
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol.12, No.4, April 2014, pp. 2905 ~ 2913
DOI: http://dx.doi.org/10.11591/telkomnika.v12i4.4850  2905

Received September 15, 2013; Revised November 8, 2013; Accepted November 23, 2013

An Efficient Approach Based on Hierarchal Ontology
for Service Discovery in Cloud Computing

Naji Hasan.A.H*1, Gao Shu2, AL-Gabri Malek3, Jiang Zi-Long4
School of Computer Science, Wuhan University of Technology, Wuhan, 430063 China

*Corresponding author, e-mail: hasanye1985@gmail.com1, gshu418@163.com2,
malekye2004@gmail.com3, wuhanjzl@163.com4

Abstract
As service providers publish their web services in clouds environment, selecting the most

appropriate service among these clouds becomes a very difficult challenge. This paper proposes an
efficient approach based on hierarchal ontology to facilitate service discovery in cloud computing.
Concepts of services and their relations, which describe services semantically, are distributed in a
hierarchal ontology. In addition a matching mechanism for matching these concepts in order to match
services in clouds is proposed. The matching results will be matched by their inputs and outputs and be
evaluated by the QoS of services to select the appropriate service among matched services. A case study
is presented to prove the efficiency of our approach.

Keywords: hierarchal ontology, software as service, cloud computing, concepts, matching

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

Cloud computing [1] is considered as a new model of computing in which dynamically
scalable and often virtualized resources are provided as services over the Internet. Cloud
computing [2] has become a significant technology trend, and many experts expect that cloud
computing will reshape information technology (IT) processes and IT marketplaces. In general,
there are three types of services in cloud computing, Software as a Service (SaaS), Platform as
a Service (PaaS) and Infrastructure as a Service (IaaS).Software as a Service (SaaS) [3]
delivers an application as a service and eliminates the need to install and run an application on
the client’s own computers. Platform as a Service (PaaS) presents a computing platform or
solution stack as a service, most often providing a complete development platform for
organizations requiring a development instance of an application. Infrastructure as a Service
(IaaS) delivers infrastructure as a service with good examples including server CPU cycles, data
center space, storage resources, and database capacity. Usage is billed on a per use basis,
capacity can be increased in small increments, and the service is governed by stringent SLAs
[4].

Ontology is considered as a set of representational primitives that models a domain of
knowledge or discourse. The representational primitives are typically classes, attributes, and
relationships among class members. The definitions of the representational primitives contain
information about their meaning and constraints on their logically consistent applications. In the
context of database systems, ontology can be considered as a level of abstraction of data
models, analogous to hierarchical and relational models, but provided for modeling knowledge
about individuals, their attributes, and their relationships to other individuals [5].

More detailed ontologies can be created with Web Ontology Language OWL [6]. The
OWL is a language based on description logics, and presents more constructs over RDFS. It is
syntactically embedded into RDF, similar to RDFS, it offers additional standardized vocabulary.
OWL includes three species-OWL Lite for taxonomies and simple constrains, OWL DL for full
description logic support, and OWL Full for maximum expressiveness and syntactic freedom of
RDF. Since OWL is derived from description logics, then it is not surprising that a formal
semantics is defined for this language.

In general, most research study service discovery on a single cloud. However, once
service providers publish their web services in clouds environment, selecting the most suitable

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 4, April 2014: 2905 – 2913

2906

service among these clouds becomes a very difficult challenge due to the lack of unified service
descriptions and the lack of having the efficient service matching approach in order to facilitate
service discovery.In our work, we propose an aproach that includes a hierarical ontology which
unifies services description, and we propose service matching and QoS evaluation algorithms, a
case study is also provided to prove the efficiency and contributions of our approach.

This paper is organized as follows. Section 2 presents the related work. Section 3
introduces our approach, the architecture of our implementation (prototype) and its included
algorithms as well. Section 4 gives a case study on Travel domain in order to show the
efficiency of our approach. In section 5, we analysethe results and discuss the efficiency of our
approach. Section 6 presents conclusions and future directions.

