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 Brain-computer interfaces (BCI) are a channel that implements direct 

communication between the brain and some external unit. Developments of 

BCIs can provide new application opportunities in a large number of fields of 

use. In the development of BCI devices, the development of technology and 

digital technology represented a big change, as it provided the necessary 

computing power to implement and run the continuously developing signal 

processing algorithms that ensure processing and evaluation. The aim of this 

paper is to provide an overview of BCI research results which were published 

in the engineering field. In the present study, articles that had a greater impact, 

where the annual average number of citations is greater than 30, in the BCI 

field were reviewed and processed in a systematic way, in order to make 

individual research more comparable. The systematic processing was focused 

on the aims of application, used device/dataset, applied data process and 

achieved best accuracy. This systematic study summarizes the most effective 

methods used in the BCI processing and highlights the future trends. The 

results showed an accuracy of 85% thanks to increasingly reliable, accurate 

and cost-effective signal detection and processing devices, as well as 

algorithms. 
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1. INTRODUCTION  

Brain-computer interfaces (BCI) are a channel that implements direct communication between the 

brain and some external unit. The history of BCI can be followed back to the 60s [1]. Even the initial research 

related to brain waves attracted attention, when the German Hans Berger researcher was able to record brain 

activity through the human scalp in 1929 [2]. The technology available at that time was even less suitable for 

processing and evaluating these brain electrical signals. As a result of this problem, Hans Berger did not was 

able to prove beyond a doubt the importance of brain signals. The devices that measure, record and process 

https://creativecommons.org/licenses/by-sa/4.0/
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brain signals, as well as the signal processing algorithms - which perform the determination of brain signals-

have developed significantly as a result of research [3], [4]. In the last 20 years, the number of research based 

on brain-computer interface technology, which processes and transmits measurable signals of the brain, has 

increased considerably. While at the beginning of the nineties we could only find a few publications about 

brain-computer interfaces, today the number of articles, publications and research dealing with this technology 

has increased significantly [5]. Figure 1 shows the quantitative development of BCI-based articles in the field 

of computer science and engineering from 2000 to 2020. A significant increase even more in the number of 

publications in 2010s as compared to 2000s implicates the growing importance of BCI technology. 
 

 

 
 

Figure 1. The number of BCI publications in computer science and engineering fields over 20 years: the 

statistics was based on a search on Scopus 
 

 

As a result of research in recent years, the reliability of the technology has improved significantly. 

The implemented brain-computer interface provides an alternative communication channel between the BCI 

unit wearing and a program running on a computer. In the 2000s, the primary goal of the technology was to 

help patients with severe neuromuscular disabilities [6]. Cognitive neuroscience-multidisciplinary research and 

developments-have encouraged researchers to set novel goals for the BCI field. Brain-computer-based 

interfaces and their current and future developments can provide new application opportunities in a large 

number of fields of use. They can also play a significant role in studies based on human attention and alert 

states, such as sleep detection, which can be used to detect waning attention or a state close to falling  

asleep [7], [8]. In addition to all of this, applications where the reduction of the reaction time is the main goal, 

as well as the intervention in the shortest possible time in the event of an unexpected emergency, which can 

occur in the event of sudden braking of a passenger car in an emergency situation, also have great research 

potential too [9]. Electroencephalogram (EEG)-based BCI systems can be portable in terms of their design, 

with the development of technology they are becoming more and more compact, and their use has also become 

relatively simple. In the development of BCI devices, the development of technology and digital technology 

represented a substantial change, as it provided the necessary computing power to implement and run the 

continuously developing signal processing algorithms that ensure processing and evaluation. Nowadays, 

portable BCI systems with a simpler design do not require expensive equipment that requires serious expertise 

in its application. After measuring, digitizing, pre-processing, normalizing and filtering the bioelectrical signals 

generated during brain activity, the characteristics of the EEG signals primarily in the time domain and/or 

frequency domain are determined. Based on the characteristics of the EEG signal, the signals are classified 

and, as a result, brain activity is identified, which information can be displayed, or even additional functions 

can be implemented with their use as shown in Figure 2. 

