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 Facial landmark detection has a lot of applications in face recognition, face 

alignment, facial expression recognition, video surveillance and security 

systems. In the existing literature, there are multiple methods utilizing 

convolutional neural networks (CNNs) that address this problem in various 

ways. In many cases, the models use a tree-like structure of CNNs to achieve 

better results. This paper proposes a combination of three parallel deep 

convolutional neural networks (DCNNs) to estimate the accurate localization 

of each keypoint. The first one focuses on the whole face to outperform five 

points, including the eyes, nose, and mouth corners. The second one focuses 

on the eyes-nose parts to outperform three points, specifically the eyes and 

nose. The last one focuses on the nose-mouth parts to outperform three 

points, namely the nose and mouth corners. Further, we combine all outputs 

of the three DCNNs and take the average value of each detected key point as 

the final output. In the first step, we improvthe the parameter efficiency and 

accuracy of each DCNNs through a set of experiments using the labeled face 

parts in-the-wild database (LFPW) and the helen facial feature dataset 

(Helen). Then, we demonstrate that our approach yields more accurate 

estimations of facial key points than two state-of-the-art methods and 

commercial software in terms of accuracy. 
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1. INTRODUCTION 

Facial feature detection from 2D images is a well-studied problem, as discussed in [1], especially as 

a preprocessing step for face recognition [2]. Thus, detection of the accurate position of facial features allows 

thepredictedpose of the headand facial expression analysis [3], which are very important for face recognition 

algorithms. In recent years, multiple researchers have addressed this problem. 

At early stages, active shape model (ASM) [4] and active appearance model (AAM) [5] are among 

the first methods for facial landmark detection. Based on these methods, principal component analysis (PCA) 

is applied to simplify the problem and learn parametric features of faces for modeling variations in facial 

landmarks. Many years later, the art is iteratively fit into new instances. Additional algorithms proposed  

in [6], [7] involve matching a 3D deformable face model to 2D images using point distribution model (PDM) 

and constrained local model (CLM) algorithms during the fitting process. Regression-based methods are 
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attracting increasing attention, especially the cascaded regression methods achieve great success on facial 

landmark detection, cascaded pose regression (CPR) [8] was the first to propose a cascaded regression 

framework for general object pose estimation. The method proposes cascade pose regressors combined with 

a random fern classifier regressor to achieve minimize the difference between the true object pose and the 

pose computed. This framework show better results in shapes prediction of faces, mice and fish. Another 

representative approach in cascaded regression methods, tree of regressors combined with boosting 

algorithms approaches is introduced in the field. A gradient boosting framework introduced in [9], which use 

a cascade of regression trees to localize the facial landmarks points through a subset of image pixels.  

The supervised descent method (SDM) in [10] cascades several linear regressions to predict the shape stage 

by stage, using shape-indexed SIFT features. The model in [11] propose robust cascaded pose regression 

(RCPR) to explicitly handle occlusion problems, which simultaneously predicts the locations and occlusion 

conditions of each landmark. Valstar et al. [12] proposed the boosted regression coupled with markov 

networks approach, which has been coined BoRMaN. It proposes an iterative method that uses Haar-like 

filters as descriptors of local appearance, combined with the adaptive boosting algorithm (Adaboost) for 

feature selection to build a regressor model. All previous methods are specifically used for building models 

to represent the global facial appearance and shape information. 

In recent years, by introducing deep convolutional neural networks (DCNNs), the field has made 

significant progress in accuracy. Therefore, those approaches have gained prominence over classical ones. 

However, Kowalski et al. [13], the deep alignment network (DAN) model was introduced, which use a 

cascade of convolutional neural network (CNN) which performs both features extraction and regression, this 

method by the cascade shape regression (CSR) framework. However, the model begins with an initial 

estimate of the face shape, which is improved upon through multiple stages. At each stage (regressor stage), 

we have deep CNN structure which combined entire face image, landmark heatmap and features extraction 

through a connection layer and transmits it to the next stage, after a set of iteration the algorithm predict the 

final position of landmarks (the landmark heatmap indicates the currents estimates of landmarks positions).  