2. Related Work
Service Discovery [7] is the process of locating Web service providers, and retrieving

Web services descriptions that have been previously published.Hang Wu et al [8]. propose a
method using Ontology Web Language to classify Web Services in order to speed up Web
Service discovery. The proposed method’s Web Service classification through a matching
method compares service name, input and output parameters, service description among
services. In addition, the position and meaning of services in the ontology are determined after
using a matching algorithm.

In [9], T. Rajendran and P. Balasubramanie introduce an optimal approach for
designing and developing an agent-based architecture. The introduced approach includes a
QoS-based matching, ranking and selection algorithm for evaluating web services in order to
find the most suitable web service.

Fei Chen et al. [10] presented an approach of adding semantics to cloud services
descriptions for improved cloud service discovery. This approach involves using DAML-S for
adding semantics to cloud services description. This approach provided a semantic discovery
algorithm for of cloud services which uses functionality of the service as the main criterion for
search.

In [11], Naji Hasan et al. propose a matching algorithm in their approach of service
composition. The matching algorithm measures the similarity between concepts (inputs and
outputs) of services using “Pellet DL” Reasoner and then it creates a semantic network.

Most of the service discovery works above are mainly to discover and match services in
a single registery and single cloud. No work carries service discovery on more than one cloud.
Service discovery in clouds needs to find more opportunities to select services published in
different clouds. In our approach we build a hierarchal ontology that provides unification of
services description in order to facilitate service matching. In addition we present an optimal
matching approach which begins with matching concepts of services in the hierarchal ontology,
then matching inputs and outputs of services. Finally, an evaluation algorithm ranks the
matched services results to select the most suitable service that meets user needs.

3. An Efficient Approach Based on Hierarchal Ontology for Service Discovery in Cloud
Computing

In this section, we introduce our proposed approach. We begin with the architecture of
our prototype,and introduce the hierarchal ontology model that describes services semantically
in a unification type. Then a flow chart of service discovery in cloud computing will be presented.
Finally the Service Discovery, Matching and Evaluating algorithms will be introduced.

3.1. The Architecture of the Prototype

Our prototype consists of five components, namely, Broker, Databse, clouds, Hierarchal
ontology and service discovery engine. The architecture of our prototype is illustrated in Figure
1. In following, a brief description of our prototype’s components:

TELKOMNIKA ISSN: 2302-4046 

An Efficient Approach Based on Hierarchal Ontology for Service Discovery… (Naji Hasan.A.H)

2907

Figure 1. The Architecture of the Prototype

(1) Broker: responsible of receiving requests from user and sending them to the service
discovery engine.

(2) Clouds: contains the clouds include services and discovery operation will be carryedon.
(3) Hierarchal ontology: this ontology includes the description of services in clouds with

unification style. Services providers need to describe their services in a unification model in
order to facilitate service discovery. The proposed hierarchical ontology model will be
expressed by OWL-S and be included three ontology levels, i.e., top level, local level and
service level.

a) Top level ontology contains the general ontology named top ontology. This top
ontology has common concepts and general classes. User requirements will be translated as a
required service semantically. The concepts in the required service are subclasses of the
concepts in top ontology.

b) Local level ontology locates in local clouds. Each cloud provides its own local
ontology, and expresses the common description of services. In addition, the concepts in these
local ontologies have a relationship (inheritance) with the concepts included in top ontology in
the top level.

c) Service level contains the descriptions of services in local clouds. Each service
provider is required to annotate his services with OWL-S semantics. The concepts and
descriptions in this level are subclasses of the related concepts in the local ontologies in the
local level.

The hierarchical ontology model is illustrated in Figure 2.

Figure 2. Hierarchical Ontology Model

(4) Database: conceptions of ontologies and services’ conceptions along with their and their
relations will be stored in database in order to match and discover the required service.