In the present study, articles that had a greater impact in the BCI field were reviewed and processed in a 

systematic way, in order to make individual research more comparable. The aim of this paper is to provide an 

overview of BCI research results which were published in engineering field. The systematic processing was 

focused on the aims of application, used device/dataset, applied data process, investigated EEG feature and 

achieved best accuracy, which make the main contribution to the reviewed papers and highlight the importance 

of the methods used. The paper presents the reviewed papers selection methodology, summarizes the most 

important parameters of the articles in a table form and summarizes the essential contributions of the papers, 

supplemented by an overview of other relevant articles in the results and discussion section. Finally summarize 

the results of the systematic review. The authors included the papers in the study from 2015, since from this 

period, in addition to clinical devices, more and more commercially available BCI devices appeared on the market, 

which expanded the possibilities of research. 
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Figure 2. A functional model of the BCI system 

 

 

2. PAPER SELECTION METHOD 

In this paper, it was investigated only BCI applications in engineering field since we consider these 

applications relevant to possible industrial use in the future. The publication selection process includes a 

designated set of papers from important Scopus indexed journals and conferences within the field. Preferred 

reporting items for systematic reviews and meta-analyses (PRISMA) method was used in the selection and 

analysis process of the papers included in this review.  

The manuscript collection process involved four steps: i) the identification of papers using to the 

search arguments; ii) the application of the eligibility criteria; iii) the screening to select the manuscripts which 

are not relevant; and iv) the selection of most cited papers to be presented in this review. 

The most cited papers were selected based on the annual citation (AC) number calculated using (1) 

(the result was rounded to the nearest whole number); 

 

𝐴𝐶 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑎𝑟𝑠 𝑠𝑖𝑛𝑐𝑒 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
 (1) 

 

Section 1 explained the relevant selected papers are those which describe BCI research in the field of different 

engineering applications. The main eligibility criteria were: i) papers in English language; ii) papers in 

computer science and engineering fields; and iii) from year 2015. 

A search was carried out on the 23rd of September 2022, using the Scopus database. The Boolean 

string query applied in the search were achieved based on these inclusion criteria: 

 
(TITLE-ABS-KEY (brain?computer) OR TITLE-ABS-KEY (BCI)) AND PUBYEAR>2014 AND (LIMIT-

TO(SUBJAREA, "COMP") OR LIMIT-TO (SUBJAREA, "ENGI")) AND (LIMIT-TO (DOCTYPE, "cp") OR LIMIT-

TO (DOCTYPE , "ar") OR LIMIT-TO (DOCTYPE,"ch") OR LIMIT-TO (DOCTYPE, "bk" )) AND (LIMIT-TO 

(LANGUAGE , "English")) AND (LIMIT-TO (EXACTKEYWORD, "Brain Computer Interface") OR LIMIT-TO 

(EXACTKEYWORD, "Brain-Computer Interfaces") OR LIMIT-TO (EXACTKEYWORD, "Brain-computer 

Interface")).  

 

The OR operator was used for terms considered synonyms and the AND operator to separate criteria. 

The selection criteria summarized in Table 1. The total number of papers were 2020 and based on the AC 

values and selection criteria 23 were finally added in this study. This method does not include any subjective 

criteria the result is based on the query criteria, AC value, and year. 

 

 

Table 1. Summary of the paper selection criteria 
Inclusion Exclusion 

Topic is BCI research Articles are review articles 
BCI application in engineering and computer science fields BCI application in medicine, social science, and neuroscience 

Fit the query criteria Not fit the query criteria 

Paper in English Paper not in English 
Year≥2015 Year<2015 

AC≥30 AC<30 

 

 

3. PAPER PROCESSING RESULTS AND DISCUSSION 

The data collection process to extract relevant information from the articles was based on an 

information summarization matrix. For each inserted article, key characteristics were extracted as data 

summary matrix shown in Table 2 in appendix [10]–[31]. The main findings of the papers are summarized 

below. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 32, No. 3, December 2023: 1755-1765 