Some studies have demonstrated that performance can be affected by intrinsic variations in image style, such 

as the use of grayscale versus color images or differences in lighting conditions (e.g., bright versus dim). 

Therefore, it is necessary to investigate approaches for dealing with style variance. Furthermore, the 

approach in [14] consists of two components: The first module is the style-aggregated face generation 

module, which transforms the input image into various styles and combines them into a single style-

aggregated face to mitigate intrinsic variance. The second is the facial landmark prediction module. This 

module processes both the original image and the style-aggregated image to extract complementary features, 

which are then fused to produce heatmap predictions. All process is repeated in cascaded manner. 

Additionally, the state-of-the-art is progressing towards deep structures, the model propose a novel facial 

landmarks detection framework coined pixel-in-pixel network (PIPNet), which consists of three new 

modules, namely PIP regression, neighbor regression, and self-training [15]. Each model use CNN 

architecture like (MobileNet [16]) or residual neural network (ResNet [17]) as backbone of structure trained 

on (ImageNet [18]). Another approach is presented in [19], which uses two subnets. The first subnet (lower 

branch) predicts landmark coordinates, and the auxiliary subnet (upper branch) estimates geometric 

information (Euler angles). Each subnet uses MobileNet blocks. 

Furthermore, multi-levels-based approaches gain more attention in recent research works. For 

example, the work in [20] proposed a multi-task cascaded CNN-based framework for joint key point 

detection, which captures global high-level features at the first level, and then refines the position of key 

points in the next two levels. On the other hand, [21] proposed a convolutional neural network model that 

combines one hidden layer neural network, three convolutional layers, and outputs a 30-element vector, for 

detect 15 facial key points on given face. Xiang and Zhu [22], a model called MTCNN was proposed, which 

leverages the relationship between face detection and alignment to improve performance. It essentially 

consists of three parts: i) a proposal network (P-Net) for generating a list of the candidate windows. Then, we 

use it for classifying face and non-face and estimate bounding box regression vectors to face location, and 

non-maximum suppression (NMS) candidate merge. ii) A refine network (R-Net), rejects a lot of false 

candidates. iii) It is similar to R-Net, called O-Net, which outputs five facial landmarks’ positions. 

Alternatively, the model proposed in [9] use a cascade of regressors to form a regression tree, which can be 

used to regress the location of facial landmarks using a sparse subset of intensity values extracted from the 

input image, each regressor is learning using the gradient boosting tree algorithm. CNN-based approaches 

deliver satisfactory state-of-the-art performance compared to classical methods but require more 

computational resources, especially during the learning steps (big datasets and efficient graphic processing 

units (GPUs)). 

All the works listed above have achieved satisfactory performance in facial landmark detection, 

when these approaches are trained using facial database images that are typically collected under ‘controlled’ 

conditions, where the facial poses and facial expressions can only be in certain categories. However, they 
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face challenges when facial images are collected under ‘in-the-wild’ conditions, where they may encounter 

arbitrary facial expressions, head poses, variations in illumination, facial occlusions, and other factors. In 

general, there is still a lack of a robust method capable of handling all variations in head pose and 

environmental factors. In addition, the previous works present deeper structure [13]−[19] or cascade-based 

approaches [9]−[22], which require more computational resources, that implement these approaches on small 

devices like smart phone and small personal computer or laptop is very difficult. Therefore, the contributions 

of this research aim to present: i) a model with minimum number of layers and levels, which show better or 

similar results compared with deeper structures (MobileNet and ResNet) and cascade-based approaches and 

ii) a procedure for select appropriate values of the model hyperparameters. The remaining sections of the 

paper are organized as follows. In section 2, we briefly introduce the related works and the proposed method 

in section 3, we present an overview of our method and implementation details, and in section 4, we provide 

the experimental results and discussion. Finally, we conclude our work in section 5. 

