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 In this paper, structural health monitoring (SHM) is used to detect the damage 

level for the historic building. The damaged level is defined based on the 

support vector machine (SVM) algorithm to extract the damage feature. 

Physical checks allow us to detect any damage or structural degeneration. 

Supervised training machine learning (ML) is used as a tool to examine 

accelerometer data to ascertain the condition of structures following an 

occurrence. The three training models, the SVM, the random forest linear 

classification, and the k-nearest neighbor (KNN) model are tested and 

compared to classify data. The data obtained from structural health 

monitoring, teams of responders, and investigators can be used to manage the 

most vulnerable structures. The accuracy of the SVM algorithm was found up 

to 94% accurate and precise, at a high level. The internet of things (IoT) 

architecture is also introduced with SVM learning algorithms for early 

warning. The proposed system makes use of an SHM system to identify 

seismic events or accelerations. The IoT system SHM uses real data from the 

structure, allowing for online damage identification and ongoing monitoring. 

A dashboard is used to represent the monitoring data and the damage level. 
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1. INTRODUCTION 

Earth structures are vulnerable to threats like earthquakes, hurricanes, strong winds, and floods.  

Every year, hundreds die when unreinforced earth buildings collapse during earthquakes. Designers must 

consider risk, topography, and seismic stresses to utilize appropriate structural forms and reinforcement. 

Reinforced concrete structures can be damaged in many ways, including wall or roof failure/tilting and cracks 

[1]. Stronger earthquakes cause more building displacement, potentially damaging beams, columns, walls, and 

braces. Damage patterns were observed in structures near the M6.8 Luding earthquake epicenter in China’s 

Sichuan Province [2], including collapsed walls, tilted columns, and cracked beams/slabs. Structural health 

monitoring (SHM) systems have received more attention in the last decade. They evaluate and track all 

structure types. Damage is defined as structural changes in properties (material, geometry) that alter dynamic 

responses and impair functionality. Data features extracted from structural responses characterize the damage 

condition. These are called damage-sensitive features [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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We value historic buildings because they preserve history, showcase ingenuity, and satisfy our desire 

for enduring memory [4]–[6]. Their presence enables us to track social changes and gain a deeper 

understanding of factors shaping current cities, communities, and traditions. Consequently, SHM systems using 

damage-sensitive features have great potential to monitor earth structures vulnerable to natural hazards.  

This is especially important for preserving invaluable historic buildings and monuments that embody our 

cultural heritage. 

Several SHM system types exist. Vibration-based sensors monitor changes in model parameters to 

detect damage. The primary observed parameters are natural frequencies and mode shapes [7], [8]. An SHM 

system continuously records a structure’s acceleration using a wireless network of accelerometers [9] 

connected via radio frequency identification (RFID) tags. Damage states were calculated from the recordings 

based on changes in natural frequencies. The technique was improved by adding a strain gauge to the sensor 

chip for more sensitive detection of structural deterioration [10]. A network of accelerometers and piezoelectric 

transducers monitored mode shape changes for fault localization [11]. Displacement-based SHM systems have 

also been developed. Frequency-modulated continuous-wave (FMCW) radar monitored inter-story drift ratio 

(IDR) by measuring signal echo time [12]. A camera-based SHM system also measured displacement [13]. 

However, current displacement-based systems require wired or wireless sensor networks, which are expensive 

to deploy widely [14]. Most structures thus rely solely on post-event visual inspections. 

Machine learning (ML) algorithms have proven useful for SHM [15], [16]. The ML is a set of 

algorithms that can automatically find uncovering hidden patterns in a large body of data [17], [18].  

González and Zapico [19] discusses the identification of the damage at the structural frame of the steel moment.  

The approach was based on modal variables and artificial neural networks. The network’s input was the mode 

frequency, while stiffness as its output. By comparing the stiffness at each story to the stiffness that was first 

assessed at the beginning, or without damage, it was possible to calculate the damage index after an earthquake. 

The k-nearest neighbor (KNN) and support vector machine (SVM) methods were suggested for fault 

classification in rotating machinery [20]. Therefore, while various SHM system types exist, the wide 

deployment of sensor networks remains challenging. ML approaches show promise but require large data 

volumes. Improving accuracy and reducing costs will enable SHM systems to better monitor more structures. 

internet of things (IoT) sensor technology and the real-time data it provides are indeed transformative for 

monitoring and preserving structures of all kinds, and the approach you described leverages many of the key 

aspects of IoT-enabled condition monitoring (CM). 

