
TELKOMNIKA Indonesian Journal of Electrical Engineering 
Vol.12, No.4, April 2014, pp. 2941 ~ 2949 
DOI: http://dx.doi.org/10.11591/telkomnika.v12i4.4810        2941 

  

Received September 6, 2013; Revised November 10, 2013; Accepted November 23, 2013 

A High Efficient Association Rule Mining Algorithm 
Based on Intelligent Computation 

 
 

Wu Fengxiang 
North China Career Academy of water Resources, HenanZhengzhou, China 

E-mail: yancaifeng2002@163.com 
 
 

Abstract 
Data mining is to use automated data analysis techniques to uncover previously undetected 

relationships among data items. In data mining, association rule mining is a prevalent and well researched 
method for discovering useful relations between variables in large databases. In this paper, we investigate 
the principle of Apriori, direct hash and pruning and also study the drawback of them. The first is 
constructing hash table without confliction is theoretically optimal, but it needs consume a lot of memory 
space and space utilization is low. The second is that it does not have hash tree data structure leading to 
too long insert and search time. So we propose a new association rule mining algorithm based on 
differential evolutionary computation. The experiment results show that our proposed algorithm has better 
execution time and accuracy, which can be used in electronic commerce system. 
 
Keywords: apriori, association rule, direct hash and prunning, differential evolutionary computation 
 

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 
 
 
1.  Introduction 

Nowadays, with the rapid development of information technology, especially the web 
service-based application, service-oriented architecture and cloud-computing, continually 
expanding data are integrated to generate useful information. There are many databases and 
data warehouses available all around the world. The core task is to make good use of the 
information or knowledge from these databases. Implicit knowledge of the databases can 
provide important patterns like association rules which  may lead to decision support making, 
medical diagnosis and many  other applications. Association rule mining is task of finding 
interesting association or correlation relationships among large databases [1]. Association rules 
are thought to be interesting as well as useful if they meet both a minimum support threshold 
and a minimum confidence  threshold [2, 3]. A major concern in association rules mining today 
is to continue to improve algorithm performance. 

Association rules can be defined by formal definition as Let 1 2{ , , , }mI i i i   be a set 

of items. Let D  be a set of database transactions where each transaction T  is a set of items 
such that T I . Each transaction must have an identifier, called TID . Let A  be a set of 

items. A transaction T  is said to contain A  if and only if A T . An association rule is of the 

form A B , where A I , B I  and A B  . 
Association rule mining [8-12] has attracted a lot of intention in research area of data 

mining and generation of association rules is completely dependent on finding frequent item  
sets. Many algorithms are available for this purpose. In [1], an algorithm for frequent item  set 
generation is proposed, which is the first algorithm being available to us for frequent item set 
discovery and is known as AIS algorithm.   

The Apriori-based algorithms find frequent item sets based upon an iterative bottom-up 
method to generate candidate item sets. Since the first proposal of association rules mining by 
R. Agrawal [1, 2], many researches have been done to make frequent item sets mining scalable 
and efficient. But there are still some deficiencies that Apriori-based algorithms suffered from, 
which include too many scans of the transaction database when seeking frequent item sets, 
large amount of candidate item sets generated unnecessarily and so on. In [4], an algorithm has 
been suggested by using bottom up method  along with  using matrix and reduced transactions. 
In [5], a new algorithm has been given for reducing the candidate item sets by reducing  the 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 4, April 2014:  2941 – 2949 

2942

connecting item sets i.e.  For large database, this optimized algorithm can save cost as well as 
time and hence increase the efficiency than the Apriori algorithm. In [6], a method has been 
proposed to improve the efficiency of Apriori Algorithm using transaction reduction. 

In the next section, we introduce principle of Apriori, direct hash and pruning. In Section 
3 we propose a efficient algorithm based on differential evolutionary computation [19-22]. In 
Section 4, we test the performance of three algorithms. In Section 5 we conclude the paper and 
give some remarks. 