 

 

2. METHOD 

As a baseline for our proposed approach, we were inspired by the model in [20]. However,  

a cascade of CNNs, was proposed for effective facial point detection. The first level of the CNN in this 

model provides robust initial estimations, and the following two levels fine-tune the initial prediction to 

achieve high accuracy. Despite this, we cannot claim with certainty that this particular model, with three deep 

levels, is the best for improving the accuracy of facial landmark positions. Especially, in this work, we 

extract the DCNN from the first level of the baseline model and conduct experiments on model 

hyperparameters, we can reduce the number of levels from 3 to 1 and achieve high accuracy in detection.  

The main idea of our model is to adopt the three DCNNs presented in [20] named for the whole face 

(F), for eyes-nose (EN), and for nose-mouth (NM), and trained them to take whole face as input and then, the 

first one (F) provide five points as outputs (left eye center, right eye center, nose tip and mouth corners), the 

second one (named EN) provide three points as outputs (two eyes centers and nose tip) and the last one 

(named NM) provide three points as outputs (nose tip and mouth corners). Finally, we combined all outputs 

of the previous DCNNs and took the average value as the output of the model. An overview of our approach 

is summarized in Figures 1 and 2 illustrates the deep structure of DCNN (F). 

Figure 1 is shown of one level deep convolutional neural network architecture; (A) whole face 

image; (B) face bounding box returned by haar-like detector [23]; (C) shown output localization of five key 

points return by DCNN; (F) the position present on face by oval shape for each key points (LE, RE, N, LM, 

RM); (D) shown output localization of three key points returned by DCNN (EN) (the position of each key 

point (LE, RE, N) drawn on face by square shape); (E) show the localization of three key points returned by 

DCNN (NM) (the position of each key point (N, LM, RM) drawn on face by disk shape); (F) shown the 

predictions of all three DCNNs (F, EN, NM); (G) shown the final predictions given by our model (the 

position of each key points has been drawn on face by star shape). The final position of each key points has 

been calculated by mean value by each individual DCNN 

 

 

 
 

Figure 1. One level deep convolutional neural network architecture 

 

 

Our contribution in this work is to simultaneously increase the accuracy of key point detection and 

reduce the number of model parameters compared to the related and public work in [20]. In general, one 

important factor in the performance of the models is their hyperparameters to select appropriate values for 

these hyperparameters to significantly improve the model’s performance. We have been using the grid search 

algorithm [24] to find the optimal values for the hyperparameters of DCNNs (F, NM, and EN) and the 
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procedure in section 2.3 to find the optimal values of training epochs and input size of model for  

cropped faces. 

In this section, we first describe the evaluation metrics has been used to measure de precision of 

detection points. We then briefly describe the datasets that have been used for training, testing and validating 

our model. Finally, we describe the experimental tests applied to find out the best hyperparameters of our 

model to achieve optimal detection. We have been conducted tests on two public challenging datasets (helen 

and LFPW). 

 

 

 
 

Figure 2. Structure of each DCNN. Convolutional and full connected layers illustrated by dark gray cuboids 

and max pooling layers illustrated by light gray cuboids whose length, width, and height denote the number 

of maps, and the size of each map 

 

 

2.1.  Evaluation metrics 

Key points localization error is often normalized by the inter-ocular distance [25] or inter-pupil [26] 

distance; this however, presumes both eyes are visible. This is not always true, in the faces with large pose 

variations, the inter-ocular and inter-pupil distance of near-profile faces is much shorter than that of frontal 

faces. To overcoming this drawback, we have been inspired from works in [20]−[27], where the error is 

normalized by face width in [20] or face size in [27] (computed as the mean value of face height and width). 