(5) Service Discovery Engine: in this component two processes will be carried out, matching
and evaluation.

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 4, April 2014: 2905 – 2913

2908

In matching process, concepts in services included in clouds will be matched to the
concepts in the required service. Then the inputs and outputs of matched services will be
matched with corresponding inputs and outputs of the required service. If the result of matching
process generates more than one matched service, the evaluation process will rank the
matched services in order to choose the appropriate service based on QoS.

3.2. The Flowchart of the Prototype

Figure 3 illustrates the flowchart of the proposed service discovery approach. The
proposed approach will be explained in the following algorithms.

Figure 3. Flowchart of Service Discovery

3.3. Algorithms in our Approach
In following, we introduce several algorithms that we use in our work.

Algorithm 1: Service Discovery
Input: set of clouds clset, required service reSer;
Output: matched services matchedSer or Null;
1. matchedSernull;
2. Call Matcher(clset, reSer)
3. get matchedSerSet // get the matched services(s)
4. if(length(matchedSerSet) bigger than 0) // if the matched service Set is not empty
5. if(length(matchedSerSet) bigger than 1) // matched service Set contains more than one --
 // matched service
6. Call Evaluator(matchedSerSet); // send to evaluator to get the best one based on QoS
7. get matchedSerSet [0]; // get the result
8. matchedSermatchedSerSet [0];
9. else
10. matchedSermatchedSerSet[0];
11. else
12. matchedSernull;
13. return matchedSer;

Algorithm 1 illustrates the general view of service discovery in clouds. The set of clouds

that included services and the required service will be submitted to the matcher engine as
inputs. The result will be measured to obtain matched services set, and when the matched
services set has more than one component, the Evaluator engine will be called to rank the
services in matched services set in order to choose the appropriate service based on QoS,
which in turn will be sent back to the user. In Matcher engine, there are four algorithms,

TELKOMNIKA ISSN: 2302-4046 

An Efficient Approach Based on Hierarchal Ontology for Service Discovery… (Naji Hasan.A.H)

2909

ServicesMatching algorithm, conceptsMatching algorithm, InputMatching algorithm and
OutputMatching algorithm. Evaluator engine contains an Evaluator algorithm.

Algorithm 2: Services Matching
Input: set of clouds clouds, required service reSer
Output: matched service set matchedset
1. Matched service set matchedsetnull
2. foreachi=0;i<clouds do {
3. Cloud cl clouds[i] // obtain a cloud from clouds
4. foreach j=0;j< services in cl do {

5. <-Get servicek//obtain a service included in cl cloud

6. if conceptsMatching(, ser) //match the obtained service with the required service

7. if(InputMatching(, ser)&&OutputMatching(, ser)) // ’s inputs and outputs arematched
// totheir correspondinginputs and outputs in ser

matchedset.add(, ser) // add the services that matched to ser
8. }
9. }
10. return matchedset

Algorithm 2 iterates the services in clouds set and prepare them to be matched to the

required service.If a service matched to the required service, this service will be added to the
matched set along with the requested service. Finally the matched services set will be retuned
as the result of this algorithm.

Algorithm 3: conceptsMatching
Input: service se1, required service reSer
Output: flag true or false
1. conpset1Get concepts of ser1 //get the concepts and their super concepts of a service ser1
2. conpset2Get concepts of reSer //get the concepts and their super concepts of a service reSer
3. foreach cnp1 in conpset1 do{
4. foreach cnp2 in conpset2 do
5. if cnp1 equivalent to cnp2
6. flag  true;
7. break;
8. else
9. flag false;
10. }
11. }
12. return flag

In algorithm 3, concepts and their super-concepts, which are designed based on

hierarchal relation, of both services will be extracted and matched. When only one concept in a
service 1 is equivalent to a concept in the required service, here the two services are
considered matched and return true, otherwise the algorithm will continue trying to find
equivalent concepts and if it does not find, it returns false.

