 0.3229 at the fifth epoch. The training loss for the three-layer 

model gradually decreases to 0.0011 at 361 epochs. The validation losses for the three-layer model gradually 

decrease to 0.1418 at 75 epochs. 

Figure 7 shows the relation between the number of epochs and the accuracy value. At the first 

epoch, the accuracy values for the training and validation sets are 0.845 and 0.785 for the three-layer model. 

The accuracy values for three-layer model increase dramatically to 0.9013 at the fifth epoch. The training the 

training accuracy for the three-layer model gradually increases to 0.9988 at 373 epochs. The validation 

accuracy for the three-layer model gradually increases to 0.965 at 159 epochs. 

 

 

 
 

Figure 6. model loss of our Proposed model based on CNN using three layers 

 

 

 
 

Figure 7. model accuracy of our Proposed model according to CNN using three layers 
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Figure 8 shows the relation between the number of epochs and the precision value. At the first 

epoch, the precision values for the training and validation sets are 0.8485 and 0.728 for the three-layer model. 

The precision values for the three-layer model increase dramatically to 0.9303 at the fifth epoch. The training 

precision for the three-layer model gradually increases to 1 at 188 epochs. The validation precision for the 

three-layer model gradually increases to 0.9888 at 324 epochs. 

 

 

 
 

Figure 8. Model precision of our proposed model according to CNN using three layers 

 

 

Figure 9 shows the relation between the number of epochs and the recall value. At the first epoch, 

the recall values for the training and validation sets are 0.84 and 0.91 for the three-layer model. The recall 

values for the three-layer model increase dramatically to 0.8675 at the fifth epoch. The training recall for the 

three-layer model gradually increases to 0.98 at 360 epochs. 

 

 

 
 

Figure 9. model recall of our proposed model according to CNN using three layers 

 

 

Figure 10 shows the relation between the number of epochs and the F1 score value for the three-

layer CNN model. At the first epoch, the F1 scores for the training and validation sets are 3.36 and 3.64 for 

the three-layer model. The F1 scores for the three-layer model increase dramatically to 3.47 at the fifth 

epoch. The training F1 score for the three-layer model gradually increases to 4 at 204 epochs.  
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The validation F1 score for the three-layer model gradually increases to 3.92 at 360 epochs. By 

comparing the results of our proposed model based on CNN with other models in the literature, it was clear 

that our model has higher accuracy in classifying COVID-19 and normal cases. Our model achieved an 

accuracy of 99.88%, a validation rate of 96.5%, a precision of 100%, a recall of 100%, and an F1 score of 

100%. 

 

 

 
 

Figure 10. Model F1-score of our proposed model according to CNN using three layers 

 

 

3.4.  Comparison of deep learning models for the diagnosis of COVID-19 

In this section we compared our proposed model according to CNN with three pre-trained models: 

VGG16, VGG19, and MobileNet. We used the same dataset for all models. Transfer learning has been 

considered as a popular practice in computer vision. A pre-trained model is one that has been trained on a 

major benchmark dataset for problem solving comparable to the one we want to solve. Because of the 

computational charge of training these models, it is frequent practice to import and utilize models from 

documented literatures (e.g., VGG16, VGG19, MobileNet). 

Transfer learning is a powerful technique in computer vision as it permits us to build precise models 

in a timely manner. With transfer learning, we do not start from scratch; instead, we start from patterns that 

have been established when solving dissimilar problems. This allows us to build on existing knowledge 

rather than starting from scratch [25], [26]. 

Figure 11 shows the relation between the number of epochs and the accuracy value for the three pre-

trained models. At the first epoch, the training and validation accuracy for all three models are low. However, 

the accuracy for all models gradually increases over time. Figure 11(a) to 11(c) shows that for 400 epochs, 

the training accuracy for VGG16, VGG19, and MobileNet are 0.925, 0.946, and 0.957, respectively. The 

validation accuracy for VGG16, VGG19, and MobileNet are 0.895, 0.927, and 0.935, respectively. 

Therefore, the proposed model outperforms the three pre-trained models. Our model achieved a 

higher accuracy at 400 epochs than the three pre-trained models. Due to the limited scope of the current 

study, we have summarized the results of the comparison in the Table 4. 

 

 

Table 4. Classification results 
Models Dataset Precision Recall F1-score Accuracy 

VGG16 Train 71% 70% 70.5% 92.5% 
Valid 68.9% 67% 67.9% 89.5% 

VGG19 Train 82% 82% 82% 94.6% 

Valid 79.3% 78% 78.6% 92.7% 
MobileNet Train 93% 93% 93% 95.7% 

Valid 89.6% 87% 88.3% 93.5% 
Proposed model based on CNN Train 100% 100% 100% 99.88% 

Valid 98.88% 98% 98.45% 96.50% 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 11. Model accuracy of three pre-trained models: (a) VGG16, (b) VGG19 and (c) MobileNet 

 

 

4. CONCLUSION  

This paper presents a framework according to an IoT fog-cloud computing architecture for 

identifying COVID-19. We also propose a model based on CNN that is deployed and implemented on a fog 

computing layer to detect COVID-19 from CXR images. We evaluate the performance of the proposed 

model by studying its categorization accuracy. The proposed model was experimented by utilizing three 
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layers of CNN, and the results demonstrated that the training and validation accuracy gradually increased to 

99.87% and 95.50%, correspondingly. 

The proposed model was also experimented with three layers of CNN. The results revealed that the 

training and validation accuracy increased to 99.88% and 96.50%, correspondingly. The proposed model was 

then compared with other studies and with three pre-trained models: VGG16, VGG19, and MobileNet. The 

results showed that the accuracy of the proposed model was higher than the other models. The proposed 

model attained an accuracy of 99.88% in classifying COVID-19 and normal cases, along with a validation 

rate of 96.5%, precision of 100%, recall of 100%, and F1 score of 100%. In the future, we plan to: i) secure 

user multimedia data in the cloud using fog computing; ii) focus on authentication and key agreement using 

different authentication algorithms; iii) use ECG to detect COVID-19, as recent forms of COVID-19 can 

affect the cardiovascular system; and iv) investigate the use of empirical wavelet transform (EWT) and 

principal component analysis (PCA) for data filtering. 
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