 
 

2. Principle of Association Rule Mining 
      The process of commonly used Apriori algorithm is as follows: 
input: Database, D, of transactions; minimum support threshold, min_sup. 
output: L, freuqent itemsets in D. 
Ck: Candidate itemset of size k 
Lk:frequent itemset of size k 
L1 = find_frequent_1_itemsets(D); 
for (k = 2; Lk+1 !=; k++) do begin{ 
     Ck = apriori_gen(Lk-1, min_sup); 
    for each transaction t in database D do{scan D for counts 
 Ct =subset(Ck, t); get the subsets of t that are candidates  For each candidate c Ct  
   c.count++; 

} 
    Lk  = candidates in Ck with min_support 
 }end 
return L=k Lk; 

In every scanning of finding association rules, frequent item set iL  is needed to 

generate candidate item set 1iC  , meaning combine two iL  frequent item sets( 1 1L L ) with 

1i   number of common items. Then scan database and statistic support degree of each item 

set in 1iC   to determine 1iL  . Larger number of item set in iC  results in higher cost to 

determine iL . In order to understand the principle of Direct Hash and Pruning, we give out an 

example that generates a candidate 2-itemset by means of DHP algorithm. A bucket is made up 
of the following three parts. Bucket number is corresponding value of Hash function. The 
second part is element stored in the Hash table. The third part is the number of cell elements in 
the table. Hash table is made up of the third part of all the buckets. All the buckets consists a bit 
vector. Value of each bit in the bit vector is relevant to the number of element in the bucket. If 
the number is greater than or equal to min sup , it is 1, otherwise it is 0. 

 
 

Table 1. Transaction Database Example 
TID ITEMS 
100 ACD 
200 BCE 
300 ABCE 
400 BE 

 
 
For database in Table 1, the premise condition of algorithm is minimal support degree is 2 and 
hash function is (1). 
 

{ , } (( ) 10 ( )) mod 7h x y order of x order of y   .              (1) 

 

order of x  is the sequence number of x  in all value sequences. Such as 

transaction item of the database is A, B, C, D and E and order of A is 1, order of D is 4. Firstly 

generate candidate 1-itemset, that is 1 {{ },{ },{ },{ },{ }}C A B C D E . Secondly scan all 



TELKOMNIKA  ISSN: 2302-4046  

A High Efficient Association Rule Mining Algorithm Based on Intelligent… (Wu Fengxiang) 

2943

transactions in the database, statistic support degree of all these candidate 1-itemset to 

generate 1L .  At the same time 1C  sets up hash table 2H  for fast statistics. In order to 

construct candidate 2-itemset 2C  to set up 2H , database is decomposed as shown in Table 2. 

For 2-itemset {A C}, substitute into hash function and obtain: 
 

{{ }} (( ) 10 ( ))mod7

(1 10 3)mod7

6

h A C order of A order of C  
  


           (2) 

 
Direct hash and pruning detect each item to determine whether it is in the hash table. If 

it is in the hash table, value of count of this item is increased by 1. Otherwise it put this item in 

the hash table and value of count is set to 1. Schematic diagram of hash  table 2H  is shown in 

Table 3. 
 
 

Table 2. Database Decomposition 
100 {A C},{A D},{C,D} 
200 {B C},{B E},{C,E} 
300 {A B},{A C},{A E},{B C},{B 

E},{C E} 
400 {B E} 

 
 

Table 3. Database Decomposition 
Hash value 0 1 2 3 4 5 6 
element {CE}{CE}{AD} {AE} {BC}{BC}  {BE}{BE}{BE} {AB} {AC}{CD}{AC} 
Number of element 3 1 2 0 3 1 3 

 
 

Because minimum support is 2, bit vector is <1, 0, 1, 0, 1, 0, 1> and 

1 {{ }{ }{ }{ }}L A B C E . Then do 1 1L L  and obtain 1 1 {{ }{ }{ }{ }{ }{ }}L L AB AC AE BC BE CE  . 

Substitute 2-itemset in 1 1L L into hash function to obtain hash address of each 2-

itemset. For each transaction, when all 1-itemsets  statistics  completely, all 2-itemsets of this 

transaction generate. Then according to value of bit vector, filter 2-itemsets from 1 1L L  and 2-

itemsets whose bit vector is 0 are deleted. At last we obtain 2 {{ },{ },{ },{ }}C AC BC BE CE . 