In this work, the normalized mean error (NME) has been calculated based on (1), the euclidean distance 

between each detected feature point on the face and its corresponding ground truth annotation, normalized by 

the width of the face bounding box. Although, NME can be considered a good evaluation metric, it is very 

sensitive to outliers. Failure rate (%); we define the failure rate as the proportion of cases where the 

normalized errors are larger than 10%. 
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Where (𝑥𝑖𝑗 , 𝑦𝑖𝑗) and (𝑥′
𝑖𝑗 , 𝑦′

𝑖𝑗
)are the ground truth and the detected position, 𝑙𝑖

𝑓𝑎𝑐𝑒𝑤𝑖𝑑𝑡ℎ
is the width of the 

bounding box returned by haar-like face detector [23], K is the number of landmarks, 5 in our case and N is 

the number of detected faces. 

 

 

2.2.  Datasets 

The datasets used in this work all contain uncontrolled images of faces in the wild: in indoor and 

outdoor environments, under varying illuminations, in the presence of occlusions, with different poses, and 

captured using cameras of different qualities. The first one is the labeled face parts in-the-wild dataset 
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(LFPW) [25], which contains 1,432 face images from the web and is split into 1,132 training images and 300 

test images. Some of image links are no longer valid. We downloaded only 811 images for training and 224 

images for testing. Each image is annotated with 68 landmarks. We split 811 training images to 700 for 

training set and 111 for validating set. The second one is the helen facial feature dataset (Helen) [28], another 

challenging database that contains a total of 2,330 images, each image is annotated with 194 landmarks. As 

suggested by the authors, we split 2,000 training images to 1,200 for training set and 800 for validating set 

and the rest 330 images for the testing set. The helen dataset does not provide the eye center. We use mean 

value of points around the eye as pupil center. 

 

2.3.  Deep CNN parameters 

In the literature, the appropriate number of epochs depends on the complexity of the dataset used.  

A good rule of thumb is to start with a value that is three times the number of columns in your data. In this 

work, we started with 50 epochs and we increased the number to 12,000 epochs in steps of 50 epochs, as 

shown in Figure 3. The NME value of all five key points decreases as the number of epochs increases.  

The error percentage decreases from 10% at 50 epochs to less than 4% at 10,000 epochs and for epochs 

beyond 10,000, the error remains close to 3.5%. In this experimental set, all tests are made on DCNN (F) and 

we resized all cropped face into 49 pixels for width and height. However, at each stage of the experimental 

process, we have been training the network from zero to specific number of epochs presented in x-axis of 

Figure 3. The error function used can be represented as (2). 

 

𝐸𝑟𝑟𝑜𝑟 =
1

𝑘
∑ (𝑦𝑖 − 𝑦′

𝑖
)2𝑘

𝑖=1  (2) 

 

Where 𝑦 = {𝑦1, 𝑦2 , … , 𝑦𝑘} are the ground truth position of key points and 𝑦′ = {𝑦′1, 𝑦′2, … , 𝑦′𝑘}are the 

estimated position by our model, (𝑘) number of key points, in our case (𝑘 = 5). 

 

 

 
 

Figure 3. The average error of five key points goes down from 10% in 1,000 epochs to achieve less than 4% 

for epochs number more than 10,000. The average error used in this test is calculate by (2) 

 

 

The input size is an important parameter of DCNN in general. each model in the state-of-the-art uses 

a specific size. For example, Sun et al. [20], the input size of the face bounding box has been resized to 

39×39, in [10], the size of the cropped face has been resized to 256×256 and in [29], we have an input size of 

96×96. In this work, we have traced the plot in Figure 4 that shows the variation of learning time of the 

DCNN (F) model and NME (%) for a range of input sizes from 40×40 to 140×140. As we can see, for small 

input sizes (between 40 and 45 pixels) the model takes 90 seconds to learn and NME (%) exceeds 22%. 

