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Abstract 
In this paper, a new method of 3D model automatic annotation is proposed based on a two-

dimensional Hidden Markov Model (2-D HMM). Growing importance in the last years Hidden Markov 
Models are a widely used methodology for sequential data modeling. Recent years, HMMs are applied to 
research of automatic annotation, such as images and models annotation. The three basic problems with 
HMM-liked model are also solved in our model. Our modeling process has two steps, those are training 
and testing. In the proposed approach, each object is separated into several bins by a spiderweb model 
and a shape function D2 is computed for each bin. These feature vectors are then arranged in a sequential 
fashion to compose a sequence vector, which is used to train HMMs. In 2-D HMM, we assume that feature 
vectors are statistically dependent on an underlying state process which has transition probabilities 
conditioning the states of two neighboring bins. Thus the dependency of two dimensions is reflected 
simultaneously. To classify an object, the maximized posteriori probability is calculated by a given model 
and the observed sequence of an unknown object. Comparing with the general HMM, 2-D HMM gets more 
information from the neighboring bins. So the system of 2-D HMM performs well on images and model 
annotation. Analysis and experimental results show that the proposed approach performs better than 
existing ones in database. 
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1. lntroduction  

In the past few years, we have observed the availability of technologies for the effective 
acquisition of digital 3D models of real objects, the establishment of open standards for 3D data 
interchange, and the increasing use of 3D models in a variety of applications in medicine, 
engineering, and cultural heritage etc. As a result, many collections of 3D models are created 
and are available for study and usage, such as Princeton University [1, 2], National Taiwan 
University [3, 4], Konstanz [5, 6]etc.  

To make full use of advantages of existing digital 3D data, classification is usually the 
first step. Putting the unknown sample into a predefined object class [7, 8] is the basic target of 
3D model classification. In some practical applications such as Molecular Biology, Astronomy, 
Mechanical Engineering, Medical Images etc, we only need to know the label of the object. So 
classification is very valuable in society and economy. 

Generally, people try to description a 3D object by characters. Description of a 3D 
model includes global and local features. Many algorithms are used to extract features of 
models. Osada used shape distributions [9] as the global feature to represent 3D shape. 
Surface curvatures [10] are estimated at a geometry vertex of the 3D object mesh by 
considering the variations of the surface normal over the platelet of vertex. These algorithms 
mainly focus on the global features of a 3D model. Other methods represent 3D models by a 
series of local shape features [11]. These methods which adopt visual features for similarity 
comparison gradually come to a realization of its limitations. These methods assume that there 
is an inherent mapping between low-level features and high-level semantics. Now, it becomes 
clear that the assumption does not hold for many applications. How to narrow down the 
semantic gap still remains an open issue. Automatic model annotation has emerged as a major 
approach to bridge the semantic gap. 
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In this paper, a new method of 3D model automatic classification is proposed based on 
2-D HMM. HMM is introduced as a general framework for context dependent classifiers. Our 
method constructs a statistical structure by a 2-D HMM. The observation of HMM is described 
by a set of local feature vectors. The sequence is then arranged by a certain fashion that is 
related to global features. The structure in the classification algorithm takes mixture of global 
and local features in 3D model as its classification criterion which performs very well in practice. 
The rest of the paper is organized as follows. Section 2 is previous works on HMM. Section 3 
presents generation of the 2-D HMM. Section 4 is outline of our algorithm. Experiment results 
are shown in section 5. Section 6 is a summary of the full. 

 
 

2. Previous Works on HMM 
Since the theory of hidden Markov models (HMM s) was developed in the 1960s by 

Baum and Petrie (1966), Baum and Eagon (1967), Baum (1972), HMMs have been widely 
applied to speech recognition context [12]. And it is only in the last decade that they have been 
widely used for several other applications, as handwritten character recognition, DNA and 
protein modeling, gesture recognition, and behavior analysis and synthesis etc.  