 
 
3. An Improved Scheme Based on Differential Evolutionary Algorithm 
3.1. Principle of Differential Evolutionary Algorithm 

In essence, direct hash and pruning uses association operation that is the same as the 
method that Apriori algorithm uses to determine candidate item sets [13-18]. There are two 
problems. The first problem is that constructing hash table without confliction is theoretically 
optimal, but it needs consume a lot of memory space and space utilization is low. The second is 
that it does not have hash tree data structure leading to too long insert and search time. 

Direct hash and pruning owns fast exaction time at the cost of calculating hash table 
and storage space of the database table. This requires that database can be stored in memory. 
If the database is too large, it can not be placed in memory. It will waste a lot of time reading 
from the disk and cost of establishing hash table is expensive. Through the analysis of degree 
of database pruning of direct hash pruning algorithm, we find that pruning technology can 
further strengthen, so that we proposed an improved algorithm based on direct hash pruning. 
Direct hash and pruning improves efficiency through pruning of candidate item set. In order to 
deal with great database, direct hash and pruning is combined with random sampling 
technology to improve application range and execution efficiency. Data in the database is 
distributed randomly, meaning each transaction in the database perhaps appears in the any 
record of database. Because in the beginning, there are many data items which make  another 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 4, April 2014:  2941 – 2949 

2944

item set from each transaction many. This increases the possibility of confliction of hash 
function, which makes performance of direct hash and pruning worse. To reduce the cost of 
establishing Hash table, and reduce the execution time, database can be dealt with principle of 
random sampling. In theory, the method of discovering association rules from samples exists a 
problem and there is a balance between time and accuracy. Since there is no search based on 
the whole data, some information may be lost. From implementation results of multiple 
databases, as long as the number of sample and selection of relaxation factor is appropriate 
and get good results. 

Differential evolutionary computation is one of the currently popular intelligent 
population evolutionary algorithm. Its solving efficiency is high and has a better solution space 
search performance and strong robustness, so using differential evolutionary computation to 
solve the problem of association rule extraction is feasible.  

Differential evolution algorithm produced in 1995, which is proposed by Rainer Storn 
and KennethPrice in the United States on the basis of evolutionary ideas such as genetic 
algorithm. This algorithm is also a kind of bionic intelligent algorithm stimulating natural 
biological evolution mechanism. It is the main operating thought is based on individual 
difference degree of the population generate temporary individual, and use one-to-one greedy 
selection competition mechanism to realize population evolution through the random 
restructuring. The  concrete process is as follows: 

Step 1. Population random initialize. (0,1)rand returns random number of (0,1) , 0t  . 

 
(0) { (0) | (0) (0,1) ( ) 1 }i ij j j jP X x rand U L L j n        .    (3) 

 

Step 2. It is the mutation process. Choose three individuals ( ), ( ), ( )a b cX t X t X t

random in population ( )P t . Three individuals are different with ( )iX t .Operate with the follow 

expression. 
 

1 2( 1) ( ( 1), ( 1), , ( 1))i i i inD t d t d t d t     .      (4) 

 

( 1) ( ) ( ( ) ( ))ij aj bj cjd t x t F x t x t     .      (5) 

 
1 ,1i s j n    . 

 

Step 3. It is the crossover process. 1r 2, r is random value of between 0 and 1. Calculate 

temporary individual according to (6) and (7). 
 

1 2( 1) ( ( 1), ( 1), , ( 1))i i i inE t e t e t e t     .      (6) 

 

1

1

( 1),
( 1)

( ),
ij

ij
ij

d t r C
e t

x t r C

 
   

.                        (7) 

 
Step 4. It is the selection process according to (8). 

 

( 1), ( ( 1)) ( ( ))
( 1)

( ),
i i i

i
i

E t f E t f X t
X t

X t else

  
 


.                (8) 

 

Step 5. Calculate individual with the smallest fitness ( 1)bX t  in ( 1)P t  . If meet the 

termination condition, output bX and ( )bf X . Otherwise 1t t  and turn back to step 2 to 

continue. (0, 2)F  is perturbation scale factor and (0,1)C  is cross factor. 



