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Abstract 
The empirical risk minimization methods were often used to estimate the multifunctional sensor 

regression function in signal reconstruction. The small size of sample data would lead to the problem of 
poor generalization capability and overfitting. Support vector machine (SVM) is a novel machine learning 
method based on structural risk minimization, and it can improve generalization capability and restrain 
overfitting. In this paper, an optimal ν-Support Vector Regression (ν-SVR) algorithm has been proposed for 
multifunctional sensor reconstruction, which combined ν-SVR with particle swarm optimization (PSO), 
achieving accurate estimation of both the hyperparameters and reconstruction function. The results of 
emulation and theory analysis indicate that the proposed algorithm is more accurate and reliable for signal 
reconstruction. 
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1. Introduction 

In the last decades, multifunctional sensors have received more attention due to the 
development of microelectronics, micromachining and other related technologies, which can 
simultaneously detect several different electric or non-electric signals, greatly reduce the size 
and consumption of the measurement system, and it could be applied into the field of 
environmental perception and industry measurement [1, 2], also naturally applied into the region 
of aeronautics, astronautics and micro-mechanical technology. In general, the multifunctional 
sensing technique can be studied from two related aspects [3]: the physical structure design of 
the multifunctional sensor for multiple variables sensing usually by exploiting the crossing 
sensitivity of sensitive components and the development of corresponding algorithm for 
reconstructing the measured variables. The schematic structure of multifunctional sensing 
technique is shown in Figure 1, where 1x , …, nx  are the physical quantities under 
measurement, 1y , …, ny  are the sensor output signals, while 1̂x , …, ˆnx  are the estimation of 
the measured quantities that can be obtained through the signal reconstruction algorithm, and 
this process is also called multifunction sensor signal reconstruction. 
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Figure 1. Schematic Structure of Multifunctional Sensing Technique 
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By now, the study of reconstruction algorithm is becoming more interesting and many 
signal reconstruction algorithms have been proposed [4-6], while these methods are based on 
the empirical risk minimization (ERM) principle, which ensures the actual risk close to the value 
of empirical risk when the sample data set is large. The signal reconstruction is usually a high-
dimensional signal processing problem, however, the sample data set obtained from the 
experiment is small compared to whole measurement range of the multifunctional sensor. In this 
case, minimizing the empirical risk can not guarantee a small value of actual risk, and thus lead 
to the overfitting and poor generalization capabilities [7-8]. Support vector machine (SVM) and 
its modified algorithms could provide powerful and efficient tools that are capable of dealing with 
the small sample size problem and theoretical bounds on the generalization error through 
replacing ERM principle with structural risk minimization (SRM) principle, which defines a trade 
off between the quality of the approximation of given data set and the complexity of 
approximating function, motivated by statistical learning theory. In recent years, SVM and its 
modified algorithms have been widely used in many research fields and achieved satisfactory 
results [9-11]. 

In this paper, we propose to use a new class of SVR algorithms [12], called ν-SVR, for 
sensor signal reconstruction. This algorithm could automatically compute the width of the so-
called ε-insensitive tube, which must be specified a priori in standard ε-SVM methods, thus 
adjust the generalization accuracy level to the sample data set. Moreover the parameter ν is 
asymptotically related to the noise model, therefore, to get better generalization accuracy the 
specified asymptotical optimal value could be chosen in accordance with the noise model that is 
in the data set, which is more suitable for the sensor signal reconstruction under the real world 
condition that the data set are often contaminated by noise. 

The main problem in ν-SVR or ε-SVM methods, however, is that of tuning the 
parameters, because the generalization abilities of these algorithms depend on the choice of 
kernel parameter, regularization parameter C and parameter ε (or ν), we present a simple and 
efficient PSO procedure aimed at determining the optimal hyper-parameters and the sensor 
reconstructed function. In Section II, we briefly review the ε-SVM, ν-SVR and PSO algorithms, 
and then describe reconstruction algorithm based on the optimal ν-SVR procedure. In Section 
III, we build up a simulation model of multifunctional sensor and analyze the experimental result 
obtained by the proposed approach. 
 