1758 

We have summarized some of the abbreviations in the table: convolutional neural network (CNN), 

P300 visual-evoked potential (P300), movement-related cortical potential (MRCP), error-related negativity 

(ERN), sensory motor rhythm (SMR), deep learning (DL), motor imagery (MI), stacked autoencoder (SAE), 

short time fourier transform (STFT), steady-state visual evoked potentials (SSVEP), task-related component 

analysis (TRCA), infinite impulse response (IIR), filter-bank common spatial patterns (FBCSP), machine 

learning (ML), signal processing (SP), channel mixing convolutional neural network (CM-CNN), channel-wise 

convolutional neural network (CW-CNN), channel-wise convolution with channel mixing (C2CM), support 

vector machine (SVM), empirical mode decomposition (EMD), discrete wavelet transform (DWT), wavelet 

packet decomposition (WPD), higher order statistics (HOS), multiscale principal component analysis 

(MSPCA), restricted Boltzman machine (RBM), frequential deep belief network (FDBN), extreme learning 

machine (ELM), multi-kernel learning (MKL), common spatial pattern (CSP), constrained sparse group spatial 

pattern (TSGSP), continuous wavelet transform (CWT), bispectrum (BiS), multi-layer perceptron (MLP), 

autoencoder (AE), logistic regression (LR), sparse group representation model (SGRM), canonical correlation 

analysis (CCA), filter bank canonical correlation analysis (FBCCA), amplitude and signal to noise ratio (SNR), 

auto regression (AR), dataset for emotion analysis using EEG, physiological and video signals (DEAP), genetic 

algorithms and a support vector machines (GA-SVM), minimum-redundancy-maximum-relevance (mRMR), 

Hjorth parameters (HP), fractal dimension (FD), band power (BP), radial basis function (RBF), radial basis 

function (SP), sparse Bayesian learning (SBL), Bayesian learning of frequency bands (SBLFB), sparse 

discriminant analysis (SDA), event-related potentials (ERP), Bayesian linear discriminant analysis (BLDA), 

region of interest (RoI), event related desynchronization (ERD), time–frequency representation (TFR), cortical 

current density estimation (CCDE), variational autoencoder (VAE), common spatiospectral pattern (CSSP), 

linear discriminant analysis (LDA), Bayesian spatiospectral filter optimization (BSSFO), multivariate 

empirical mode decomposition (MEMD), and multivariate intrinsic mode function (MIMF). 

The researches shown in the overview table have the following important characteristics: i) BCI 

methods: most used methods the EEG, CNN, P300, SSVEP, DL and ML; ii) Device/ dataset: most used BCI 

Competition datasets and different EEG devices; iii) Data process: spatial filtering, CNN based classification 

and interpretation, CSP and SVM are the most used data processing methods; iv) investigated EEG feature: 

MI; and v) best accuracy: 80-90%. 

The following sections briefly summarise the research analysed, highlighting the main points of the 

research. Lawhern et al. [10] studied four BCI data processing methods-P300 visually evoked potentials, ERN, 

MRCP and SM-using CNNs. Their goal was to find out whether there exists a CNN architecture that can 

classify EEG signals generated by different BCI test methods. The EEGNet system they have created is widely 

applicable and shows stable performance. Tabar and Halici [11] applied DL methods, including CNNs and 

SAEs, to improve the classification of EEG motor image signals. A new input shape and deep network were 

introduced, which achieved better results compared to previous approaches. Nakanishi et al. [12] proposed a 

novel data-driven spatial filtering approach to improve the detection of SSVEPs. TRCA component analysis 

helped to improve the reproducibility of SSVEPs and resulted in SSVEP signals with improved signal strength 

(SNR). Their results show that the TRCA-based method yields significant improvements over the CCA-based 

method. Sakhavi et al. [13] proposed a classification framework for MI data. They introduced a new temporal 

representation and a CNN architecture for classification, which yielded very good results. Kevric and Subasi [14] 

investigated three feature extraction methods for decomposing EEG signals: empirical mode decomposition, 

discrete wavelet transforms and wavelet packet decomposition. The researchers pointed out the importance of 

higher frequency bands in improving the classification of EEG signals. Lu et al. [15] proposed a DL scheme 

based on RBM for MI classification of EEG features. They trained three RBMs using FFT representations and 

WPD, and then applied an extra output layer named FDBN. Their results showed that FDBN improved 

significantly over previous methods. 