TELKOMNIKA  ISSN: 2302-4046  

A High Efficient Association Rule Mining Algorithm Based on Intelligent… (Wu Fengxiang) 

2945

3.2. An Efficient Association Rule Mining Algorithm Based on Differential Evolutionary 
Computation 

How the original solution is represented by differential evolution algorithm coding form is 
the most important link. Individual of the algorithm is set into a binary code structure, which 
represents decision attribute and task attribute structure containing item sets and before and 

after part. 1 2 1 2{ , , , , , , }n mA A A B B B  , iA  is decision attribute and iB  is task attribute. The 

individual coding is 1 2 1 2{ , , , , , , }n mx x x b b b  . 1 2, , , nx x x  is decision attribute and 

1 2, , mb b b  is task attribute. Attribute population and rule population is generated. Attribute 

population is used to generate frequent item sets and rule population is used to obtain 
association rule. Frequent item sets are generated by attribute population and the fitness 
function that choose high support degree and abandon low support degree is shown in (9). 

 
 

1( ) supp( ) (sup( ) / ( ))
j

j
i X Y

f R w R w R len R
 

   .     (9) 

 
For rule population used to generate association rule, screening is done according to credibility 
of generated rule and the corresponding fitness function is (10): 
 

2 ( ) ( ) in t ( )f R conf R er R   .      (10) 

 
sup( )

( )
sup( )c

R
conf R

R
 .                              (11) 

 

0

0

( ) sup( )
in t ( )

m ax{ ( ), sup( )}

conf R R
er R

conf R R


 .      (12) 

 
1 ,1   . R  represents rule and ( )len R  represents the length of rule. int ( )er R  is 

interestingness degree of rule, which is a number more than 0. cR is data set which represents 

successful matching between rule R and decision attribute in the R  , 0R  is data set which 

represents successful matching between rule R and task attribute in the R . The process of our 
proposed algorithm is as follows: 

Step 1. Initialize the population. 

Step 2. kx  is transformed to [0,1]kcx   according to (13). 

 

min, max,( ) / ( )k k k
j j j j jcx x x x x   .      (13) 

 
1, 2, , 0j n k  . 

  
Step 3. Calculate the next individual according to (14) and (15). 
 

1 4 (1 )k k k
j j jcx cx cx    .      (14) 

 
1 1

min, max, min,( )k k
j j j j jx x cx x x    .          (15) 

 

Step 4. If  1
0( ) ( )k

jf x f x  , the program stops. Otherwise it turns to step 2 to go on 

running. 
Step 5. Keep 80% excellent individuals and abandon other individuals to generate new 

population. 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 4, April 2014:  2941 – 2949 

2946

Step 6. For the new population, repeat step 2 to step 4. If it meets the terminal 

condition, record current best individual bestX  and stop the program. Otherwise do as (16) and 

(17). Randomly generate 50%  individuals in min, max,[ , ]j jx x  and turn to step 2 to go on. 

 

min, min, , max, min,max{ , ( )}j j bset j j jX x x r x x   .      (16) 

 

max, max, , max, min,min{ , ( )}j j bset j j jX x x r x x   .      (17) 

0 1r  . 
 
 

4. Experiment and Analysis 

In this experiment, hash table kH  with k+1-item set is generated. Transaction 

t ABCDEF . Hash table established by 2C  contains five number of 2-item set (AC, AE, AF, 

CD, EF). According to our proposed algorithm, A, C, E and F are kept  and B and D are deleted. 

t  is labeled as 't . It can be seen that not all the items in t  can be used to generate item set. In 

fact, C  does not belong to any item set, because only AC and CD are 2-candidate item sets. 

So C  is deleted from 't . 
Execution time comparison of three algorithm is shown in Table 4. Execution time 

comparison of three algorithms under the same support and different database is shown in 
Figure 1. Execution time comparison of three algorithms under different support and the same 
database is shown in Table 5. Execution time comparison of three algorithms under different 
support and the same database is shown in Figure 2. The blue line represents Apriori algorithm, 
the red line represents direct hash and pruning algorithm  DHP, and the yellow line represents 
our proposed algorithm based on differential evolutionary IDE. It can be seen that execution 
time of our proposed algorithm based on differential evolutionary is small. Execution time 
comparison of generating k frequent set of three algorithms under the same database and the 
same minimal support is shown in Table 6 and Figure 3. Taking database of 50000 line for 
example, execution time of IDE and DHP is much smaller than that of Apriori. But 1-frequent 
item set, execution time of IDE and DHP is longer than that of Apriori. Because Apriori has the 
best performance at the first iteration and DHP needs to construct hash  table  at the first 
iteration. 