The key steps to developing the proposed IoT-based SHM system include: designing the sensor 

network; gathering data from unknown structures; extracting relevant damage features from the data; 

diagnosing issues based on those damage features; and Using ML models to predict damage levels. Thus, the 

proposed IoT-based SHM system combined sensors, ML models like SVM, and dashboards to monitor historic 

structures and artifacts in real-time, with the potential to help preserve invaluable cultural heritage. The sensor 

device is suitable for protecting historic buildings and museum objects. Real-time, rapid data makes it ideal for 

preserving structures and visualizing the environment [21], [22]. Three supervised learning models were 

trained and tested; the KNN model [23], the random forest classifier [24], and SVM [25]. In this work, we 

found that SVM, which can handle both linear and non-linear problems, performed well in this real-world 

problem. A dashboard presented the recorded data and damage level. The damage level resulted from 

comparing readings from the MPU-6050 sensor module with the built SVM ML model. 

The main contributions of this work are:  

− An IoT-based SHM system with a damage level sensor and Raspberry Pi 4 single-board computer to collect 

a large amount of training data. 

− Training and testing of three different supervised ML algorithms are presented. 

− Damage level detection based on sensor module measurements and the SVM model. 

− A dashboard presenting recorded data from monitoring sensors and the damage level. 

Our proposal will be presented in several sections as follows: The section 2 explains the architecture 

of the proposed IoT-based SHM system. The section 3 discusses the implementation of the SHM system based 

on three main parts: sensors components to collect a large amount of testing data, the effectiveness of various 

ML algorithms in accurately and precisely determining damage levels through training and testing, and a 

dashboard that presents the sensor data and damage level in a human-readable format, and section 4 present 

the conclusions of the paper. 

 

 

2. THE ARCHITECTURE OF THE PROPOSED IOT-BASED SHM SYSTEM 

The proposed IoT-based SHM system consists of three main parts: i) Sensor components-including 

the MPU-6050 sensor [26], [27] and Raspberry Pi 4 single-board computer [28], [29]. Oxygen and nitrogen 

oxide sensors gather environmental data, ii) Supervised ML algorithms-are used to detect damage levels based 
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on sensor data, and iii) A dashboard-presents the recorded data from the sensors and the damage level 

determined by comparing MPU-6050 readings with the SVM model output. The IoT-based SHM system 

structure is shown in Figure 1. The proposed system follows these steps by utilizing sensors to collect data 

from the unknown structure. The machine is trained to forecast the type of structural state using the data sets 

of the displacement [30]. This process makes it possible to identify and categorize the structural condition. 

After that, testing is carried out by inserting measured data from the structure into the ML algorithms. Various 

experiments have been carried out to measure the impact of the different types of ML algorithms in identifying 

the damages with high accuracy and precision values. Extracting displacement data as damage features, 

diagnosing damage states, and testing KNN, random forest, and SVM algorithms to predict damage levels.  

The Raspberry Pi, Wi-Fi module, and dashboard enable an IoT structural health monitoring system. The IoT 

dashboard for the SHM system displays human-readable data collected by the monitoring sensors and  

damage levels. 

 

 

 
 

Figure 1. The component of real-time monitoring IOT for the SHM system 

 

 

3. IMPLEMENTED AN IOT-DRIVEN SHM PLATFORM FOR BUILDING MANAGEMENT AND 

MAINTENANCE 

In this section, we present our proposed system, including sensor elements, ML algorithms, and the 

dashboard. The main steps in designing an SHM system are to design the sensor network, gather data, extract 

features, diagnose the problem, and predict the outcome. This three-pronged approach effectively monitors the 

structure’s health as:  

 

3.1.  Sensors parts 

Sensors in IoT monitoring systems must have suitable sensing capabilities to accurately collect data 

