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 The paper offers the obtained quantitative assessment of the performance 

and energy parameters of a process system composed of an asynchronous 

motor, a fluid-handling machine and a pipeline when using two methods of 

performance control, in particular, throttling and speed control methods. 

Taking into account nonlinearity of mathematical representation of fluid-

handling machines and asynchronous drive motors, the starting conditions 

were analysed using nonlinear differential calculus. The calculations for the 

models were performed using the MATLAB software package. Transient 

profiles of flow and head, stator current, angular frequency and torque of an 

asynchronous motor were obtained at pump startup and control of pump 

capacity. It has been found that the developed mathematical model of a 

process system composed of an asynchronous motor, a fluid-handling 

machine and a pipeline allows obtaining quantitative estimation of the 

performance and energy parameters of the unit when using two methods of 

the pump capacity control. The use of frequency method allows to decrease 

the pump rotation speed and significantly reduce the power consumed by the 

unit and provide energy-saving mode of operation, the economic efficiency 

of which depends on the range of feed control.  
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1. INTRODUCTION  

The regulation of liquid and gas flows conveyed by pipelines is highly significant. During the term 

of applications, the fluids being transported are contained within tanks, equipment, and pipelines. 

Simultaneously, it is acknowledged that pipelines, valves, and other apparatuses generate resistance to the 

movement of fluids. The presence of mass in flowing liquids or gasses results in the resistance of friction and 

inertia against the forces driving the motion. The dynamic mathematical models of fluid flows in pipelines 

should consider the inertial properties of the fluid. 

The transient performances, in terms of duration, processing accuracy of control actions, 

overregulation, and other factors, should satisfy certain requirements while considering two different 

pumping capacity values. Preventing water hammer and vibrations is a crucial concern in liquid flows. 

Hence, a dynamic mathematical portrayal of fluids is essential for the advancement of effective flow control 

systems for pipelines. These models should accurately represent the correlation between external pressure, 

characteristics of the transported fluid, pipeline and control equipment parameters, and the flow rate. 

https://creativecommons.org/licenses/by-sa/4.0/
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Fluid-handling machines, also known as turbo-mechanisms, are responsible for efficiently moving 

enormous quantities of liquid and gas via pipelines. This equipment includes pumps, fans, pressure blowers, 

and compressors. Researchers are now studying issues connected to the transportation of material media 

through pipelines. This is important since choosing the right capacity control strategy for these systems can 

lead to significant energy savings. The mechanical energy exerted on a fluid-handling machine during its 

operation is transformed into both potential and kinetic energy of the transported material. Energy losses are 

present in every component of the drive-fluid-handling machine-pipeline process chain. 

Various calculations suggest that the electric drives used in fluid-handling devices account for 

around 25% to 30% of the total global electricity generation [1], [2]. Hence, it is economically justifiable to 

develop a dependable and sufficient mathematical model for the processes taking place in electric drives of 

fluid-handling equipment. The authors in [3]−[9] discuss the problems associated with energy efficient 

capacity control of fluid-handling equipment. Implementation details of a special nature are also taken into 

account in the range of references [10]−[17]. We will employ the methodologies described in [18] to 

construct mathematical models of the components involved in the electric drive - fluid-handling equipment 

pipeline process flow. 

 

 

2. METHOD AND MODEL OF A PROCESS SYSTEM ‘ASYNCHRONOUS MOTOR-FLUID-

HANDLING MACHINE-PIPELINE’  

The main process parameters of fluid-handling machine are flow and head. These parameters 

depend on the rotation speed of the machine and the resistance of the pipeline through which the liquid or gas 

flows. In steady-state mode, the operating point of a pump or fan is defined as the point of intersection of the 

Q-H characteristic of the machine and the characteristic of the pipeline. When regulating the performance of 

the fluid-handling machine by throttling method, the position of the pipeline characteristic changes, and when 

controlling the speed of the drive motor, the Q-H characteristic of the machine changes its position. When the 

speed is reduced, the Q-H characteristic of the machine moves downwards, while the flow and head values at 

the operating point decrease. The useful power consumed by the fluid-handling machine is proportional to 

the product of flow and head. Therefore, when the rotation speed is reduced, the power consumed from the 

mains decreases, and when using the throttling method, this power increases in proportion to the increase in 

head. To quantify these methods of pump capacity control, mathematical models have been developed, which 

take into account the dynamic characteristics of the elements of the process system. Equation of liquid or gas 

flow in a pipeline [19]−[21]: 

 

𝐻 − 𝐻𝑀𝑎𝑔 =
1

𝐻1

𝑑𝑄

𝑑𝑡
 (1) 

 

where Н is the head (pressure) at the inlet of the machine, Pa; Нмаg is the characteristic of the pipeline, Pa; 
1

𝐴1

𝑑𝑄

𝑑𝑡
 is the dynamic head in the pipeline. 