Algorithm 4: InputMatching
Input: service se1, required service reSer
Output: flag true or false
1. inputs1Get inputs of ser1 //get the inputs of service ser1
2. inputs2Get inputs of reSer//get the inputs of service reSer
3. if(length(inputs1)!= length(inputs2)
4. flagfalse;
5. else
6. foreach inp1 in inputs1 do
7. {
8. foreach inp2 in inputs2 do
9. {
10. if(inp1.datatype equivalent to inp2.datatype)

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 4, April 2014: 2905 – 2913

2910

11. flag  true;
12. else
13. flag false;
14. break;
15. }
16. }
17. return flag

Algorithm 4 introduces the idea of matching inputs of service 1 and the required service.

This algorithm iterates the inputs of both services and if the data type of each input in service 1
equivalent to the data type of the corresponding input in the required service, thus these
services are matched and return true, otherwise return false.

Algorithm 5: OutputMatching
Input: service se1, required service reSer
Output: flag true or false
1. outputs1Get outputs of ser1 //get the outputs of a service ser1
2. outputs 2Get outputs of reSer //get the outputs of a service reSer
3. if(length(outputs1)!= length(outputs2)
4. flagfalse;
5. else
6. foreach out1 in outputs1 do {
7. foreach out2 in outputs2 do{
8. if(out1.datatype equivalent to out2.datatype)
9. flag  true;
10. else
11. flag false;
12. break;
13. }
14. }
15. return flag

Algorithm 5 presents the idea of matching the outputs of a service1 and the outputs of

the required service. This algorithm does the same process as algorithm 4 but with outputs.

Algorithm 6: Evaluator
Input: matched services set matchedSerSet
Output: matched services set matchedSerSet contains one matched service
1. foreach couple matched services in matchedSerSet do{
2. Ser1 the matched service in couple matched(ser1,ser2)
3. Ser2 the required service in couple matched(ser1,ser2)
4. QoSset get all QoS of Ser1
5. weightQoS get the weights of QoS of required service Ser2
6. foreachi=0;i< QoSset1 do {
7. total0
8. If QoSset [i] belongs to QoS group 1 // the higher the value, the high the quality such as
9. QoSset [i] (-) QoSset [i]; // security, the value becomes negative
10. score[i]QoSset [i] * weightQoS [i]; // the multiple of QoS value of a service and weight of-
 // Qos of the required service
11. total[ser]∑ score[i];
 }
 }
12. foreach couple matched services in matchedSerSet do {
13. if (MAX(total[ser]))
14. return matchedSerSet[ser]; // return the matched service which contains the --

 //maximum scores
15. }

Algorithm 6 evaluates the services that matched the required service in order to choose

the appropriate one by calculating the total QoS measure. The total QoS measure can be
computed by obtaining the result of the multiplication of the QoS value of a specific QoS

TELKOMNIKA ISSN: 2302-4046 

An Efficient Approach Based on Hierarchal Ontology for Service Discovery… (Naji Hasan.A.H)

2911

measure, such as cost, with the weight of corresponding QoS measure in the required service.
In addition, QoS measures can be categorized into two categories:

1. Negative measures: QoS that is the higher the value, the lower the quality such as
time and cost. In our algorithm we add a negative token in front on it. As step 9.

2. Positive measures: QoS that is the higher the value, the higher the quality such as
security. In our algorithm we add nothing in front on it.
The total value of QoS of a service can be calculated as the following equation below:

Total ൌ ෌ ሺQoSሾkሿ ∗ weightሾkሿሻ
௡

௞ୀଵ
 (1)

The service which has the maximum total will be chosen as the appropriate service and

be submitted back to the user.

