
Indonesian Journal of Electrical Engineering and Computer Science 
Vol. 2, No. 1, April 2016, pp. 161 ~ 167 
DOI: 10.11591/ijeecs.v2.i1.pp161-167      161 

  

Received December 22, 2015; Revised February 27, 2016; Accepted March 10, 2016 

Sparse Modeling with Applications to Speech 
Processing: A Survey 

 
 

AN Omara*1, AA Hefnawy1, Abdelhalim Zekry2 

1Computers and Systems Department, Electronics Research Institute, Giza, Egypt  
2Communications and Electronics Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt 

*Corresponding author, e-mail: ahmed_omara@eri.sci.eg 
 
 

Abstract 
Nowadays, there has been a growing interest in the study of sparse approximation of signals. 

Using an over-complete dictionary consisting of prototype signals or atoms, signals are described by 
sparse linear combinations of these atoms. Applications that use sparse representation are many and 
include compression, source separation, enhancement, and regularization in inverse problems, feature 
extraction, and more. This article introduces a literature review of sparse coding applications in the field of 
speech processing. 
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1. Introduction 
Natural and artificial sensors are the only tools we have for sensing the world and 

gathering signals of physical processes. These sensors are usually not aware of the physical 
process underlying the phenomena they “see,” hence they often sample the signal with a higher 
rate than the effective dimension of the process. To represent the sampled data efficiently, we 
have to reduce its dimension to be effective. In other words, the signal has to be linearly 
represented with a few parameters. Such representations often yield superior signal processing 
algorithms. Recent theory informs us that, with high probability, a relatively small number of 
random projections of a signal can contain most of its relevant information. 

One of the efficient signal representations is the sparse decomposition. This type of 
signal decomposition has recently received extensive research interest across several 
communities including signal processing, information theory, and optimization [1-3]. Also, these 
representations have found successful applications in data interpretation, source separation, 
signal de-noising, coding, classification, recognition, and many more [4]. 

In sparse representation, the signal can be constructed by elementary waveforms 
chosen in a family called a dictionary [5]. The dictionary elements are called atoms that may be 
orthogonal or non-orthogonal [6].The over-completed dictionaries whose vectors are larger than 
bases are needed to build sparse representations of complex signals [7]. But choosing is 
difficult and requires more complex algorithms. 

This article aims at presenting an overview of research efforts on sparse 
decompositions of speech signals. So, the structure of the article is as follows. In Section II, we 
review the basic definitions of the sparse coding. And we illustrate the methods of sparse 
optimization problem. In Section III, we show the aspect of over-complete dictionaries and its 
approaches. In Section IV, we illustrate the importance of sparse coding in different speech 
processing applications. 

 
 

2. Sparse Modeling 
It was first introduced in [8], [9] as a method to find sparse linear combinations of basis 

functions to encode natural images. Sparse representation of signals is a growing field of 
research which aims at finding a set of prototype signals called atoms ∈ 	  which forms a 
dictionary ∈ 	  that can be used to represent a particular set of given signals ∈ 	  by 
some sparse linear combination of the atoms in the dictionary. Mathematically, for a given set of 
signals represented by	Χ, we need to find a suitable dictionary  such that 	 	where 
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	 ∈ 	 	 is a sparse vector which contains the coefficients for the linear combination and	 ∈
Χ	. 

 
2.1. Non-Convex Sparse Optimization Problem 

The problem of sparse representation can thus be formulated as a non-convex or (ℓ ) 
optimization problem of finding	 , 	 which satisfies 

 
, ∶ Argmin

, 	
‖ ‖ Subject to ‖ ‖  (1)

 
where  is some predefined threshold which controls the sparseness of the 

representation and ‖ ‖  denotes the ℓ  pseudo norm which counts the number of non-zero 
elements of the vector	 . This problem can alternately be formulated as 

 
, ∶ Argmin

, 	
‖ ‖ Subject to‖ ‖  (2)

 
where  is the tolerable limit of error in reconstruction. Though the solutions to Eq.1 and 

Eq.2 need not be the same mathematically, they are similar in essence to what the sparse 
representation problem aims at achieving. This problem is thus involves a choice of the 
dictionary and a sparse linear combination of the atoms in the dictionary to represent each 
desired signal. 