Recently years, HMM is applied to automatic classification, such as images and models 
classification. In images classification, previous work extended the 1-D HMM [13], a pseudo 2-D 
HMM [14, 15] and 2D HMM [16]. To classify images, the samples are divided into blocks, and 
features of blocks are computed for given a sequence of obvious. [13] presents a spatial-HMM 
(SHMM) for automatically classifying and annotating natural images. Two generalization of the 
traditional HMM are trained in the sense that both vertical and horizontal transitions between 
hidden states are taken into consideration. J.Li et al. [16] proposed a new 2D MHMM to classify 
images into categories and propagate annotations from keywords which were manually 
assigned to those categories. One of exist issues of these methods is choosing block sizes. The 
same problem also exists in 2D HMM. To solve this problem, some methods in signal 
processing are proposed. Trellis coding [17] in image compression provides an example by 
using context information. Other works [18, 19] have looked into ways of taking advantage of 
context information to improve classification performance. Both block sizes and classification 
rules can vary according to context. The improvement achieved demonstrates the potential of 
context to help classification.  

 
 

3. Generation of 2D HMM 
In the process of Classification, one HMM is trained for each class of objects. We use a 

first-order HMM for training. A standard HMM is defined as a state sequence 1 2
( , , ..., )

T
q q q q  

and observable sequence 1 2
( , , ..., )

T
o o o o generated by the state sequence. Similarly, we 

consider that observable feature vectors of 3D object’s surface points are related to the spatial 
structure of 3D object. Practically observable feature vectors are observable and the spatial 
structure of 3D model is unobservable. For example, a car model is constituted by the body and 
the bottom of the four wheels. In order to model relation between spatial structure and observed 
feature vector, a set of observations of training objects are used to estimate HMM parameters. 

 
3.1. Definition of Hidden Markov Model  

To describe process of producing the pattern, a first order Hidden Markov Model, which 
statistical structure is depicted by a parameter vector ( , , )A B   , is defined as following. 
 : The initial state probability distribution, representing probabilities of initial states, that is to 

say, 1[ ]i iP q s   ， 1 i N  . 

A : The state transition matrix，  ijA a  , where 1[ ],1ij t j t ia P q s q s t T      , satisfying

1

1,1 ,
N

ij
j

a i j N


   . 
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B : The conditional probability matrix, ={ (k)},jB b  satisfying ( ) [ ],jj k tk P qb sv   where N  is 

the number of states, M is the number of observations. 
 

3.2. Observable Sequence of two-dimensional HMM 
The space of 3D object is decomposed by a spiderweb model[9], as illustrated by 

Figure 1. In Figure 1 starting from positive direction of the first principle axis 
1U


  ，each bin is 

observed sequentially by clockwise to get an observable sequence. The feature vector is 
extracted in each bin by shape function D2[20]. The feature vector of bin ( , )i j is denoted by ,i jo

, where ( , )i j represents the j-th bin of the i-th shell. Hence a 3D object corresponds to an 

observable sequence as 0,0 0,1 ,( , , ... , ...)i jO o o o , 0,1, 2, ..., 1i w  , 0,1, 2, ... , 1j j z  . 
 

3.3. Prepared Work on 2D HMM  
The 2D HMM assumes that feature vectors are generated by a Markov model that may 

change state once every bin. The transition probabilities condition on the states of two 
neighboring bins showed in Figure 2. 

Suppose that there are M states {1, ..., }M  , and the state of bin ( , )i j is denoted by

,i js . The feature vector of bin ( , )i j is ,i jo . Denote ''( , ) ( , )i jji  , if ' < ii or ' ii   and '
jj  , in 

which case, we say that the bin ''( , )ji is before bin ( , )i j . In 2D HMM, we made an assumption 

that ' '' ', , , , ,
'': ( , ) )( ,i j m n lj ji i jiP s s o a  , where ' '' '{( , ) : , ( , )}i jj ji i  

1, , 1 ,, ,i j i j i jm n ls s s    . In above assumption, we calculate the transition probability of one 
state by knowing the states of the two adjacent bins in darker shade in figure 2. The state 
transition of 2D HMM is explained by Figure 3. The second assumption is that the density of the 
observation o in state s  follows a Gaussian distribution. Once the state of a bin is known, the 
feature vector is conditionally independent of the corresponding features of other bins. For a bin 
with state s  and feature vector o  , the distribution has density 

11
( ) ( )

2
1

( )
(2 )

t

s k

ss s
o o

o
s

b e
 




  


, where s  is the covariance matrix, and s  is the mean 

vector. 
 