[31]. Changes in environment or weather like oxygen content, temperature, humidity, and air quality can 

damage historic structures and artifacts. An oxygen sensor would be installed where fire combustion may occur 

since oxygen levels are often lower [32]. A nitrogen oxide sensor can be used since nitrogen oxide is important 

for preserving structures and collections [33]. A humidity sensor monitors humidity and transforms it into an 

electrical output [34]. Relative humidity (RH) and absolute humidity (AH) sensors exist. The MPU-6050 

sensor module detects damage by sensing movements or door failures [35]. It uses a gyroscope and a 3-axis 

accelerometer. The Raspberry Pi functions like a desktop computer [28], [29]. It uses a 1.5 GHz ARM 

processor. The sensors collected data from 11,000 displacement records, each value measured based on 5,000 

samples. Hence, a range of suitable sensors is required for an effective IoT-based SHM system. Oxygen, 

nitrogen oxide, and humidity sensors monitor the environment while accelerometers and gyroscopes detect 

structural movements and damage. The data collected can then be analyzed to detect damage levels and monitor 

structural health. 
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3.2.  Machine learning algorithms 

The main steps in designing an SHM system are to design the sensor network, gather data, extract 

features, diagnose the problem, and predict the outcome. Data fusion techniques, statistical modeling, and 

pattern recognition algorithms form the first four steps. To compute and predict damage using our proposed 

system; we used a large training dataset of displacement based on SHM [30]. We used data from the MPU-605 

sensor in our system as test data for each machine-learning algorithm. Three supervised learning models were 

tested and compared; i) KNN model [23], ii) random forest classifier [24], and iii) SVM model [25].  

Testing and comparing the performance of different ML algorithms help identify the most suitable models for 

structural health monitoring applications. 

 

3.3.  KNN: k-nearest neighbor 

KNN stands for the number of closest neighbors to an unknown data point used to predict its class. 

It’s a distance-based algorithm that identifies the closest neighbors to determine the class [36]. To select close 

points, KNN measures distances between points. The resulting tested values of the KNN algorithm are 

represented in Figure 2. The grid search technique was used to find the best K with minimum error.  

Figure 2(a) shows various K values were tested and K=1 had the lowest error rate. As shown in Figure 2(b) the 

confusion matrix allows the understanding of misclassified classes of damaged level. By examining diagonal 

values and the matrix, the model’s accuracy can be determined. However, with K=1 and 96% prediction 

accuracy in Figure 2(b), errors still occurred. The confusion matrix's precision had a margin of error across 

damage levels. This showed the model was overfitting the data by finding the closest region instead of making 

accurate predictions. Since the dataset has over 11,000 displacement records, K=1 cause overfitting. More 

neighbors were included to leverage a larger region and make robust decisions. So, the random forest classifier, 

known for more precise and accurate outputs, was used instead. In essence, while KNN achieved high accuracy, 

it suffered from overfitting and imprecise predictions due to the large, noisy dataset. Random forest proved to 

be a more robust model for structural health monitoring using the proposed sensor data. 

 

 

 
 

(a) (b) 

 

Figure 2. KNN-supervised algorithm (a) error rate graph and (b) the confusion matrix 

 

 

3.4.  Random forest classifier 

The tested values of the random forest classifier represented the results in Figure 3. The random forest 

classifier achieves optimal test accuracy when the hyperparameter n reaches a value of 20 or higher, as shown 

in Figure 3(a). The random forest works by randomly selecting n records from the full dataset, and then building 

unique decision trees from each sample [37], [38]. Each decision tree produces an output, and the outputs  

are averaged to make the final prediction. We used sklearn’s confusion matrix function, as illustrated in  

Figure 3(b), to evaluate performance. However, random forests have some drawbacks. As the number of trees 

increases, they become slower and less efficient for real-time predictions. Training is fast but prediction latency 

increases with the number of trees. Overfitting during training can also lead to issues. The high number of 

estimators (n_estimators) required for accurate damage level prediction increases power consumption and 

shortens the lifespan of components. 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Health monitoring of historic buildings using machine learning … (Ahmed H. Eldeeb) 

729 

  
(a) (b) 

 

Figure 3. The results of random forest classifier algorithm (a) the value of n-estimators and  

(b) the confusion matrix 
 

 

3.5.  SVM linear classifier 

SVM works by selecting support vectors that best define the decision boundary [39]. The algorithm 

looks for records that have much in common with the dataset, like those with high damage levels and elliptic 

shapes. As shown in Figure 4, the x-axis represents damage levels (0 in blue, 1 in brown, and 2 in red) while 

the dots represent records. Linear lines separate the regions to accurately identify the predicted value.  

