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 In this study, multiple intelligent control systems for direct torque-controlled 

Synchronous motors are implemented and compared. Using a lookup table to 

pick a vector through the inverter voltage space, the direct torque control 

(DTC) system can be obtained. To replicate the state selector in relation to the 

look-up table, intelligent controllers are deployed. Intelligent logic controllers 

like fuzzy and neural are used to regulate the performance of permanent 

magnet synchronous motors (PMSM). In steady-state applications, neural and 

fuzzy controllers reduce the torque ripple and stator current harmonic 

distortion. These outcomes are compared with those obtained when the 

synchronous motor was put under the basic direct torque control method using 

a proportional integral (PI) controller. The accuracy and effectiveness of the 

suggested control topologies have been verified using computer simulation 

software like MATLAB/Simulink. 

Keywords: 

Direct torque control  

Fuzzy logic controller 

Neural network controller 

Permanent magnet synchronous 

motor 

Proportional integral controller 

Torque ripple reduction 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Ambarapu Sudhakar 

Department of Electrical and Electronics Engineering, MLR Institute of Technology 

Hyderabad, India 

Email: sudhakar.a@mlrinstitutions.ac.in 

 

 

NOMENCLATURE 

Vs(d,q) : Stator voltage in d and q axis  Vdc : DC link voltage 

Rs : Stator resistance  V1(1,2) : Weights between input layer and hidden layer 

Ls : Stator inductance  Bh : Bias value connected to hidden layer 

Te : Electro magnetic torque  W1(1,2) : Weight values connected to output layer 

Tload : Load torque  Bo : Bias value connected to output layer 

J : Moment of Inertia  N(b,m,s)  : Negative (big, medium, small) 

Is(d,q) : Stator current in d and q axis  P(b,m,s) : Positive (big, medium, small) 

nP : Number of poles  Ze : Zero 

S(a,b,c) : Switching sectors of inverter  E : Error 

Test : Estimated torque  ΔE : Change in error 

Tref : Reference torque    

 Greek symbols 

Ψ* : Reference flux  Ψs : Stator flux 

Ψ : Total flux  ω : Rotor speed 

Ψs(d,q) : Stator flux in d and q axis  ω* : Reference speed 

 

https://creativecommons.org/licenses/by-sa/4.0/
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1. INTRODUCTION  

Drives for permanent magnet synchronous motors that are vector controlled play a significant role in the 

sector. These regulated drives, however, call for intricate coordinate transformation, exact system settings, and an 

inner current control loop [1]–[3]. The direct torque control (DTC) technique, on the other hand, provides a 

powerful and quick torque response while avoiding current regulators, coordinate transformation, and pulse-width 

modulation (PWM) pulse production [4], [5].  

Because no inverter-switching vector can deliver the precise stator voltage at the right times and in space, 

this approach is severely limited by steady state torque ripple and flux [6]–[8]. Torque and flux ripples produce 

substantial acoustic noise and harmonic losses, which have an impact on speed estimation accuracy [9]–[11]. To 

lessen this flux and torque ripple, various techniques are available: i) the different inverter topologies, matrix 

converters, and multilevel inverters [12] that increase the quantity of switches and, as a result, the cost and 

operational complexity; ii) the content of harmonic in current for stator, Stator torque and ripple in flux decreases 

with the increase in switching of frequencies. The stress and losses in the semiconductor switches of the inverter 

will increase due to these increased switching frequencies [13]–[15]; iii) space vector modulation is a different 

approach to decreasing flux and torque ripples [16], although it has the drawback of having a variable switching 

frequency [17]–[21]. The discrete space vector modulation [22] technology solves the drawbacks of the support 

vector machine (SVM) approach with a precise switching table and five level hysteresis bands, yet this scheme 

cannot guarantee its performance at low speed ranges, especially with heavy load [23]–[25]; and iv) additionally, 

this method requires more complex control systems than classical DTC and is dependent on machine parameters. 

Alternate switching additional alternative techniques that have been discussed in the literature include 

table-based DTC [26], flux and torque hysteresis bands are under open loop control with variable amplitude 

control [27], [28], combining flux and torque hysteresis bands with variable amplitude control based on fuzzy 

logic [29]–[31]. Similar to simple DTC, by using the chosen inverter voltage vector only for a portion of the 

switching time rather than the entire switching period, the torque and flux ripple can be reduced. Without 

increasing the number of semiconductor switches in the inverter model, this control method, often referred to as duty 

ratio control, increases the number of voltage vectors beyond the eight discrete ones that are now present [32]–[34]. 