 

 

 

Figure 1. Generation of Observable Sequence Figure 2. Explanation of Adjacent Bins of Bin
( , )i j  
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Figure 3. Explanation of State Transition of 2D HMM 

 
 
4. An Outline of the Algorithm 

An outline of our algorithm is as follows. 
Step 1 Training 

a. Divide training objects into spiderweb model and extract feature vector for each bin. 
b. Select the number of states for HMM. 
c. Estimate model parameters based on a set of observable sequences of training objects. 

Step 2 Testing 
a. Generate observable sequence (same as stepⅠa) for a testing 3D object. 
b. Search for the set of classes with maximizing a posteriori probability, given the 

corresponding sequence of feature vectors to the trained HMM. 
 
4.1. Training  

Given a set of observable sequences O , training the model, is performed using the 
standard Baum-Welch re-estimation procedure to determine the parameter ( , , )A B   that 

maximizes the probability ( )P O  . This method is based on the well-known Expectation 

Maximization (EM) algorithm [21]. 
The EM algorithm provides an iterative computation of maximization, when the 

observed data are incomplete. The term “incomplete” reflects the fact that we need to estimate 
the distribution x  of in sample space   , but we can only observe x  indirectly through s  in 
sample space S  . In many cases, there is a mapping ( )x s x  from  to S , and x  is only 

known to lie in a subset of    , denoted by ( )s  , which is determined by the equation ( )s s x  

. We postulate a family of distribution ( )f x  , with parameters  , on x  . The distribution of

( )s , ( )g s   can be derived as
( )

( ) ( )
s

g s f x dx


   . 

The EM algorithm aims at finding a   that maximizes ( )g s   given an observed  s  . 

Before describing the algorithm, we introduce a function ' '( ) (log ( ) , )Q E f x s    that is the 

expected value of 'log ( )f x   according to the conditional distribution of  x  given s  and 

parameters   . The expectation is assumed to exist for all pairs ,
'( )  . In particular, it is 

assumed that ( ) 0f x   for     .  

The EM iteration ( ) ( 1)p P    is defined as follows. 

1) E-step: Compute ( )( )pQ   . 

2) M-step: Choose ( 1)P    to be a value of     that maximizes ( )( )pQ   . 

  When using HMMs, a practical but fundamental issue to be addressed is the 
determination of their structure, namely the topology and the number of states. In this paper, the 
number of states can be choosed in range of 2 to given limitation 10. 
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Specifically to say, in E-step, the complete data x   are , ,{ , :( , ) }i j i j i js o  , and the 

incomplete data y   are , ,{ , :( , ) }i j i j i jc o   . The function is Equation (1). 
 

, ,

,1, , 1 , ,
( , )( , )

,

' ' '( ) ( ) ( , )

' ''( : , , ) ( , , : )

''' . ( , )., ,

m n l m m

i ji j i j i j i j
i ji j

i j

f x s P u s

s m n l P u s ma

P

P

Pa us s s s s

  




 





  

  
                                (1) 

 
Then we get Equation (2) from (1). 
 

,
1, , 1 , , ,( , ) ( , )

, ,
'( )

'' 'log log log ( , )
i j

i j i j i j i j i ji j i j

xf Pa o ss s s s
 

  

                          (2) 

 
Further, we can make the equation 3 directly by taking expectations on Equation (2). 
 