However, for larger input sizes (more than 50 pixels), the model’s learning time starts to increase and takes 

more than 150 seconds. Afterwards, NME (%) began to decrease to less than 10%. We have determined a 

specific value (threshold) that minimizes both the learning time and NME (%). The optimal input size for the 

face bounding box is 49 pixels. In this experimental set, we fixed the number of epochs at 10,000. Figure 4 is 

curve in dashed line show the variations of our model learning time (second) for inputs sizes of face 
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bounding box in pixels and the curve in simple line show the variations of our model NME (%) for the same 

the range of inputs sizes. The tests have been made on LFPW dataset and NME (%) have been calculate 

based on the difference between the predicted and ground truth position of each key points (eyes centers, 

nose tip and mouth corners) normalized by face width. 

In the two previous sections, we have been specified the number of epochs and the input size of the 

face bounding box as the first two parameters of our model. Therefore, we have been used the grid search 

algorithm [24], implemented in the keras framework to determine the values of other hyperparameters such 

as the activation function, batch size, convolution layer filter size, max pooling layer filter size, stride, kernel 

padding types, and the optimizer type see Table 1. As for the optimizers, we used stochastic gradient descent 

(SGD) with a learning rate of 0.01, a decay rate of 1e-6, and a momentum of 0.9. 

 

 

 
 

Figure 4. The variation of learning time of the DCNN (F) model and NME (%) 

 

 

Table 1. Details of search space for each parameter in grid search algorithm [24]. We have been inspired 

from work in [30] to choose the search space of batch size 
Activation functions Batch size Optimizers Weight initializers 

rectified linear unit (ReLu) 16 SGD Random normal 
Sigmoid 28 RMSprop Random uniform 

Softmax 32 Adam Truncated normal 

Softplus 64 AdamW Zeros 
Softsign 128 Adadelta Ones 

Tanh 256 Adagrad Glorot normal 

Exponential  Adamax Glorot uniform 
Leaky_relu  Adafactor He normal 

Relu6  Nadam He uniforms 

Silu  Ftrl Orthogonal initializer 
Gelu   Constant 

Hard_sigmoid    

Linear    
Mish    

Log_softmax    

 

 

2.4.  Network architecture of DCNNs 

In the experimental process, for each database, we crop the faces from original images using the 

haar-like detector [23] and resize the cropped face images to 49×49×3 and we change image format from 

colors to grayscale images (49×49×1). Then, the three DCNNs in our model are trained using the keras 

framework with SGD as optimizer, the mini-batch size is set to 28, the initial learning rate is set to 0.01, 

decay is set to 1e-6 and momentum is set to 0.9 and we have adopted “he normal” as the weight initialization 

method. we use mean squared error (MSE) as our loss function with “tanh” as the activation function for all 

layers in network structure. The detail of three DCNNs (F, EN and MC) are described in Table 2. 
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Table 2. Details of DCNNs structure. The coefficient c is the number of key points DCNN (F); c=5 and c=3 

for two DCNN (EN and MC) 
Layer Kernel Stride Padding Activation function Output shape 

Conv1 4×4 1 1 Tanh 46×46×20 
MaxPool1 2×2 0 1  23×23×20 

Conv2 3×3 1 1 Tanh 21×21×40 

MaxPool2 2×2 0 1  10×10×40 
Conv3 3×3 1 1 Tanh 8×8×60 

MaxPool3 2×2 0 1  4×4×60 

Conv4 2×2 1 1 Tanh 3×3×80 
Spacial dropout 2D (0.25)     3×3×80 

Global average pooling 2D     80 

FC    Tanh 120 
Dropout (0.5)     120 

FC    Tanh 2×c 

 

 

3. RESULTS AND DISCUSSION 

In this section, we compared our model with the state-of-the-art methods in [9]-[31] and the 

commercial software (luxand face SDK). The evaluation was conducted on two public databases, helen and 

LFPW. We utilized three types of evaluation metrics: failure rate (%), mean error normalized by face width 

NME (%), as defined in section 2.1, and mean error normalized by inter-ocular distance. 