 
2. Theory and Algorithm 
2.1. ε-SVR and ν-SVR 

SVM was originally developed for binary classification problem, and then V. Vapnik 
generalized the results obtained for the pattern recognition problem to the problem of regression 
by introducing a novel loss function, ε-insensitive loss function, which could be defined as 
follows: 
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Where C is the regularization parameter that control the trade-off between minimizing the model 
complexity (the former) and the empirical risk (the latter). To minimizing the Equation (3) is 
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equivalent to the following constrained optimization problem by introducing two set of 

nonnegative slack variables   1
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i i
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The slack variables measure the deviation of data outside the ε-insensitive tube, and 

they are penalized in the equation (4). Although the parameter ε affects the desired accuracy of 
the approximation and the sparseness of the solution, it is difficult to find out the optimal value of 
ε for the lacking of a priori information about the data set. Therefore, it is advisable to 
automatically compute the ε from the data set, which is the idea of the ν-SVR. 

In the ν-SVR formulation, the value of ε is also a variable, which is traded off against the 
model complexity and slack variables via a constant (0,1] : 
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Subject to the constraint (5), the constraint optimization problem of Equation (6) results in a 
convex optimization problem with a global minimum by using Lagrange multipliers techniques 
and dual theorem, which is similar to the Vapnik’s ε-SVM, therefore the dual form for the ν-SVR 
optimization problem could be stated as follows:  
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And the approximating function can be expressed as: 
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Usually, only some of the coefficients ( )i i

    are nonzero, and the corresponding 
data vectors are called support vectors (SVs). Furthermore, to make the ν-SVR algorithm 
nonlinear, the input data vector ix  can be mapped into a high-dimensional feature space 
through some nonlinear mapping ( ) � , then solve the optimization problem (7) in the feature 
space, which means the inner product T

i jx x  in (7) is replacing by the inner product of the input 

vectors induced in the feature space, ( ) ( )T
i j x x . According to Mercer’s theorem, these 

expensive calculations of inner product in the high-dimensional feature space can be 
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significantly reduced and the explicit form of the nonlinear mapping is no need by choosing a 
suitable kernel function such that: 

 
( , ) ( ) ( )T

i j i jk   x x x x         (10) 

 
Then we can get the nonlinear form of Equation (9): 
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The typical choices of kernel function include polynomial kernels, sigmoid kernels and gaussian 
kernels. 

For the ν-SVR Algorithm, the theoretical significance of parameter ν is that ν is an upper 
bound on the fraction of errors and a lower bound on the fraction of SVs, where errors refer to 
the training data vectors lying outside the tube and fraction refer to the relative numbers divided 
by the total number of training data points, thus ν can control the number of SVs and the 
number of data points lying outside the tube. Moreover it has been theoretically proven that 
parameter ν can be asymptotically optimal chosen for a given class of noise model, such as ν 
can be set to 1 or 0.54 for Laplacian or Gaussian noise model, respectively [14]. 

 
2.2. PSO for Hyperparameters Selection 

It can be found from above that the generalization performance of ν-SVR depends on a 
good setting of C, ν and kernel parameter, however, the principled approach for the selection of 
hyperparameters is still an open and further complicated research area, which is usually treated 
as user defined inputs that based on a priori knowledge or expertise [15]. Actually the optimal 
parameters selection can be regarded as an optimal search process, and the estimation 
accuracy is computed as a function of hyperparameters, therefore optimal hyperparameters can 
be automatically found by optimization techniques.  

PSO is a novel evolutionary computation technique motivated by the social behaviors of 
flocking birds or swarming insects, which is a population based stochastic optimization 
technique that can be used for both discrete and continuous optimization problems, and the 
cooperation and information sharing of an entire flock implies the intelligence and efficiency of 
algorithm [16]. Each particle is a moving point in the solution space, and the particle’s traversal 
in the search space is influenced by the best solution that it has found, pbest, and the best 
solution found by the swarm of particles, gbest, respectively. The common PSO algorithm 
consists of the velocity and position equation as following: 
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Where x is the position information that reflects the value of hyperparamters, v is the velocity 
information which is dynamically adjusted according to the flying experience of both particle and 
swarm, w is inertia weight that control the trade-off between the global exploration and local 
exploitation abilities of the swam. c1, c2 are acceleration constants, and rand1, rand2 are 
random number between (0, 1). In this paper, the PSO is applied to ν-SVR algorithm to estimate 
the optimal value of hyperparameters. 
 
2.3. Algorithm 

For a multifunctional sensor, any output signal should represent the unique input signal, 
which can be called one-to-one, otherwise it is impossible to distinguish a input signal from 
another. Thus, the inverse mapping of multifunctional transfer function is unique based on 
inverse mapping theorem, and the system equation, according to Figure 1, can be written as: 
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Then the multifunctional sensor reconstructed signal can be obtained through the 

estimation of Equation (14),  
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Where 1( ( ), , ( ), )svr

i n if y t y t    is the ν-SVR regression estimation of measured quantity ix , and 

i  is the optimal hyperparameters calculated by PSO. 
 