( ) ( )( )
,

,1, , 1 , ,
( , ) ( , )

1 1 ''' '( ( ) , ) ( ) ( ) ( , ), ,, ,log loglog .p pp
i j

i ji j i j i j i j
i j i js s

f x y P Ps y s y oE Pa ss s s s     
 

         (3) 

 

In the M-step, we set ( 1)p   to the '   that maximizes (3) . In equation (3), two parts can be 

maximized by choosing corresponding parameters. When maximizing the first part, we define: 
  

( ) ( )
, , 1, , 1 ,( , ) ( , , ) ( , )p p

m n l i j i j i j

s

i j m n l s ys s s PH I                                                          (4) 

 
As the probability of being in state m  at bin ( 1, )i j  , state  n at bin ( , 1)i j  ,and state l  at bin ( , )i j , 

given the observed feature vectors, classes, and model ( )p  . Equation (5) can be deduced from 
Equation (4). 
 

( )
, ,( , )

, , ( )
, ,1 ( , )

( , )
'

( , )

p
m n li j

m n l pM
m n lt i j

i j

i j

H
a

H


 



 

                                                                            (5) 

 
Next, consider the maximization of the second part in (3). We let 

( ) ( )
,( , ) ( ) ( , )p p

m i j

s

i j m P s yI sL   , which is the probability of being in state m  at block ( , )i j  , 

given the observed feature vectors, and model ( )p  . The above expression is then 

( )

,

1 ( , )

''( , ) log ( , )
M

p

i j mmm
m i j

i j P oL 
 

  .It is known that for Gaussian distributions, the ML estimate 

'
m

 of is the sample average of the data, and the ML estimate '
m of  is the sample covariance 

matrix of the data. Since, in our case, the data are weighted by ( )( , )p
m i jL  , the ML estimate of '

m
  

and  '
m are: 

( )
,,

( )
,

( , )' ,
( , )

p
m i ji j

m p
mi j

i j oL

i jL







'( )
,, ,

( )
,

'( , )( )( )'
( , )

t
p

m i ji j m i j m

m
p

mi j

i j oL o

i jL

  



. 

In summary, the estimation algorithm iteratively improves the model estimation by the 
following steps. 
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1. Given the current models ( ) ( )( ) ( )( , , )p pp p
A B  . 

2. Given the observed feature vectors ,i jo , the mean vector and covariance matrices 
are updated by:  

 
( )

,,( 1)

( )
,

( , )
,

( , )

p
m i ji jp

m p
mi j

i j oL

i jL
 






( 1)( ) ( 1)
,, ,( 1)

( )
,

( , )( )( )

( , )

t
pp p

m i ji j m i j mp
m

p
mi j

i j oL o

i jL

  


 




,  

 
Where, 
 

1, , 1 , ,,

( ) ( )( )
( )

, ,, ,
( , ) ( , )

1
( ( ) )( , ) ( ). . . ( , ).

i j i j i j i ji j

p pp
p

m i j i j
s i j i j

I C s ci j I m PsL a us s s ss


  

     

 
The transition probabilities are updated by: 
 

( )
, ,,( 1)

, ,
( )

, ,1 ,

( , )

( , )

p
M N Li jp

m n l
M p

M N Ll i j

i j

i j

H
a

H






 

 ,  

 
Where, 
 

,

( ) ( )( )( )
, , 1, , 1 , ,

,1, , 1 ,( , ) ( , )

1
( , ) ( ( ) )( , , ). . . ( , )., ,

i j

p ppp
M N L i j i j i j i j

i ji j i j i js i j i j

i j I C s cI m n l Ps s s a uH s s s ss
 

  

       

 
{( , ) : 0 , 0 }i j i w j z      , refers to all the bins of an object. 

3. Repeat step 2, until 
( )

{ }
p

 converges to some constant approximately. 

 
4.2. Testing 

The classification step is performed by assigning an unknown object to the class of the 
model showing the maximum likelihood. i.e., assigning an unknown item to the class whose 

model shows the maximal likelihood arg max[ ( )]P o  . o is an observable  sequence of unknown 

object  that is generated using the above method. 
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, ,
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5. Experiment Results 

Our experiments are based on the Princeton Shape Benchmark database (2005). This 
public database has been largely used in object recognition literature. It contains 1814 3D 
models which have been split into a training database and a test database. We use models of 
training database to train HMM’s parameters and the others of testing database to test.   We 
compare our method with adaptive weighted asymmetric (AdaBoost) hidden Markov models 
(ADHMM) and Shape Distribution (SD) proposed in references [20, 22] and result show that our 
method performs better.  