Zhang et al. [16] proposed an multi-kernel ELM (MKELM)-based method for MI 

electroencephalograph classification. The integration of gaussian and polynomial kernel functions with a 

multikernel learning strategy enabled a more robust EEG classification with higher classification accuracy. 

Zhang's [17] further improved the classification accuracy of MI EEG using the TSGSP algorithm, which 

simultaneously optimizes filter bands and time windows. A linear SVM was trained on the optimized EEG 

features, which accurately identified AI tasks. Ieracitano et al. [18] proposed a multimodal ML-based new 

approach for automatic EEG classification for screening neurological patients with mild cognitive impairment 

or Alzheimer's disease. EEG signals were processed using continuous wavelet transform and BiS 

representation based on higher order statistics. Their method proved to be effective in classification based on 

CWT and BiS features. Jin et al. [19] applied an ELM method for classification of MI EEG signals using the 

Bayesian ELM-based algorithm, achieving high classification accuracy. Jiao et al. [20] proposed a new SGRM 

method to improve the efficiency of AI-based BCI, which reduces the number of training samples required 

from the target, resulting in excellent classification performance. Chen et al. [21] proposed the application of 
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FBCCA method in the integration of fundamental and harmonic frequency components to improve the 

detection of SSVEPs, which enhanced the performance and usability of SSVEP-based BCI systems.  

Tang et al. [22] developed a new CNN-based method for a single-trial MI EEG-based BCI system, which 

improved feature extraction and classification. The applied 5-layer CNN model showed better average 

performance than conventional classification methods. 

Atkinson and Campos [23] investigated the automatic recognition of emotions using an EEG-based 

BCI system and presented a new feature-based model that can identify multiple emotions. To improve the 

emotion classification efficiency of SVM, the mRMR feature selection method was used for preprocessing. 

The method resulted in significant improvements for SVM classifiers using the RFB kernel. Jin et al. [24] 

applied the CSS algorithm to improve the classification performance of MI-based BCI systems. The method 

used higher correlation channel selection and efficient feature extraction using the RCSP method. The results 

were tested on EEG datasets and it was shown that the CSS algorithm and RCSP further improve the 

classification accuracy. Edelman et al. [25] developed a non-invasive EEG-based BCI system for controlling 

robotic devices to efficiently support the performance of everyday tasks. The implemented framework 

significantly improved the quality of neural decoding and non-invasive based control. Jiao et al. [20] presented 

a new method for classifying EEG signals of motor imagery based on the SBLFB method. Their test results 

showed that the SBLFB method improves AI classification. Zhang et al. [27] used a rarely used Bayesian 

method, SBLaplace, for EEG classification. Their results show that the SBLaplace algorithm outperforms other 

EEG classification algorithms. Edelman et al. [28] presented a method for classifying four complex motor 

images of the right hand: flexion, extension, supination and pronation. Their results showed that they performed 

18.6% better in classification than the traditional sensor-based method. Dai et al. [29] proposed a classification 

framework for EEG signal processing that combines a CNN architecture with a VAE. Their method 

outperformed other classification methods studied by 3%. 