 
3. Result and Analysis 

To verify the feasibility of the proposed method, a physical model of the two-input/output 
multifunctional sensor used in the experiment has been built up and shown in Figure 2. 

Where x and y are the input signals, which represent the rate of the slide resistor lower 
side resistances to the entire resistances, u and v (Voltage) are the output signals. To test the 
ability of the algorithm to match the noise, two independent and identically distributed (iid) noise, 

1  and 2  are added to the input signals. According to KCL, the system transfer function can 

be described as follows: 
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Where 1x x    and 2y y    . As a training set, we use 144 samples ( , , , )

i i i ix y u v   
generated by the above function. Here, the training input set ( , )i ix y  is a cartesian product of 
two input signal sets, which are both composed of 12 equally spaced data points over the 
interval (0.1, 0.9), and 1,2  are iid additive noise. The risk, generalization error, is computed with 
respect to the Equation (16) without noise, thus the test set consists of 196 samples 
( , , , )i i i ix y u v  generated from the noiseless Equation (16), where the test input set is also a 
cartesian product that are composed of 14 equally spaced data points in the interval (0.1, 0.9). 

In this experiment, we add Gaussian noise with zero mean and standard deviation to 
the data, which is the common assumption, and the aim is to observe whether the proposed 
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Figure 2. Circuit Model of Two Input/Output Sensor
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method with theoretically predicted value of ν can lead to good generalization performance in 
practical for different noise level, and whether the noise level has any influence on PSO based 
hyperparameters selection procedure. Therefore, we first compute the optimal hyperparameters 
for varied noise level (different standard deviation), here the fitness is the root mean squared 
relative error (RMSRE) between the estimations and the true values of noiseless test input 
signals, and then we calculate the relative error of estimations with the optimal parameters for 
each noise level. 

Figure 3 and Figure 4 illustrate the performances of PSO approaches on the test set 
with different noise setting to find the global optimum by plotting the best fitness versus the 
number of iterations. It is clear from the figures that for all noise levels the value of RMSRE 
decreases very fast to the high quality solutions at the early iterations (about 100 iterations) and 
then the curves become very flat, which implies that PSO can converge to the global optimum 
very quickly. It also can be seen that the best RMSRE of signals increase with the increase of 
the noise level, however the biggest value is still less than 1%, thus it demonstrates that the 
proposed PSO procedure can effectively prevent the premature convergence and significantly 
enhance the convergence rate and accuracy in the evolutionary process, independent of the 
noise levels. 

 
 

Figure 3. RMSRE of x versus Iteration for 
Different Noise Level 

Figure 4. RMSRE of y versus Iteration for 
Different Noise Level 

 
 

 
 

Figure 5. Relative Error of x for Different Noise 
Level 

Figure 6. Relative Error of y for Different Noise 
Level 

 
 
To evaluate the reconstruction performance of ν-SVR algorithm with optimal parameters 

setting, the box plots of the relative error of x and y for different noise levels are shown in Figure 
5 and Figure 6. Each box plot is based on the results of test data set with varying added noise: 
from left to right,  0.1,0.2,0.3,0.4,0.5noise   . As shown in figures, the relative error of both 
reconstructed signals x and y are approximately zero-mean or very close to zero-mean for all 
noise levels. This is confirmed by the mean values, given at the bottom of each plot, which 
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implies that the proposed algorithm is unbiased. Note from the figures that the range and 
standard deviation of the relative error increase with the growing value of noise level, however, 
the most of relative error for each box plot is within a reasonable range, such as all of the 
whisker range are within the range from -0.5% to 0.5%. Therefore, it proves that the proposed 
method is stable and accurate with respect to the added noise in the data set. 
 
 
4. Conclusion 

This paper presents an optimal SVR algorithm that profit from the combination of ν-SVR 
and PSO for multifunctional sensor signal reconstruction. The ν-SVR method is able to cope 
with a high-dimensional signal processing in small sample size situations. Moreover, the higher 
generalization accuracy could be achieved, since the parameter ν is in accordance with the 
noise model that is in the data set. And the PSO based parameters optimization procedure is 
simple, efficient, and easy to implement. The experiment results suggest that the proposed 
method is suitable for the multivariable condition and enhance the generalization performance 
and stability of signal reconstruction under different noise levels. Hence, the proposed approach 
can be immediately used by practitioners interested in applying SVM to various application 
domains. 
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