Similar studies reported in [35], [36] claim that ripple has been reduced to a value of one-third. Because artificial 

neural network (ANN) architectures provide several benefits over conventional algorithmic techniques, many 

scholars from all over the world are interested in the presentation of fuzzy logic and artificial neural networks [37].  

The ability to approximate nonlinear functions, ease of training and generalisation, insensitivity to 

network distortion, simple architecture, and imperfect input data are only a few of the advantages of ANN [38]. 

In this study, the three stator currents are employed to examine the flux and torque using the input inverter's 

voltage. The voltage space vector that the inverter would create has been employed as the output of fuzzy logic 

and neural network controllers [39]. Torque error and stator flux error were the inputs employed in these 

controllers. When calculating the duty ratio of the inverter switching vectors, fuzzy logic controllers take the 

difference between the estimated flux and the reference flux into account [40]. Comparing the current work to 

that in [41]–[43], the torque ripple and stator current harmonics have been greatly reduced. Theoretical concepts, 

simulation techniques, and their outcomes are examined and contrasted with the fundamental DTC method. 

The structure of the full document is as follows: In section 2, it is taught how the permanent magnet 

synchronous motor's mathematical model and typical DTC work. The use of fuzzy logic controllers in DTC for 

synchronous motors is discussed in section 3; the use of neural network controllers is discussed in section 4. 

Section 5 presents the simulation results, comparison, and comments. The job is concluded in section 6. 

 

 

2. MOTOR WITH PERMANENT MAGNET SYNCHRONOUS DIRECT TORQUE CONTROL 

From the corresponding equations provided below, the mathematical model of permanent magnet 

synchronous motors (PMSM) in the stationary reference frame may be found. In (1) and (2) are the PMSM's 

stator voltage and current formulae for the d-q reference axis. 

 

𝑉𝑑𝑠 = 𝑅𝑠𝑖𝑑𝑠 + 𝑃𝛹𝑑𝑠 − 𝜔𝛹𝑞𝑠 (1) 

 

𝑉𝑞𝑠 = 𝑅𝑠𝑖𝑞𝑠 + 𝑃𝛹𝑞𝑠 + 𝜔𝛹𝑑𝑠 (2) 

 

In the reference d-q axis, the stator and rotor flux equations are expressed as shown in (3)-(7): 

 

𝛹𝑑𝑠 = ∫(𝑉𝑑𝑠 − 𝑅𝑠𝑖𝑑𝑠)𝑑𝑡 + 𝛹𝑑𝑠⃒𝑡 = 0 (3) 

 

𝛹𝑞𝑠 = ∫(𝑉𝑞𝑠 − 𝑅𝑠𝑖𝑞𝑠)𝑑𝑡 + 𝛹𝑞𝑠⃒𝑡 = 0 (4) 
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𝛹𝑠 = √(𝛹𝑑𝑠
2 + 𝛹𝑞𝑠

2 ) (5) 

 

𝛹𝑑𝑠 = 𝐿𝑠𝑖𝑑𝑠 (6) 
 

𝛹𝑞𝑠 = 𝐿𝑠𝑖𝑞𝑠 (7) 

 

the PMSM's relative speed can be calculated as shown in (8): 
 

𝜔 = ∫(𝑇𝑒 − 𝑇𝑙𝑜𝑎𝑑)
𝑛𝑃

𝐽
 (8) 

 

the PMSM's generated electromagnetic torque can be expressed as shown in (9): 
 

𝑇𝑒 =
3

2

𝑃

2
(𝛹𝑑𝑠𝑖𝑞𝑠 − 𝛹𝑞𝑠𝑖𝑑𝑠) (9) 

 

Figure 1 depicts the block diagram for the fundamental direct torque control approach for PMSM.  
 

 

 
 

Figure 1. PMSM's fundamental direct torque control system 
 

 

When little time period ΔΨs 1= Vs
1Δt1 is applied to the voltage of stator, then, throughout this time, the 

stator flux space vector moves in the same direction as the applied stator voltage space vector. If the stator resistance 

(Rs) voltage drop is not included, the stator voltage equation can be expressed in a fixed reference frame as shown 

in (10): 
 

Vs
1 = 

𝑑Ψs 1

𝑑𝑡
 (10) 

 

The comparators are used to compare the calculated and reference values of the stator flux linkage and 

electromagnetic torque. There is a three-level torque comparator as well as a two-level stator flux comparator. 