Kwon et al. [30] created an EEG database based on MI, in which 54 subjects performed two different 

MI tasks for right and left hands on two different days. By analyzing the resulting 21,600 MI trials, they created 

a person-independent model. In the feature representation, spectral-spatial inputs were individually trained on 

a CNN and then coupled using a concatenation fusion technique. The classification accuracy of their model 

outperforms CSP, CSSP, FBCSP and Bayesian spatial-spectral filter optimization. Gaur et al. [31] presented a 

new personalized multivariate empirical mode decomposition method. This decomposition allows to extract 

multichannel information and localize specific frequency information. The classification after statistical 

preprocessing was performed using Riemann geometry, which achieved better results than the other algorithms 

investigated. 

The quality of processing is greatly influenced by external noise and other factors affecting the 

information quality, such as changes in the position of the electrodes. BCI systems record the signals from 

several channels in order to spatially identify the signals and increase accuracy, but this in-creases the amount 

of data required for the proper description of the signals processed by each characteristic extraction method 

exponentially. However, the algorithms presented in the article may not necessarily be applicable only in the 

BCI field but may also provide models that can be adapted to other general human computer interface (HCI) 

implementations. Many HCIs use methods that use multiple sensors [32], the determination of certain 

characteristics are their processing models [33], and with regard to the methods used therein, the use of methods 

that have already been proven in BCI systems may also arise. The development of HCI systems can contribute 

to a more accurate understanding of human factors [34] and, through this, even to their development, such as 

the analysis and improvement of learning abilities [35]. In addition to the above new approaches have been 

appeared that shows improvement in the field of classification [36], [37]. Sánchez-Reyes et al. [38] reviewed 

the available literature and performed an analysis of the effectiveness of EEG parameters in detecting dementia. 

The results of the review showed that EEG parameters can help in the early detection and differentiation of 

dementia from other cognitive disorders [38]. Using brain imaging procedures, the activity of the cerebral 

cortex of strabismus and amblyopia patients can be examined. Ibrahimi et al. [39] showed that these patients 

experienced changes in the activity of the cerebral cortex both in the baseline state and in response to light 

stimulation. 

 

3.1.  Summary of other most cited papers 

In the previous chapter, it is reviewed in detail the BCI-related articles that had high annual citations. 

However, in this section it is briefly summarized further publications that are also highly cited and relevant to 

the topic of this paper. Khan and Hong [40] present a BCI capable of decoding eight active commands from 

frontal areas of the brain using a combination of EEG and functional near-infrared spectroscopy (fNIRS). The 

fNIRS is located in the prefrontal cortex, while the EEG operates around the frontal, parietal and visual cortex. 

Four commands are decoded by the fNIRS using mathematical reasoning, counting, mental rotation and word 

formation tasks. EEG is generated by two, three eye movements and up/down and left/right eye movements. 

The commands were tested in free space on a quadcopter and achieved an average accuracy of 75.6% with 
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fNIRS and 86% with EEG in decoding the four commands. The results show that the proposed hybrid EEG-

fNIRS interface can be used to control a quadcopter in real time and online. Wang et al. [41] investigate a BCI 

system focusing on decoding EEG features prior to finger movements. The research analyzed EEG features 

elicited by intentional movements of the left and right fingers, highlighting MRCP and ERD features. These 

features were evaluated using DCPM and CSP and classified using fisher discriminant analysis (FDA). The 

results showed that the combination of DCPM and CSP achieved an average accuracy of 80.96%, which is 

significantly higher than the results obtained using DCPM or CSP methods alone. The highest accuracy of the 

combined method was 91.5%. 

Jin et al. [42] investigated P300-based BCI systems that provide an additional communication channel 

for people with communication difficulties. Their generated set includes ten models trained by weighted linear 

discriminant analysis (WLDA). Their results show that all new participants found the most appropriate generic 

model. The average classification accuracy after online training is 80%, which is roughly equivalent to the 

accuracy achieved with the typical training model method. In addition, the calibration time was 70.7% shorter 

compared to the typical model method. Amin et al. [43] concluded that the new CNN methods show better 

results in EEG classification than any previous ML and DL techniques. The results show that using different 

architectures, depths and filter sizes, CNN models are able to extract and represent different types of features 

from EEG data. The proposed CNN method achieves an accuracy of 75.7% and 95.4% on the BCI Competition 

IV-2a dataset, respectively, and autoencoder cross-routing achieves more than 10% improvement in cross-sub-

EEG classification. 