We tested our approach by varying the free parameters of the techniques. The first 
experiment demonstrates that the accuracy of changes under different parameters, i.e., the 
number of bins L  , and the number of states of HMMs n . We set L w z  , where w  is number of 
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circles, z is number of bins in each circle. We do not want to choose a large size since this 
obviously entails crude classification. But if we choose a small size, only very local properties 
belonging to the small bin are examined in classification. Some information about surrounding 
bins is neglected. We set the number of bins form 16 to 80. 

We choose 100 models form 20 categories of training database, which may include 
some categories such as human, sports_car, fighter_jet, etc. In each category, we use 5 models 
to train HMMs and the rest to test. From the Table 1, we can see that the system performs 
unsatisfactorily when 16L  . Clearly, the accuracy increases gradually with the number of bins 
L  increases. Actually, even if we set 4n   , the system is able to recognize the objects with an 
accuracy larger than 75%. In particular, the accuracy can arrive at 98% with 80, 6L n  . 

The second experiment is to investigate the accuracy of three methods. In this stage, 
we select 100 objects of 25 categories (each category contains at least 6 objects) from 
database. In each category 5 objects are used for training, the others are used for testing. The 
results are then computed using the best configuration of parameters derived from the previous 
analysis, i.e. using  10 8, 6L n   . The performances of the three methods are illustrated in 
Figure 4. It is clear that our method performs better than the other ones. 

The last experiment is to demonstrate our technique is invariant to model rotation and 
transformation. And then 15 different models are selected form the database. For each model, 
we perform 2 scaling (scale factors:0.5 and 1.5 respectively), 3 rotations (90 degrees around x-, 
y-, z- axis respectively). So we get more 5 new model files of each model and put them together 
with the original models. In this way, a small test database with 90 models of 15 categories is 
generated. We then select randomly models form the test database to test. Classification 
accuracies are proposed in Table 2. From the figure, we can see that the system is very robust 
and both methods are insensitive to the model’s rotation and transformation, and produce 
comparable results. 
 
 

Table 1. The Accuracy of Different Parameters 
L= 
n= 

2×8 4×8 6×8 8×8 10×8 

2 0.7172 0.7256 0.7561 0.7608 0.7813 
3 0.7374 0.7481 0.7590 0.7747 0.7810 
4 0.7690 0.7863 0.8002 0.8012 0.8142 
5 0.7898 0.7978 0.8149 0.8363 0.8891 
6 0.8182 0.8381 0.89397 0.9412 0.9815 
7 0.8444 0.8491 0.8528 0.9434 0.9300 
8 0.8576 0.8580 0.8723 0.9014 0.9079 
9 0.8662 0.8508 0.8966 0.8827 0.8967 
10 0.8800 0.8817 0.7699 0.8523 0.8815 

 

 

 

Figure 4. The Average Accuracy of the Three Methods 
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Table 2. The Result of the Third Experiment 

 2DHMM ADHMM SD 

bed 91.4 80.6 83.0 

Tree 88.7 80.8 76.5 
bicycle 90.0 85.5 79.6 

tank 88.3 79.3 80.0 
track 92.5 66.0 87.1 

 
 
6. Conclusion 

In this paper, a new method for automatic 3D object Annotation has been proposed 
based on the two-dimensional Hidden Markov Model approach. Specifically, each model is 
separated into several bins by spiderweb model. For each bin, the feature of D2 is computed. 
The sequences of vectors (one for each bin) are subsequently modeled using HMMs, paying 
particular attention to the initialization and the model selection issues. Classification is carried 
out by using a nearest neighbor rule, where distance is computed using the HMM likelihood 
function. A thorough experimental evaluation has shown that the proposed approach is very 
promising for classifying 3D objects from large database. Furthermore, the proposed method 
remains quite accurate even in case of model of transformation, scale and rotation. 

An interesting extension of the method could go toward the investigation of the use of 
the 3D model segmentation. In particular, we are investigating the separate 3D model into 
meaningful parts by HMMs. 
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