 

3.1.  Results 

To evaluate the performance of our model, we compared it with four approaches. In first time, we 

compare with two state-of-art methods (MFAERT [9], MTCNN [22]) and one commercial software 

(luxand face SDK). The methods in [9] and [22] are very competitive methods, which perform 

significantly better than their contemporaries. In the evaluation process, we use the evaluation metrics 

described in section 2.1, on the two test datasets described in section 2.2. The results are summarized in 

Table 3, Table 4, and Figure 5.  

The graphs in Figure 5(a) to 5(d) shows that our method consistently outperforms the MTCNN [22] 

and luxand face SDK by a large margin in five key points (N, LE, RE, LM, and RM), in terms of average 

error and failure rate with number of levels less than MTCNN [22] (#Levels=3) see Table 5). In comparison 

to MFAERT [9], our model performed similarly, in four key points (N, LE, RE, and LM) and achieved better 

results for the RM key point with number of levels less than MFAERT [9] (#Levels=10) see Table 5). 

Furthermore, to compared our approach with deeper structure like the work in [31], we have executed the 

same experimental protocol on helen dataset with NME normalized by inter-ocular distance instead of face 

width. Figures 5(a) and 5(b) show the comparison of average error (%). Figures 5(c) and 5(d) show the 

comparison of failure rate (%). The evaluation has been made with the state-of-the art methods (MTCNN [22], 

MFAERT [9]), and commercial system luxand face SDK for five key points localizations on LFPW and 

Helen datasets. 

 

 

Table 3. The performance of our model compared with the methods MTCNN [22], MFAERT [9], and 

commercial system luxand face SDK on LFPW dataset 

Method 
Average NME/Failure rate (%) 

N LE RE LM RM 

MFAERT [9] 3.2/3.2 4.9/3.2 5.0/5.0 3.4/3.4 8.4/8.4 

MTCNN [22] 16.2/25.6 15.6/25.6 17.9/26.1 15.7/25.8 22.1/29.5 
Luxand face SDK 13.7/8.6 13.8/8.2 14.4/8.2 40.1/100 44.5/100 

Our model 9.4/9.4 9.4/9.4 10.0/10.0 10.1/10.1 7.5/7.5 

 

 

Table 4. The performance of our model compared with the methods MTCNN [22], MFAERT [9], and 

commercial system luxand face SDK on Helen dataset 

Method 
Average NME/Failure rate (%) 

N LE RE LM RM 

MFAERT [9] 2.0/2.0 4.5/2.0 4.6/4.6 1.9/1.9 8.2/8.2 
MTCNN [22] 16.2/16.2 16.2/16.2 17.9/17.9 15.7/15.7 22.1/22.1 

Luxand face SDK 12.3/8.7 10.7/8.1 12.2/8.4 40.7/100 42.9/100 

Our model 5.0/5.0 5.0/5.0 5.2/5.2 5.2/5.2 3.8/3.8 
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Table 5. The performance of our model compared with MTCNN [22], MFAERT [9], and STAR loss [31] on 

helen dataset. The mean error is normalized by inter-ocular distance 
Method #levels #parameters Average NME (%) 

MTCNN [22] 3 N/A 17.62 

MFAERT [9] 10 25k 4.24 

STAR loss [31] 4 14M 4.32 
Our model 1 60k 4.20 

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 5. Method consistently outperforms the MTCNN and luxand face SDK by a large margin in five key 

points (N, LE, RE, LM, and RM): (a) average error on LFPW dataset, (b) average error on helen dataset,  

(c) failure rate on LFPW dataset, and (d) failure rate on helen dataset 

 

 

3.2.  DISCUSSION 

In the evaluation set made on helen dataset shown in Table 5, our model shows better results 

compared with the methods in MTCNN [22], MFAERT [9], and STAR loss [31] in term of levels number 