The C value hyper parameter was optimized using grid search cross-validation and hyper parameter tuning.  

The precision and recall in the confusion matrix that has been illustrated in Figure 5 are acceptable, achieving 

94% accuracy and 6% tolerance. This avoids overfitting by the model’s ability to generalize to new data. 
 

 

 
 

Figure 4. Linear kernel representation 
 

 

 
 

Figure 5. The confusion matrix of SVM algorithm 
 

 

The classification report visualizer shown in Figure 6 shows support, F1 score, precision, and recall. 

All heat maps are on a 0 to 1 scale for easy comparison across models. In this work, we found that SVM, which 

can handle both linear and non-linear problems, performed well in this real-world problem. However, some 
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degree of overfitting still occurred. So, SVM achieved high accuracy but still exhibited some overfitting, 

limiting its effectiveness for this application. Hyper parameter tuning helped optimize model performance. 
 

 

 
 

Figure 6. Gaussian classification report 

 

 

3.6.  Dashboard 

The IoT dashboard for the SHM system presents sensor data in a human-interpretable way.  

It determines damage levels by comparing MPU-6050 accelerometer readings against an SVM model trained 

on our Raspberry Pi device. Raw numeric readings appear in line charts formatted clearly for people using the 

dashboard in a web browser. High-level management can view summary metrics across all buildings in one 

place. The dashboard gives an overall “snapshot” of performance as shown in Figure 7. This holistic view 

allows real-time monitoring of the entire structure’s various aspects. Individual sensors like the MPU-6050 and 

O2 sensor present damage levels, temperatures, and percentages respectively in dashboard panels as shown in  

Figures 7(a)-7(c). The most recent 10 data points also appear with all attributes readily available in panel as 

shown in Figure 7(d). Period-specific histograms in panels as shown in Figures 7(e)-7(g) help analyze the 

building’s condition over time. We retrieve this sensor information from a structured query language (SQL) 

database. The IoT dashboard provides an intuitive interface for continuously tracking key structural health 

metrics from the monitoring systems in a visual, easy-to-understand format. Table 1 represents the 10 data 

records from the measurement sensors. 

 

 

 
 

Figure 7. The dashboard; (a) record damage level, (b) record temperature, (c) record oxygen level,  

(d) record of 10 recent points, (e) histogram of damage level, (f) histogram of temperature, and  

(g) histogram of O2 level 
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Table 1. The record of 10 recent points in the dashboard 
ID Time Damage Temperature (OC) O2 Percentage (%) 

62 5/23/2023 3:29:16 AM 1 24.2476 0 

61 5/23/2023 3:29:11 AM 0 24.2947 0 

60 5/23/2023 3:29:05 AM 1 24.2476 0 

59 5/23/2023 3:29:00 AM 0 24.4359 0 

58 5/23/2023 3:28:55 AM 0 24.3888 0 

57 5/23/2023 3:28:49 AM 0 24.2947 0 

56 5/23/2023 3:28:45 AM 0 24.2947 0 

 

 

4. CONCLUSION 

This paper addresses the damage level health monitoring of historic structures and museum artifacts, 

which is urgently needed due to numerous potential threats. The proposed real-time SHM system uses the IoT 

to monitor damage levels and environmental data. ML algorithms aim to detect any changes in these features 

relative to a baseline. Dashboards display the sensor data. The proposed IoT-based SHM system utilizes sensors 

to collect; environmental data like oxygen, temperature, and damage data from an MPU-6050 sensor module 

to detect structural movements or door failures, supervised learning models were investigated. Several 

supervised ML algorithms are employed as; KNN, random forest, and SVM. The SVM was found to perform 

well for real-world problems, addressing both linear and nonlinear issues. The SVM algorithm achieved up to 

94% accuracy and precision, at a high level. In summary, the proposed IoT-based SHM system combines 

sensors, ML algorithms like SVM, and dashboards to effectively monitor the damage levels and environments 

of historic structures and museum artifacts in real-time. This has the potential to help preserve invaluable 

cultural heritage. 
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