As shown in Table 1, the estimated stator flux space vector sector in the complex plane and the comparator 

outputs serve as the inputs for the best switching lookup table. 
 

 

Table 1. Basic direct torque control switching section 
ΔΨs ΔTe SW1 SW2 SW3 SW4 SW5 SW6 

1 1 V2
1 V3

1
 V4

1
 V5

1
 V6

1
 V1

1
 

0 V7
1

 V8
1

 V7
1

 V8
1

 V7
1

 V8
1

 

-1 V6
1 V1

1
 V2

1
 V3

1
 V4

1
 V5

1
 

0 1 V3
1 V4

1
 V5

1
 V6

1
 V1

1
 V2

1
 

0 V8
1

 V7
1

 V8
1

 V7
1

 V8
1

 V7
1

 

-1 V5
1

 V6
1

 V1
1

 V2
1

 V3
1

 V4
1

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Analysis of fuzzy and neural controllers in direct torque controlled synchronous … (Ambarapu Sudhakar) 

679 

3. IMPLEMENTATION OF FUZZY CONTROLLER IN DIRECT TORQUE CONTROL OF 

PMSM  

The fundamental DTC scheme of the PMSM is used to create the simulink design for the fuzzy 

controller-based DTC of the PMSM. Figure 2 depicts the block diagram for the fuzzy logic controller's 

integration into the PMSM with direct torque control. A collection of rules known as fuzzy rules are derived 

on the linguistic variables in Mamdani fuzzy logic controller, as depicted in Figure 3. With the two inputs and 

one output, seven membership functions are fuzzified. Additionally, 49 rule bases are built based on knowledge 

and computed for decision-making. The centre of gravity (CG) technique is utilised for defuzzification. The 

control instructions required to select an acceptable voltage vector will be provided by the output of the 

defuzzification unit. The torque of the drive is then governed by this voltage vector. As shown in (11) and (12) 

are used to calculate both the error and the change in error;  

 

𝑒(𝑘) = 𝛹𝑟𝑒𝑓 − 𝛹𝑒𝑠𝑡 (11) 

 

𝛥𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1) (12) 

 

 

 
 

Figure 2. Fuzzy controller-based DTC scheme for PMSM 

 

 

 
 

Figure 3. Mamdani-based FLC 

 

 

Inputs for the direct torque control based PMSM model with flux error and change in flux error are 

shown in Figure 4 of the generated Simulink fuzzy controller model. A two-input Mamdani fuzzy inference 

system (FIS) with two rules is implemented via the gauss membership function. The knowledge of the users is 

used to create a set of language rules that are employed for control techniques, as illustrated in Table 2. 
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Table 2. Rule base for DTC of PMSM using FLC 
er→ 

Δer 

↓ 

Neb Nem Nes Zoe Pes Pem Peb 

Neb Neb Neb Neb Neb Nem Nes Zoe 

Nem Neb Neb Neb Nem Nes Nes Nes 

Nes Neb Neb Nem Nes Nes Nes Nes 

Zoe Nem Nem Nes Zoe Pes Pem Peb 

Pes Pem Pem Pem Pem Pem Peb Peb 

Pem Nes Zoe Pes Pem Peb Peb Peb 

Peb Zoe Pes Pem Peb Peb Peb Peb 

 

 

 
 

Figure 4. Simulink design of fuzzy controller in DTC 

 

 

4. IMPLEMENTATION OF NEURAL NETWORK CONTROLLER IN DIRECT TORQUE 

CONTROL OF PMSM 

The fundamental DTC scheme of the PMSM is the foundation upon which the Simulink design for 

the neural network controller-based DTC of the PMSM is built. The block diagram for synchronous motor 

direct torque control using neural networks is shown in Figure 5. Because it has at least one feedback loop, a 

recurrent neural network, like in Figure 6, sets itself apart from other neural networks. One of the most used 

strategies for training a network is back propagation. During the training phase, the weights are initially 

initialized at random inside the network. The network's output is then collected and contrasted with the target 

value. Output layer's weights are adjusted based on the network error, which is estimated and applied. The 

weights of the earlier levels are updated similarly by propagating the network mistake backward. 