Characteristic of the pipeline taking into account the static head is as (2): 

 

𝐻𝑀𝑎𝑔 = (𝐻𝐶 +
𝐴2

𝐴1  
)𝑄2 (2) 

 

where Нс is the static head in the pipeline. Design and process parameter А1 is determined from (3): 

 

𝐴1 =
𝑆

𝐿𝛾
 (3) 

 

where S=πd2/4 is the equivalent cross-sectional area of the pipeline, m2; d is the equivalent diameter of the 

pipeline, m; L is the equivalent length of the pipeline, m; γ is the density of the pumped liquid or gas, kg/m3.  

The resistance factor of the pipeline A2 may be calculated from the datasheet specifications of the 

fluid-handling machine for the operating point Н=НН and Q=QН. 

 

𝐴2 =
𝐴1(𝐻𝐻−𝐻𝐶)

𝑄𝐻
2  (4) 

 

Laplace transformation of (1) followed by the use of (1) to (4) allow to obtain the fluid-handling 

machine model shown in Figure 1. Let us use parameter values of the existing pump and pipeline. Technical 
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and design data of the pump and pipeline: pump type SA075T; QH=4,680 m3/h, НН=9.8 m, НС=0 m,  

ωН=293 1/s, d=50 mm =0.05 m, L=10 m, S=0.0019625 m2, К=177.5147 Pa∙s2/m6, К1=1.4543 Pa∙s2, 

А1=19.625 10-8 m3/kg, А2=11522.574 Pa∙s2/kg∙m3. The block model of the regulated electric drive of the 

pump unit, containing frequency converter (FC), pump and drive motor (asynchronous motor) is shown in 

Figure 2. The flow diagram contains flow setting device SQ, FC PH, asynchronous motor ad, pump, and 

measuring unit B. 

 

 

 
 

Figure 1. Model of the fluid-handling machine and pipeline 

 

 

 
 

Figure 2. Block model of the process system and FC 

 

 

Modern FCs are produced using microprocessor-based control system and contain transistorized 

power part. Such converter as a link of the control system can be represented by instantaneous element with 

two control channels: voltage and frequency [22]−[25]. At scalar control of such converter for the fan type 

loads, a nonlinear control law between voltage and frequency is chosen. Such law is chosen in the FC model 

shown in Figure 3. 

The FC model consists of a voltage setting device, which includes two blocks of factors Kd=0.6 and 

Kԛ=0.8 determining the amplitude and initial phase of the voltage; a frequency setting device, which includes 

a time block and a block for setting the angular frequency of the stator field ω1=2πf1; coordinate converter 

unit (PK) for converting rotating coordinates x and y into stationary coordinates α and β; phase converter unit 

(PF) for converting two-phase coordinate system α, β into three-phase A, B, C. The reference signal from the 

flow valve is fed to the input of the frequency setting device. Therefore, the current frequency at the PF 

output will be proportional to the reference signal. A multiplier unit is installed at the input of the voltage 

setting device, so the torque developed by the motor will correspond to the fan load. The model of process 
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system with FC for pump SA075T is shown in Figure 4. The model contains an asynchronous motor (type 

4A63B293) with the following nominal data: Pн=0.55 kW; Uн=230/400 V; IH=3/1.5 А; nн=2850 rev/min; 

ηн=0.73%; cosØн=0.98; Rs=19.066 Ohm; RR=14.079 Ohm. 

 

 

 
 

Figure 3. FC model 

 

 

 
 

Figure 4. Model of a process system and FC 

 

 

The model is build according to the block structure shown in Figure 2. The pump model is built 

using multiplier unit, multiplier-division blocks, adder units, transfer factor units K1...K5, constant value 

units A1, A2 and C, units of measuring instruments. The pump model takes into account the change in the 

efficiency of the mechanism during flow control. For this purpose, the factors K2 and K3 are used. The pump 

model at capacity control by throttling method contained an adjustable factor A2, and at frequency control 

this factor remains unchanged: A2=11152.574=const. 

 

 

3. RESULTS AND DISCUSSION  

Transients (oscillograms) for various parameters of the electric drive and pump when controlling the 

pump capacity by throttling method and by frequency speed control method were compared. Figure 5 shows 

the transients of pump head and flow rate at start-up and pump capacity control as shown in Figure 5(a) by 

throttling method and Figure 5(b) by frequency control. Obtained oscillograms shows that at control of the 

pump capacity by both methods the flow rate in a steady-state mode is identical and varies within the limits 

from nominal value of 4.7 m3/h to minimum value of 2.17 m3/h. when using throttling method for control, the 

pump head increases 1.26 times and when using frequency control method, the pump head decreases 4.6 time. 