4. Case study
In order to make our proposed approach more concrete, we give a specific example.

Suppose that we have three clouds {C1, C2, C3}. Each of these clouds has a set services
{s1,s2,s3,…sn}. Each service will be described semantically, via Owl-s language, and contains
concepts that are sub-concepts of the concepts in the local ontology, which concepts in turn are
sub-concepts of the top ontology. Suppose that the top ontology named Top-Services.owl and
the following is a part of its content:

<owl:Classrdf:ID="FlightBooking">
<rdfs:subClassOfrdf:resource=""/>
<rdfs:labelxml:lang="en">FlightBooking</rdfs:label>
</owl:Class>
 .
 .
<owl:Classrdf:ID="CarRental">
<rdfs:subClassOfrdf:resource=""/>
<rdfs:labelxml:lang="en">CarRental</rdfs:label>
</owl:Class>

We have a cloud named IBM that has a local ontology called IBM.owl, and its concepts

are sub-concepts of the concepts in Top-Services.owl ontology.

<owl:Classrdf:ID="Flights">
<rdfs:subClassOfrdf:resource="Top-Services#FlightBooking"/>
<rdfs:labelxml:lang="en">Flights</rdfs:label>
</owl:Class>
.
.
<owl:Classrdf:ID="CarRent">
<rdfs:subClassOfrdf:resource="Top-Services#CarRental"/>
<rdfs:labelxml:lang="en">CarRent</rdfs:label>

In IBM cloud, there are lots of services, FastCars and HertzCarRental, for instance, are

services that have conceptsFastCars andHertzCarRentalthat are sub-concepts of the concept
CarRent in the local ontology IBM.owl. The following is a part of CarRent.owland
HertzCarRental.owl ontology.

<owl:Classrdf:ID="FastCars"><owl:Classrdf:ID="HertzCarRental">
<rdfs:subClassOfrdf:resource="IBM#CarRent"/><rdfs:subClassOfrdf:resource="IBM#HertzCarRental"/>
<rdfs:labelxml:lang="en">FastCars</rdfs:label><rdfs:labelxml:lang="en">HertzCarRental</rdfs:label>
</owl:Class></owl:Class>
<service:Servicerdf:ID="FastCarsService"><service:Servicerdf:ID="HertzCarRentalService">
<service:presentsrdf:resource="#FastCarsProfile"/><service:presentsrdf:resource="#HertzCarRental"/>
<service:describedBy<service:describedBy
rdf:resource="#FastCarsProcess"/>rdf:resource="#HertzCarRentalProcess"/>
<service:supportsrdf:resource="#FastCarsGrounding"/><service:supportsrdf:resource="#FastCarsGrounding"
/>
</service:Service></service:Service>

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 4, April 2014: 2905 – 2913

2912

Suppose that the required service, which expresses user’s needs,is named
CarsRenting, has the CarsRenting.owl ontology and their concepts are sub-concepts of the
concepts in Top-services.owl ontology. CarsRenting.owl ontology contains the following content:

<owl:Classrdf:ID="CarsRenting">
<rdfs:subClassOfrdf:resource="Top-Services#CarRental"/>
<rdfs:labelxml:lang="en">CarsRenting</rdfs:label>
</owl:Class>

When we use our proposed approach, we find that the servicesFastCars and
HertzCarRentalmatched to the required service CarsRenting as their concepts are equivalent in
the top level ontology. Then the matching process will be carried out through matching inputs
and outputs, then matched services will be ranked to choose the suitable service. The rest part
of matching is ignored due its simplicity and space limitation. Figure 4 the matching result of our
case study

Figure 4. The Matching Results of our Case Study

5. Analysis and Discussion
The time complexity of theservice discovery algorithm depends on the time complexity

of Services Matching algorithm and Evaluator algorithm. Time complexty of Services Matching
algorithm is O(n2*m2), Time complexty of Services MatchingEvaluator is O(n*m), then time
complexity of the service discovery algorithm is O(n2*m2). Themain contributions of the
proposed approach are the following points:

1. Prototype: The proposed approach is based on SOA architecture and presentsa
prototype that facilitates service discovery in cloud computing by matching concepts in services
included in clouds. A case study is provided to demonstrate our proposed approach.