Xu et al. [44] developed a novel mini asymmetric visually evoked potential (aVEP)-based BCI 

interpreter that encodes 32 characters using space-coded multiple access (SCDMA) and decodes EEG features 

using the discriminative canonical pattern matching (DCPM) algorithm. Their results show that online tests 

can achieve data rates of up to 63.33 bits/minute. The experimental results show that even for very small and 

undetectable visual stimuli, an efficient BCI system can be implemented, even if the induced EEG features are 

very weak. Liu et al. [45] present a new BN3 CNN developed to detect P300 signals from EEG data. These 

signals are fundamental to the creation of P300 character recognition systems that allow users to write messages 

simply by controlling eye movements. The new BN3 model introduces batch normalization in the input and 

convolutional layers to alleviate the problem of over-learning, while ReLU in the convolutional layers speeds 

up learning. Results on the P300 datasets of the previous BCI competition show that BN3 provides state-of-

the-art character recognition performance and outperforms existing detection approaches. 

Lin et al. [46] developed the AgPMS EEG electrode, which is easy to fabricate, cost-effective, 

flexible, robust and gel-free, and can solve hair-related problems. Compared to conventional gel-based 

electrodes, the efficiency of the new electrode was 86% on hairless skin and similar efficiency on hairy skin. 

Tang et al. [47] proposed a new method for detecting MI EEG signals. The method was successfully applied 

on different datasets and achieved higher accuracy than previous works. Katona and Kovari [48] tested the BCI 

system with the Corsi block test and the Ebbinghaus procedure, which showed a moderate-strong correlation 

with the average attention of BCI. Zanini et al. [49] investigated the problem of transfer learning in BCIs. They 

represented the data using spatial covariance matrices of EEG signals and obtained significant improvements 

in classification performance. Ang and Guan [50] presented the results of their previous work in six stroke 

patients who participated in a BCI rehabilitation clinical trial and showed significant improvement. 

Foong et al. [51] investigated the effectiveness of the nBETTER system in upper limb stroke 

rehabilitation. Xu et al. [52] developed a high-speed hybrid BCI system that can encode up to 108 instructions 

simultaneously. Fahimi et al. [53] proposed a framework for detecting attentional mental state from single-

channel EEG data. Tayeb et al. [54] presented three DL-based models for online decoding of imagined hand 

movements from EEG signals. Wang et al. [55] presented a SSVEP dataset collected for 40 target BCI 

spellings. Chiarelli et al. [56] investigated the capabilities of combining EEG and fNIRS recordings with recent 

DL techniques. Lee et al. [57] presented a BCI dataset that included three main BCI paradigms-MI, ERP and 

SSVEP-across multiple samples and sessions. Dose et al. [58] developed a CNN for generalized feature 

learning and dimension reduction, while using the traditional fully connected (FC) layer for classification. 

Wang et al. [59] proposed a classification framework based on LSTM networks, which achieved almost 80% 

classification accuracy. 

 

 

4. CONCLUSION 

The article provides an overview of the results of the most influential, i.e. the most cited, BCI research 

in the fields of computer science and engineering over 20 years. The research field of BCI systems is quite 

diverse, researchers have used it in several areas of application and use, such as robotics, control, sensing and 

processing of medical signals, neurophysiology, rehabilitation, and education, thus achieving significant and 

for-ward-looking results. In most cases, the studies aimed to improve the quality of life of persons with 
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disabilities using the non-invasive EEG device and different signal processing and classification algorithms 

such as: CSP and SVM. In this way, near-real-time communication between the human brain and the computer 

has been created for patients who, for some reason, can only communicate in this alternative way. Overall, BCI 

research is a very active area of research and many other signal processing, and classification algorithms are 

being explored in this field. The results of the examined research typically showed an efficiency of 85%, and 