Analysis of the received oscillograms allows to determine that at control of the pump capacity by 

both methods the flow rate in a steady-state mode is identical and varies within the limits from nominal value 

of 4.7 m3/h to minimum value of 2.17 m3/h; however, the head varies in a different way: 

− When using throttling method for control, the pump head increases 1.26 times from 9.73 m to 12.23 m; 
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− When using frequency control method for control, the pump head decreases 4.6 time from 9.73 m to 

2.11 m. 

 

 

 
(a) 

 

 
(b) 

 

Figure 5. Pump head and flow transient at start-up and capacity control (a) by throttling method and  

(b) by frequency control methods 

 

 

Figure 6 shows transients on stator current, angular rotation speed and motor torques at start-up and 

control of the pump capacity as shown in Figure 6(a) by throttling and Figure 6(b) frequency control 

methods. Obtained oscillograms shows that at control of the pump capacity within the limits from nominal 

value of 4.7 m3/h to minimum value of 2.17 m3/h, the stator current and motor torque are decreased but the 

speed of the motor remains constant by using throttling method of control, whereas by using the frequency 

control method the torque and current are more decreased than by using throttling method. 

Analysis of the received oscillograms allows to determine that at control of the pump capacity 

within the limits from nominal value of 4.7 m3/h to minimum value of 2.17 m3/h: 
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− By throttling method, the stator current of asynchronous motor decreases from 0.755 A to 0.734 A; 

pump speed almost does not change; asynchronous motor torque decreases from 0.732 and to 0.646 Nm;  

− By frequency control method, the stator current of asynchronous motor decreases from 0.755 A to 0.43 

A; asynchronous motor torque decreases 0.732 to 0.25 Nm. 

 

 

 
(a) 

 

 
(b) 

 

Figure 6. Transients on starter current, angular rotation frequency ω and torque of asynchronous motor M at 

start-up and control of the pump capacity (a) by throttling and (b) frequency control methods 

 

 

Figure 7 shows the time variation of torque and power of resistance forces on the shaft of 

asynchronous motor start-up and pump capacity control as shown in Figure 7(a) by throttling and Figure 7(b) 
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frequency control methods. Obtained oscillograms shows that at control of the pump capacity within the 

limits from nominal value of 4.7 m3/h to minimum value of 2.17 m3/h, the torque of resistance on the shaft of 

the asynchronous motor reduces, and power of resistance forces also reduces, but by using the frequency 

control method the torque of resistance on the shaft of the asynchronous motor reduces, and power of 

resistance forces are more decreased than by the using throttling method. Analysis of the received 

oscillograms allows to determine that at control of the pump capacity within the limits from nominal value of 

4.7 m3/h to minimum value of 2.7 m3/h: 

− By throttling method, the torque of resistance on the shaft of asynchronous motor reduces from 0.579 to 

0.4925 Nm; power of resistance forces reduces from 176.7 to 150.8 J; 

− By frequency control method, the torque of resistance on the shaft of asynchronous motor reduces from 

0.579 to 0.1834 Nm; power of resistance forces reduces from 176.7 to 26 J. 

 

 

 
(a) 

 

 
(b) 

 

Figure 7. Oscillograms of the torque and power of resistance forces on the shaft of asynchronous motor at 

start-up and control of the pump capacity (a) by throttling and (b) frequency control methods 
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4. CONCLUSION  

Two methods for control of the performance of the process system composed of an electric drive, a 

pump and a pipeline were compared. The research has shown that when the pump flow rate decreases by  

2.17 times: i) head increases 1.26 times when controlling by the throttling method, and 4.6 times when 

controlling by frequency method; ii) stator current, torque and speed of asynchronous motor at throttling 

almost do not change, and at frequency method they decrease: current –1.77 times, torque –2.93 times, speed 

–2.15 times; iii) torque and power of resistance forces on the shaft of the asynchronous motor at throttling 

decreases 1.17 times, and at frequency method the moment of resistance forces decreases 3.15 times, and 

power 6.79 times. Thus, the developed mathematical model of the process system composed of an 

asynchronous motor, a fluid-handling machine and pipeline allows to obtain quantitative assessment of the 

performance and energy parameters of the unit using two methods of pump capacity control. Deployment of 

the frequency method allows to reduce the pump rotation speed, and significantly decrease the power 

consumed by the unit and provide for energy-saving mode of operation, the economic efficiency of which 

depends on the range of feed control.  
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