 
2.2. Non-Convex Sparse Optimization Problem 

Using the ℓ 	norm in the sparse approximation problem makes it a NP-Hard with a 
reduction to NP-complete subset selection problems in combinatorial optimization. A convex 
relaxation of the problem can instead be obtained by taking the	ℓ  norm instead of the ℓ 	norm, 
where	‖ ‖ 	∑ , . The 	ℓ 	norm induces sparsity under certain conditions [10]. The 
solution of the convex optimization problem will be in the form of 

 
, ∶ Argmin

, 	
‖ ‖ Subject to‖ ‖  (3)

 
Or  
 
, ∶ Argmin

, 	
‖ ‖ Subject to‖ ‖  (4)

 
Efforts devoted to this problem have resulted in the creation of a number of algorithms 

including basis pursuit (BP) [11], matching pursuit (MP) [12], orthogonal matching pursuit (OMP) 
[22], subspace pursuit (SP) [13], [14], regression shrinkage and selection (LASSO) [15], focal 
under-determined system solver (FOCUSS) [16], and gradient pursuit (GP) [17]. Sparse 
decompositions of a signal, however, rely greatly on the degree of fitting between the data and 
the dictionary, which leads to the second problem, i.e., the issue of dictionary design. 

 
 

3. Over-Complete Dictionaries 
An over-complete dictionary, one in which the number of atoms is greater than the 

dimension of the signal, can be obtained by either an analytical or a learning-based approach. 
The analytical approach generates the dictionary based on a predefined mathematical 
transform, such as discrete Fourier transform (DFT), discrete cosine transform (DCT), wavelets 
[18], curvelets [19], contourlets [20], and bandelets [21]. Such dictionaries are relatively easy to 
obtain and more suitable for generic signals. In learning-based approaches, however, the 
dictionaries are adapted from a set of training data [8], [9], and [22]-[27]. Although this may 
involve higher computational complexity, learned dictionaries have the potential to offer 
improved performance as compared with predefined dictionaries, since the atoms are derived to 
capture the salient information directly from the signals. 
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Optimizing the dictionary  is a challenging problem, and the numerical strategy 
commonly employed consists in iterative algorithms that start from an initial dictionary and 
alternate between the following steps [28]: 
 Sparse coding: given a fixed dictionary	 , the matrix ∅ of sparse approximation coefficients 

is calculated using any suitable algorithm for sparse approximation. 
 Dictionary update: given a fixed approximation matrix ∅, the dictionary  is updated in order 

to minimize the residual cost function	‖ ∅‖ . 
More specifically, several methods have been proposed to formalize the notion of the 

suitability of a dictionary for sparse approximation. These include the mutual coherence [29], the 
cumulative coherence [30], the exact recovery coefficient (ERC) [30], the spark [31], and the 
restricted isometry constants (RICs) [32], [33]. Except for the mutual coherence and cumulative 
coherence, none of these measures can be efficiently calculated for an arbitrary given 
dictionary. 

 
3.1. Mutual Coherence of a Dictionary 

The performance of sparse approximation algorithms depends on the mutual coherence 
of the dictionary defined as the maximum absolute inner product between any two different 
atoms. 

 
≝	max 〈 , 〉  (5)

 
The mutual coherence of a dictionary measures the similarity between the dictionary's 

atoms. For an orthogonal matrix	 , 	 0. For an over-complete matrix 	 	  we 
necessarily have		 0. There is an interest in dictionaries with  as small as possible 
for sparse representation purposes. If	 1, it implies the existence of two parallel atoms, 
and this causes ambiguity in the construction of sparse atom compositions. In [34] it was shown 
that for a full rank dictionary of size 	 	   

 

	
1

 (6)

 
and equality is obtained for a family of dictionaries called Grassmannian frames. For 

	 ≫ 	  the mutual coherence we can expect to have is thus of the order of 	1 √⁄ . 
 