 
Table 4. The Execution Time of the Three Algorithms 

Data 
size(line) 

Execution time(s) 
Apriori DHP IDE 

4000 73 37 28 
5000 91 45 38 
6000 114 55 46 
8000 153 72 60 
10000 192 94 72 
15000 285 133 94 
20000 324 185 124 
30000 572 277 156 
50000 955 472 206 
100000 1833 954 264 
150000 2765 1422 332 

 
 
These three algorithms are used in the electronic commerce recommendation system, 

aiming to find the association mode and knowledge between browsed WEB pages in trading 
things. It can predict user interesting pages and analysis users' preference to contribute to the 
relatively large size of purchase. Experimental data comes from logs of WEB server of an 
enterprise WEB containing 726 WEB pages. Five weeks visit records are extracted and 6200 
user transactions are obtained after data preprocessing. Relation between execution time and 
minimum support degree is shown in Figure 4 and relation between execution time and the 
number of transaction is shown in Figure 5. In Figure 4, the red line represents Apriori algorithm, 



TELKOMNIKA  ISSN: 2302-4046  

A High Efficient Association Rule Mining Algorithm Based on Intelligent… (Wu Fengxiang) 

2947

and yellow line represents direct hash and pruning algorithm and the blue line represents 
proposed algorithm IDE. In Figure 5, the yellow line represents Apriori algorithm, and red line 
represents direct hash and pruning algorithm and the blue line represents proposed algorithm 
IDE. It can be seen that running time of each algorithm becomes smaller with the increase of 
minimum support. When the minimum support is the same, running time of Apriori is longest, 
running time of DHP is middle and running time of IDE is shortest. Running time of each 
algorithm becomes larger with the increase of number of transaction and running time of our 
proposed algorithm is shortest. Efficiency of proposed algorithm based on differential 
evolutionary computation is the best, which can be used in electronic commerce system. 
 
 

 
 

 

Figure 1. Execution Time Comparison of 
Three Algorithms under the Same Support 

and Different Database 

Figure 2. Execution Time Comparison of 
Three Algorithms under Different Support and 

the Same Database 
 
 

 
 

 

Figure 3. Execution Time Comparison of 
Generating k Frequent Set of Three 

Algorithms 

Figure 4. Relation between Execution Time 
and Minimum Support 

 
 

 
Figure 5. Relation between Execution Time and the Number of Transaction 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 4, April 2014:  2941 – 2949 

2948

Table 5. Execution Time Comparison of Three Algorithms under Different Support and the 
Same Database 

Minimal 
support 

Execution time(s) 
Apriori DHP IDE 

0.5% 1643 704 272 
1% 1408 632 248 
1.5% 1296 598 236 
2% 1205 576 234 
3% 1148 532 218 
5% 1024 486 210 
6% 955 472 206 

 
 

Table 6. Execution Time Comparison of Generating k Frequent Set 
The number of frequent item sets k Execution time(s) 

Apriori DHP IDE 
1 62 76 66 
2 154 78 34 
3 162 64 27 
4 133 57 21 
5 122 51 16 
6 108 46 14 
7 102 42 12 
8 66 36 8 
9 46 22 8 

 
 
5. Conclusion 

This paper investigates the principle of Apriori, direct hash and pruning and also studies 
their drawbacks. Then we propose an improved algorithm based on differential evolutionary 
algorithm. The experiment results show that our proposed algorithm has better execution time 
and accuracy and proposed algorithm based on differential evolutionary computation is can be 
used in electronic commerce system. 
 
 
References 
[1] Rakesh Agrawal, Tomasz Imielinski, Arun Swami. Mining Association Rules between Sets of Items in 

Large Databases. Proceedings of the 1993 ACM SIGMOD Conference Washington DC, USA. 1993. 
[2] Jiawei Han, Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann 

Publishers, Champaign: CS497JH, fall 2001. 
[3] Rakesh Agrawal, Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. Proceedings 

of the 20th VLDB Conference Santiago, Chile. 1994. 
[4] Sunil Kumar, Shyam Karanth, Akshay K, Ananth Prabhu, Bharathraj Kumar M. Improved Apriori 

Algorithm Based on bottom upapproach using Probability and Matrix. 2012; 9(2): 1694-0814. 
[5] Jiao Yabing. Research of an Improved Apriori Algorithm in Data Mining Association Rules. 