a continuous improvement of this value is expected thanks to increasingly reliable, accurate and cost-effective 

signal detection and processing devices, as well as algorithms support-ed by AI, ML, and neural decoding 

techniques. Another major goal in BCI research is to make these systems more accessible and easier to use for 

a wider range of individuals, including those with disabilities. Advances in hardware and software design, as 

well as advances in user training and interface design, are likely to make BCI systems more user-friendly and 

intuitive. BCI research is increasingly being combined with other technologies, such as augmented and virtual 

reality, haptic feedback, and wearable devices. These combinations have the potential to create even more 

powerful and versatile interfaces between the brain and external devices. In spite of the fact that BCI systems 

hide many possibilities, the human brain is an extremely complex, non-linear and non-stationary system, in 

which the detection and processing of neural activity is a great challenge. That is why the processing of BCI 

signals, and the implementation of communication interfaces pose many challenges, which is why they are 

trying to implement the related processing methods with a wide variety of methods in order to create the most 

efficient systems possible. 

 

 

APPENDIX 
 

 

Table 2. Systematic overview of the main aims, investigation methods and accuracy of the BCI papers 

Ref Year Authors BCI methods Device/ dataset Data process Investigated 

EEG feature 

Best accuracy 

(%) 

[10] 2018 Lawhern  

et al. 

BCI, EEG, CNN, 

P300, ERN, SMR, 
DL 

BCI Challenge @ NER 2015 

dataset 

EEGNet-8,2 optimal spatial 

filtering and filter-bank 
construction, CNN based 

classification and interpretation, 

depthwise and separable 

convolutions 

Within-subject 

P300 
MRCP 

ERN 

SMR 

92 
81 

83 

68 

Cross subject 

P300 

MRCP 
ERN 

SMR 

90 

81 
75 

40 

[11] 2017 Tabar and 
Halici 

EEG, BCI, CNN, 
DL, SAE 

BCI Competition IV  
dataset 2b, BCI Competition 

II dataset III 

Combined CNN-SAE based 
classification and interpretation, 

STFT 

MI 90 

[12] 2018 Nakanishi 
et al. 

BCI, EEG, 
SSVEP, TRCA 

Synamp2 system 
(Neuroscan, Inc.) 

TRCA-based target 
identification algorithm, IIR 

filter, zero-phase forward and 

reverse filtering 

SSVEP 89.83 

[13] 2018 Sakhavi  

et al. 

BCI, CNN, DL, 

ML, SP 

BCI competition IV-2a EEG 

dataset 

FBCSP, CM-CNN, CW-CNN, 

C2CM, DL, 

MI SVM 

71.18 
CW-CNN 

73.07 

C2CM 
74.46 

[14] 2017 Kevric and 

Subasi 

BCI, EMD, DWT BCI competition III dataset 

IVa 

WPD, HOS, MSPCA MI 92.8 

[15] 2017 Lu et al. BCI, EEG, DL, 

WPD 

BCI competition IV dataset 

2b 

RBM, FDBM MI 84 

[16] 2018 Zhang et al. BCI, EEG, ELM, 
MKL 

BCI Competition III dataset 
Iva, BCI Competition IV 

dataset IIb 

CSP, SVM, multi-kernel ELM MI BCI Competition 
III dataset Iva 

87.5 

BCI Competition 
IV dataset IIb 

78.9 

[17] 2019 Zhang et al. BCI, EEG, sparse 
group spatial 

pattern, temporal 

constraint 

BCI Competition III dataset 
IIIa, BCI Competition IV 

datasets IIa, BCI 

Competition IV dataset IIb 

Sparse filter bank, TSGSP, 
sliding window 

MI BCI Competition 
III dataset IIIa 

88.5 

BCI Competition 
IV datasets IIa 

83.3 

BCI Competition 
IV dataset IIb 

84.3 
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Table 2. Systematic overview of the main aims, investigation methods and accuracy of the BCI papers 

(continue) 
Ref Year Authors BCI methods Device/ dataset Data process Investigated 

EEG feature 
Best accuracy 

(%) 

[18] 2020 Ieracitano  

et al. 