3.2. Cumulative Coherence of a Dictionary 
A refinement of the coherence parameter is the cumulative coherence function [35], 

[36]. It measures how much a collection of  atoms can resemble a fixed, distinct atom. 
Formally [1] 

 

≝ max
| |

max
∉

|〈 , 〉|
∈

 (7)

 
We place the convention that	 0 0. The subscript on  serves as a mnemonic that 

the cumulative coherence is an absolute sum, and it distinguishes the function  from the 
number	μ. When the cumulative coherence grows slowly, we say informally that the dictionary is 
incoherent or quasi-incoherent. 

 
3.3. Spark of a Dictionary 

The spark of a dictionary  is the smallest number of columns that form a linearly 
dependent set [37]. In-spite the similar definition, note that spark is markedly different from the 
matrix rank, being the greatest number of linearly independent columns. A trivial relation 
between the spark  and the mutual coherence  is [37]. 

 

	1
1

 (8)
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4. Speech Processing Based on Sparse Modeling 
Sparse modeling has ubiquitous applications in speech and audio processing areas, 

including dimensionality reduction, model regularization, speech compression and 
reconstruction, acoustic/audio feature selection, acoustic modeling, speech recognition, blind 
source separation, and many others. This section presents some efforts on speech processing 
using sparse modeling. 

 
4.1. Speaker Identification 

The authors in [38] introduced a novel method for speaker identification or determining 
an unknown speaker’s identity based on a sparse signal model and the use of Compressed 
Sensing (CS). The use of CS permits the use of less transmission power for the sensor 
recording the voice. Additionally, this method had been shown to be robust to noise in the 
recorded speech signal. This is encouraging and warrants further investigation. 

 
4.2. Speech Compression 

In [39], the author presented the Molecular Matching Pursuit (MMP) algorithm that is 
suitable for speech coding. The main goal of MMP is to make a practical decomposition such 
that at every iteration the algorithm identifies and removes a whole cluster of (orthogonal) 
atoms. At the cost of a slight sub optimality in the approximation error rate, this offers a number 
of advantages, most notably it is significantly faster since the inner products update step is 
made for a large number of atoms at every iteration. Also, the use of a Modified Discrete Cosine 
Transform (MDCT) for speech coding was investigated in [40]. This approach produces a 
sparser decomposition than the traditional MDCT-based orthogonal transform and allows better 
coding efficiency at low bitrates. Contrary to state-of-the-art low bitrate coders, which are based 
on pure parametric or hybrid representations, the approach is able to provide transparency. 

 
4.3. Blind Source Separation 

Underdetermined speech separation is a challenging problem that has been studied 
extensively in recent years. The author in [56] presented a promising method to the Blind 
Source Separation (BSS) for speech signals based on sparse representation with adaptive 
dictionary learning. In another work [58], the author showed that the use of sparse 
decomposition in a proper signal dictionary provides high-quality blind source separation. 
Moreover, he proved that the maximum a posteriori framework gives the most general 
approach, which includes the situation of more sources than sensors. In [41], the author 
addressed the convolutive BSS issue and suggested a solution using sparse Independent 
Component Analysis (ICA). 

 
4.4. Speech Enhancement 

Recently, sparse representation is widely used for speech processing in noisy 
environments; however, many problems need to be solved because of the particularity of 
speech. In [42], a novel view for the enhancement of signals was applied successfully to speech 
using the K-Singular Value Decomposition Algorithm (K-SVD) [22]. The K-SVD algorithm is 
designed for training an over-complete dictionary that best suits a set of given signals. Another 
speech enhancement technique was suggested in [57] when the author proposed an exemplar-
based technique for the noisy speech. The technique works by finding a sparse representation 
of the noisy speech in a dictionary containing both speech and noise exemplars, and uses the 
activated dictionary atoms to create a time-varying filter to enhance the noisy speech.  