International Journal of Computer and Communication Engineering. 2013; 2(1).   
[6] Jaishree Singh, Hari Ram, Dr JS Sodhi. Improving Efficiency of Apriori Algorithm using Transaction 

Reduction. International Journal of Scientific and Research Publications. 2013; 3(1), ISSN 2250-3153. 
[7]  Anurag Choubey, Ravindra Patel, JL Rana. A Survey of Efficient Algorithms and New Approach for 

Fast Discovery of Freqent itemset for Association Rule Mining. IJSCE, ISSN: 2231-2307, 2011; 1(2). 
[8] AMJ Md Zubair Rahman, P Balasubramanie, P Venkata Krihsna. A Hash based Mining Algorithm for 

Maximal Frequent Itemsets using Linear Probing. Infocomp Journal of Computer Science. 2009; 8(1): 
14-19. 

[9] Y LIU, B YANG. Research of an Improved Apriori Algorithm in Mining Association Rules. Journal of 
Computer Applications. 2007; 27: 418-420. 

[10] Lei Ji, Baowen Zhang, Jianhua Li. A New Improvement on Apriori Algorithm. Computational 
Intelligence and Security, International Conference. 2006; 1: 840-844. 

[11] Sujni Paul, V Saravanan. Hash Partitioned Apriori in Parallel and Distributed Data Mining Environment 
with Dynamic Data Allocation Approach. Computer Science and Information Technology, ICCSIT'08. 
International Conference. 2008: 481-485. 

[12] Bo Wu, Defu Zhang, Qihua Lan, Jiemin Zheng. An Efficient Frequent Patterns Mining Algorithm based 
on Apriori Algorithm and the FP-tree Structure. Convergence and Hybrid Information Technology, 
ICCIT'08. Third International Conference. 2008; 1: 1099-1102. 

[13] Somboon Anekritmongkol, Kulthon Kasemsan. SQL Model in Language Encapsulation and 
Compression Technique for Association Rules Mining. IJIPMl. 2013; 4(1): 65-75. 



TELKOMNIKA  ISSN: 2302-4046  

A High Efficient Association Rule Mining Algorithm Based on Intelligent… (Wu Fengxiang) 

2949

[14] Naili Liu, Lei Ma. Improved algorithm for mining frequent itemsets based on binary. International 
Journal of Advancements in Computing Technology. 2013; 5(9): 1077-1084. 

[15] Mohamad Farhan Mohamad Mohsin, Mohd Helmy Abd Wahab, Mohd Fairuz Zaiyadi, Cik Fazilah 
Hibadullah. An Investigation into Influence Factor of Student Programming Grade Using Association 
Rule Mining. Advances in Information Sciences and Service Sciences. 2010; 2(2): 19-27. 

[16] Yuan Wang, Lan Zheng. Endocrine Hormones Association Rules Mining Based on Improved Apriori 
Algorithm. Journal of Convergence Information Technology. 2012; 7(7): 72-82. 

[17] YiJie Chen. The Development of The Commodity Flow Analysis System Based On Association Rule 
Mining. International Journal of Advancements in Computing Technology. 2012; 4(13): 430-436. 

[18] Changjiang Li, Xianfeng Yang. The Research of Recommendation Systems in E-Commerce Based on 
Association Rule Improved-Apriori Algorithms. International Journal of Advancements in Computing 
Technology. 2012; 4(21): 354-361. 

[19] J Rönkkönen, S Kukkonen, KV Price. Real-parameter optimization with differential evolution. Proc. 
IEEE Congr. Evolut. Comput., Edinburgh, Scotland. 2005: 506–513. 

[20] AK Qin, VL Huang, PN Suganthan. Differential evolution algorithm with strategy adaptation for global 
numerical optimization. IEEE Trans. Evol. Comput., 2009; 13(2): 398-417. 

[21] S Das, A Abraham, UK Chakraborty, A Konar. Differential evolution using a neighborhood-based 
mutation operator. IEEE Trans. Evol. Comput., 2009; 13(3): 526–553. 

[22] J Brest, S Greiner, B Boskovic, M Mernik, V Zumer. Selfadapting control parameters in differential 
evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput., 2006; 
10(6): 646–657. 

 

 