ML, Alzheimer’s 

disease, Mild Cognitive 

Impairment 

19 channel general EEG CWT, BiS, MLP, AE, LR MI 96.5 

[19] 2020 Jin et al. BCI, EEG, ML BCI Competition IV dataset 

IIb 

SVM, ELM, sparse 

Bayesian ELM 

MI 78.5 

[20] 2019 Jiao et al. BCI, EEG, ML BCI Competition IV dataset 
IIb, BCI Competition III 

dataset IVa 

SGRM, CSP MI BCI 
Competition 

IV dataset IIb 

78.2 
BCI 

Competition 

III dataset IVa 
77.7 

[21] 2015 Chen et al. BCI speller, filter bank Synamps2 system 

(Neuroscan, Inc.) 

CCA, FBCCA, SNR SSVEP 91.95 

[22] 2017 Tang et al. BCI, EEG, CNN, deep 

CNN 

ActiveTwo 64-channel EEG 

system (BioSemi B.V., 

Amsterdam, Netherlands) 

SVM, CSP, AR MI 86.41 

[23] 2016 Atkinson 

and Campos 

BCI, EEG, emotion 

recognition, feature 
selection, emotion 

classification  

DEAP dataset GA-SVM, mRMR HP, FD, BP Arousal 

60.72 
Valence 

62.4 

[24] 2019 Jin et al. BCI, EEG, SP, 
correlation-based 

channel selection 

BCI competition IV dataset 
1, BCI competition III 

dataset Iva, BCI competition 

III dataset IIIa 

regularized CSP, SVM, 
RBF 

MI BCI 
competition IV 

dataset 1 

81.6 
BCI 

competition III 

dataset Iva 
87.4 

BCI 

competition III 

dataset IIIa 

91.9 

[25] 2019 Edelman  
et al. 

high-dimensional 
robotic device control, 

neural control of a 

robotic device, target 
tracking, control of 

virtual cursor to the 

real-time control of a 
robotic arm  

BCI2000, 128-channel 
Biosemi EEG headcap 

filtering, EEG bands, 
EEG alpha power 

MI Center-out 
tasks 

50 

Realistic 
continuous 

pursuit task 

500 

[26] 2017 Zhang et al. BCI; EEG; frequency 

band 

BCI Competition IV dataset 

IIb 

CSP, SBL, SBLFB, SDA MI 81.7 

[27] 2016 Zhang et al. BCI, EEG, ERP unique EEG cap, g.USBamp 

amplifier 256-Hz sampling 

rate with a 64-channel 

sparse Bayesian method 

by exploiting a Laplace 

prior, SBL, BLDA 

ERP 95 

[28] 2016 Edelman  

et al. 

BCI, brain mapping, 

EEG source imaging, 

neuroimaging 

64 channels, 1Khz, 17 

electrodes, SynAmpsRT 

amplifier 

ROI, ERD, TFR, CCDE, 

Wavelet transform, 

Mahalanobis distance-

based classifier, Cortical 

Mapping 

MI 82.2 

[29] 2019 Dai et al. EEG, DL BCI Competition IV dataset 
2b, EEG recording 250Hz, 

10-20 system  

STFT, CNN, 
VAE 

MI - 

[30] 2020 Kwon et al.  BCI, EEG,  
DL 

dataset, 62 EEG and 4 EMG 
electrodes, 1Khz, BrainAmp 

amplifier 

CNN, CSP, CSSP, filter 
bank, LDA, BSSFO 

MI Subject-
dependent 

71.32 

Subject-
independent 

74.15 

[31] 2018 P. Gaur  
et al. 

EEG, motor imagery 
related brainwave 

modulations over μ and 

β rhythms 

BCI competition IV dataset 
2A 

MEMD based filtering, 
mean frequency, MIMF 

decomposition, sample 

covariance matrix, 
Riemannian geometry 

classification 

MI Kappa value  
0.60 
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