2. Hierarcal Ontology Model: Services published in clouds required to be published
with unified discription. Service’s discription can be distributed and published in Hierarcal
Ontology in order to match services and meet user’s needs.

3. Services Evaluator: Services can be ranked based on their QoS and weights
submitted by user in order to choose the suitable service that meet user needs.

Our approach aims to reduce firstly, the complexity of the service discovery algorithm
and secondly, the time needed to select the best, by integrating concepts matching, and QoS
criteria, at discovery run time, comparing to these approaches [4], [8-10] and others.

6. Conclusion
In this work, an efficient approach based on hierarchal ontology for service discovery in

cloud computing is proposed. In our approach, services have been described and distributed in
a hierarchal ontology. Services in clouds are matched to the required service, which describes
user requirements, by matching concepts in these services with corresponding concepts in the
required service. Then matching inputs and outputs, if matching services’ result is more than
one, an evaluation algorithm will be used to choose the appropriate service and submit it to the
user. Using our approach, service discovery in clouds can be more efficient due to the

TELKOMNIKA ISSN: 2302-4046 

An Efficient Approach Based on Hierarchal Ontology for Service Discovery… (Naji Hasan.A.H)

2913

opportunity to search and discover services in more than one cloud, by unifying services
description and building a hierarchal ontology that facilitates services matching and meet user’s
requirements. In the future work, we plan to compose services from services published in clouds
and find the suitable service composition with the minimum number of clouds.

Acknowledgements
This work is supported by Wuhan International Cooperation Project: Studying and

Implementation on Semantic-based Visualization Services Matching,Project no. 200970634269.

References
[1] BorkoFurht. Handbook of Cloud Computing. Springer.London. 2010.
[2] Jing Liu, Xingguo Luo, Bainan Li, Xingming Zhang, Fan Zhang. An Intelligent Job Scheduling System

for Web Service in Cloud Computing. TELKOMNIKA Indonesian Journal of Electrical
Engineering.2013; 11(6): 2956- 2961.

[3] Briscoe G, Marinos A. Digital ecosystems in the clouds: Towards community cloud computing. 3rd
IEEE International Conference on Digital Ecosystems and Technologies. Istanbul. 2009: 103-108.

[4] Al Falasi A, MA Serhani. A Framework for SLA-based cloud services verification and composition.
International Conference on Innovations in Information Technology (IIT). Abu Dhabi. 2011; 287-292.

[5] Ling Liu and M. Tamer Özsu (Eds.) Encyclopedia of Database Systems. Springer-Verlag. 2009.
[6] Michael Smith, Ian Horrocks, Markus Krötzsch, BirteGlimm.OWL 2 Web Ontology Language:

Conformance (Second Edition).http://www.w3.org/TR/owl2-conformance/. 2012.
[7] Michael Papazoglou. Web Services and SOA: Principles and Technology. Pearson Education Press.

Canada.2012.
[8] Hang Wu, Chao Zhen Guo. The Research and Implementation of Web Service Classification and

Discovery Based on Semantic. 15th International Conference on Computer Supported Cooperative
Work in Design. 2011: 381–385.

[9] T Rajendran, P Balasubramanie. An Optimal Agent-Based Architecture for Dynamic Web Service
Discovery with QoS. Second International conference on Computing, Communication and Networking
Technologies. 2010; 1-7.

[10] Fei Chen, Xiaoli Bai, Bingbing Liu. Efficient Service Discovery for Cloud Computing Environments.
Advanced Research on Computer Science and Information Engineering. 2011; 153: 443-448.

[11] Naji Hasan AH, Shu Gao, Malek Al-Gabri, Zi-Long Jiang. An optimal semantic network-based
approach for web service composition with qos. TELKOMNIKA Indonesian Journal of Electrical
Engineering. 2013; 11(8): 4505 – 4511.