 

 

 
 

Figure 5. DTC for PMSM with a neural network controller 

 

 

Figure 6 depicts the suggested recurrent neural network's configuration, which consists of three layers: 

input layer, hidden layer, and output layer. The neurons are represented by the circles in the neural network. 
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Two neurons are present in the previous design's buried layer. One-two-one network best describes this 

topology. The neural network is fully connected, meaning that each neuron's output is weightedly coupled to 

every other neuron in the forward layer. Additionally, a weight connects each neuron in the hidden and output 

layers to a bias signal. 

The input is linked at node X. The weights between the input layer and the hidden layer are made up 

of V11 and V12. The hidden layer is linked to the bias value, bias value connected to hidden layer (Bh). The 

weight values for the output layer are W11 and W21, and the bias value is bias value connected to output layer 

(Bo). The RNN is subjected to the back propagation training technique. The network's architecture weights are 

modified as:  

 

𝑤𝑒𝑗(𝑛𝑒𝑤) = 𝑤𝑒𝑗(𝑜𝑙𝑑) + 𝛥𝑤𝑒𝑗 𝑒𝑗 = 0,1,2, . . . , 𝑒𝑛 (13) 

 

 

  

Figure 6. RNN architecture-based neuro- controller 

 

 

By altering the voltage vector selection approach employed by the DTC, the flux and torque 

parameters of a synchronous motor powered by the DTC are altered. The inputs for the two distinct neural 

controllers are the flux error and torque error. The selection of an appropriate voltage vector, which in turn 

controls the torque of the motor, is influenced by the combined influence of the improved outputs from both 

controllers. The Simulink model designed in MATLAB/Simulink to implement fuzzy and neural controllers to 

control PMSM is shown in Figure 7 

 

 

  

Figure 7. Simulink model for implementation of fuzzy and neural controllers in direct torque controlled 

synchronous motor 
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5. RESULTS AND DISCUSSION 

Figure 8 displays stator current THD values that were obtained using the PMSM's fundamental DTC 

technique. Figure 9 displays the stator current THD values that were obtained using the PMSM DTC technique 

and a fuzzy controller. Figure 10 displays the stator current THD value produced by incorporating neural 

network controllers in the DTC based PMSM.  

Waveforms of the current for stator and ripple for torque generated using the PMSM's fundamental 

DTC approach is shown in Figure 11. The waveforms of the current for the stator and ripple for the torque 

obtained by utilising a fuzzy controller in the DTC of the PMSM are shown in Figure 12. The torque ripple 

and stator current waveforms generated by integrating neural network controllers into the PMSM's DTC are 

shown in Figure 13. In Table 3, the fundamental DTC of the PMSM and the stator current THD derived using 

fuzzy and neural controllers are contrasted with the DTC-based PMSM. From Table 3, it can be inferred that, 

in comparison to the basic DTC technique of PMSM, the THD values of stator current and steady-state torque 

ripple have decreased as a result of the inclusion of proposed neural network and fuzzy controllers in a loop of 

the DTC scheme of PMSM. 

 

 

 
 

Figure 8. Stator current total harmonic distortion for basic DTC scheme of PMSM 

 

 

 
 

Figure 9. Stator current THD-based DTC of the PMSM using fuzzy logic 
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Figure 10. Stator current THD based on a neural network for the PMSM DTC 

 

 

  

Figure 11. Typical PMSM DTC configuration: current for stator and ripple for torque 

 

 

  

Figure 12. PMSM DTC with fuzzy logic for current for stator and ripple for torque 
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Figure 13. PMSM DTC using a neural network that accounts for current for stator and ripple for torque 
 

 

Table 3. Comparison of ripple for torque and current for stator total harmonic distortion attained using 

different PMSM DTC techniques 
PMSM Stator current THD Torque ripple (p-p)(Nm) 

Basic method 4.375% 0.35 

Fuzzy controller 1.756% 0.12 

Neural controller 0.94% 0.12 

 

 

6. CONCLUSION 

In order to enhance the DTC of PMSM's functionality, fuzzy and neural network controllers are 

introduced in this paper. To improve the efficiency of the PMSM's basic DTC scheme, the error and change in 

error of flux are processed in a fuzzy controller. Recurrent neural networks process the flux and torque defects 

in neural network controllers to improve the performance of the fundamental DTC of PMSM. The suggested 

remedy offers an effective response with reduced harmonics in the torque ripple and stator current. When 

compared to the basic DTC scheme of the PMSM, the stator current THD% value in steady state is improved 

by the use of fuzzy and neural network controllers. 
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