A good effort was done in [43]; the author proposed an effective dual-channel noise 
reduction algorithm based on sparse representations. The algorithm is composed of four steps. 
Firstly, overlapping patches sampled from two channels together instead of each channel one 
by one are trained to be a dictionary via K-SVD. Secondly, OMP reconstruction algorithm is 
applied to obtain the sparse coefficients of patches using the dictionary. Thirdly, the denoising 
speech can be obtained by the updated coefficients. Lastly, the above three steps are iterated 
to get clearer speech until some conditions are reached. Experimental results show that this 
algorithm performs better than that with single channel. 

Another speech denoising method based on greedy orthogonal adaptive dictionary 
learning was proposed in [25]. The algorithm constructs a user-defined complete dictionary, 
whose atoms clearly encode local properties of the signal. The performance of the algorithm 
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was compared to that of the Principal Component Analysis (PCA) method, and it was found to 
give good signal approximations, even as the number of atoms in the reconstructions decreases 
considerably; it was also observed that the algorithm has good tolerance to noise, comparable 
to that afforded by PCA.  

The enhancement of speech degraded by non-stationary interferers was addressed in 
[55]. The author presented a monaural speech enhancement method based on sparse coding 
of noisy speech signals in a composite dictionary, consisting of the concatenation of a speech 
and interferer dictionary, both being possibly over-complete. The speech dictionary is learned 
off-line on a training corpus, while an environment specific interferer dictionary is learned on-line 
during speech pauses.  

 
4.5. Speech Recognition 

Most of automatic speech recognition (ASR) technologies are based on hidden Markov 
models (HMMs), which model a time-varying speech signal using a sequence of states, each of 
which is associated with a distribution of acoustic features. While HMMs reach a relatively high 
performance in good conditions, they have problems in modeling wide variances in natural 
speech signals, such as speech in natural environments which is often interfered by 
environmental noises. 

Recently, some studies [44-45], and [51-54] have aimed at ASR using sparse 
representations of speech. In them, a time-frequency representation of speech is as a weighted 
linear combination of speech atoms. Benefits of the existing systems range from improved 
recognition accuracy to an easy incorporation of robustness to additive noises. Some of these 
systems construct the dictionary of atoms to be used in the sparse representation from 
exemplars of speech, which are realizations of speech in the training data, spanning multiple 
time frames [54]. 

When the weights of the sparse representation are used directly in the recognition, a 
fundamental problem is the association of higher-level information with the atoms in the 
dictionary to enable the recognition. In [45], the author trained a neural network to map the 
weights of the atoms directly to phoneme classes. Whereas in [53], the author associated each 
atom with one phonetic class, and recognition was done by finding the phoneme class with the 
highest sum of weights. Also in [52], the author used a dictionary consisting of both acoustic 
information and higher-level phonetic information. But in [51], the author used the index of the 
speech atom with the highest weight as an additional feature for their Dynamic Bayesian 
Network recognizer.  

Beside the foregoing efforts, there are more researches on speech recognition based 
on sparse representations [46-50]. In [46], the author enhanced the Least Absolute Shrinkage 
and Selection Operator (LASSO) algorithm for improving the speech recognition rates. In [50], 
the author used the sparse representation to estimate the missing (unreliable) coefficients of the 
speech signal. In [47], the author had evaluated the sparsity assumptions incorporated in 
sparse component analysis in the framework of Degenerate Un-mixing Estimation Technique 
(DUET) for speech recognition in a multi-speaker environment. In [48], the author proposed a 
state-based labeling for acoustic patterns of speech and a method for using this labeling in 
noise robust automatic speech recognition. In [49], a framework for an exemplar-based, de-
convolutive speech recognition system was presented. 

 
 

5. Conclusion 
This study sheds light on the applications of the sparse modeling in the field of speech 

processing. Although the sparse modeling is just a signal decomposition technique, this survey 
showed the importance of this strategy in the speech source separation, speech compression, 
speaker identification, speech recognition and noise reduction.  Not only the sparseness of the 
representation plays a role in these wide applications, but also the choice of the dictionary plays 
an imoportant role in this variation of the applications. 
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