(#Levels) and accuracy (average NME (%)). The mean error has been normalized by inter-ocular distance 

that commonly used in literatures and it has been calculated by mean value of five key points (N, LE, RE, 

LM, RM). In the same manner, the Tables 3 and 4 shown that our model gives better than the approaches in 

MTCNN [22] and luxand face SDK, for each specific key points in the term of failure rate (%) and average 

NME (%) on two public dataset helen and LFPW. However, the approach in MFAERT [9] shown better 

results than our model see Tables 3 and 4 but this method has 10 levels compared with the approach 

proposed in this with one level see Table 5. The majority of works proposed in the literature has a deeper 

structure as backbone or a cascade level of CNNs, which need more computational resources for training and 

implementation the model. Even though, we propose a model with one level of three DCNNs (F, EN, and 

MC), which we can trained and implemented in the small devices. Moreover, the experimental set 
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summarized in Figure 5 and Tables 3 to 5 show that our model shows better results (4.20% average NME see 

Table 5) compared with state-of-the-art methods. In addition, the model has one level in cascade process of 

detection and small number of parameters 60k see Table 5 compare with STAR loss [31] which has a number 

of parameters equal to 14M. In other words, the proposed model has various benefits regarding resource 

optimization and detection accuracy compared with the others methods make this method better chois to deal 

with on small devices like smart phone, onboard car system and existing medical machines. 

The accurate estimation of facial key  points can help in  daily life. Specifically, car accidents 

frequently occur as a result of drivers nodding off while driving, and the emergency braking features in smart 

vehicles are not dependable. Vigilance for signs of driver fatigue can help prevent accidents. In-vehicle 

cameras have the capability to observe the driver and identify signs of fatigue or distraction through a 

computer vision model. The model will trigger an alarm when it discerns a lapse in the driver’s 

concentration.  To effectively replicate one face on another, it is essential to obtain an estimate of the 

locations of landmark features on both faces for proper alignment. Moreover, facial animation algorithms 

leverage facial landmark detection to generate animated characters from images with specifically marked 

facial landmark. These algorithms find application in generating subsequent frames for use in 3D movies and 

games. In addition, facial landmarks detection has a vital application in relation to medical applications, 

Currently, there are a considerable number of individuals suffering from paralysis. These individuals have the 

capability to transmit a request signal to a system by using their facial expressions. Kowalski et al. [3], 

provides a device that can handle individual emotions based on accurate detection of facial landmark 

positions. On the whole, the importance of facial landmark detection can be reached by avoiding deeper 

structures and turning to small models with minimum levels in the detection process, as long as they can give 

good results. The opportunity of embedded devices on small devices can attract more attention from the 

research community to this kind of model. 

 

 

4. CONCLUSION 

In this work, we introduce several approaches to address facial landmarks detection. To illustrate, 

CNN-based approaches, deeper structure like MobileNet and ResNet and cascade-based approaches, which 

can show better results in term of accuracy. These models required more computational resources  

(high performance GPUs). In fact, the previous methods are not suitable to be deployed on small devices. On 

the other hand, we present a model consists of three DCNNs (F, NE, and MC) combined to achieve better 

accuracy as the final output of the model. We also present a protocol to improve the hyperparameters of our 

architecture. Through a set of experiments using the LFPW and helen datasets, we demonstrate that our 

model can estimate the position of the five key points more accurately than the MTCNN method and 

commercial software (luxand face SDK) and performed similarly to the MEART model in the term of 

accuracy (4.20% of average NME of all key points) and failure rate (3.8% on RM key point) in addition to 

efficient, our model use one level in the cascade process of detection and a small number of parameters (60k) 

compared with state-of-the-art methods, which make our approach suitable to be deployed on small devices 

like smart phone. In future work, we will extend our model’s detection from five key points to 68 key points 

and we will explore facial expression analysis and recognition further. 
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