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 Automated recognition or categorization of fruits or crops through image 

processing technology is a highly sought-after technique in agriculture.  

This approach has been demonstrated to outperform manual monitoring in 

humans. It reduces the time and expenses incurred by farmers and ensures that 

end users receive high-quality products. This study details the process for 

identifying dry beans. We employed a support vector machine (SVM) model 

and three optimization techniques: Bayesian optimization, random search 

optimization, and grid search optimization. This study aimed to determine the 

optimal optimization technique for identifying dry beans using an SVM 

model. Various metrics, including the validation accuracy, test accuracy, total 

validation cost, total test cost, and minimum classification error, were 

computed and analyzed to compare the performance of each optimization 

method. In comparison, Bayesian optimization was determined to be the most 

effective optimization technique for identifying dry beans, with a validation 

accuracy of 93.06%, test accuracy of 92.29%, and minimum classification 

error of 0.069384. 
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1. INTRODUCTION 

Beans are a substantial crop worldwide and are well liked by cultivators and consumers. Dried beans 

comprise almost half of the leguminous grains directly consumed by humans in most developing nations [1]. 

Therefore, the use of multivariate and deep-learning techniques to apply classification methods is important in 

the agricultural industry. Categorizing different seed varieties and evaluating their quality is of utmost 

importance, as it significantly impacts crop production [2]. Dry beans exhibit high genetic diversity and are the 

most extensively cultivated edible legume crop worldwide. Seed quality plays an important role in crop 

production. Therefore, seed classification is crucial for both marketing and production as it aids in establishing 

sustainable farming systems [3]. Haricot beans, a highly nutritious food consumed worldwide, exist in various 

types that differ in characteristics, such as taste, size, and economic value. However, despite the differences 

between the types, bean grains are often mistaken for one another. Therefore, it is crucial to distinguish bean 

grains from different species. In the later phases of crop production, analyzing and sorting seeds is essential 

[4]. Customers in today’s cutthroat marketplace require consistency and safety. Therefore, manufacturers must 

provide goods that can be sorted based on visual characteristics, such as shape, size, color, and freshness.  

Grain identification allows farmers to grow and sell profitable crops. This ensures that the grains they sell are 

on par with industry requirements, boosting their bottom line [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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2. RELATED WORK 

Krishnan et al. [6] created a multiclass classification model based on machine learning (ML) methods 

to classify seven distinct varieties of dried beans. Because ML algorithms can be skewed towards the majority 

in an unbalanced multiclass dataset, researchers used the random under-sampling technique to create a balanced 

dataset. A multiclass classification model was built using the attributes of seven different dried bean types from 

the UCI ML repository dataset. The characteristics of the dataset were subjected to a box-cox transformation 

(BCT) to determine its skewness. To select the optimal ML classification method, 22 alternative algorithms 

were tested on standardized and cleaned datasets. A 10-fold cross-validation method was used to verify the 

accuracy of the ML algorithm output. CatBoost ML had the greatest mean accuracy throughout validation, at 

93.8% (92.05%-95.35%). Set out to find a dependable classifier with low noise consequences and developed 

an effective algorithm for classifying dry beans. Researchers have employed a dataset of dried bean grains, 

each with 16 characteristics, 12 dimensions, and four unique morphologies. Python’s interquartile range (IQR) 

function was used to clean the dataset with any missing values. Logistic regression (LR), Naive Bayes (NB), 

k-nearest neighbour (KNN), decision tree (DT), random forest (RF), extreme gradient boosting (XGB), support 

vector machine (SVM), and multilayer perceptron (MLP) were among the eight popular classifiers used, along 

with both balanced and imbalanced classes. Frequency tables, bar graphs, box plots, and analysis of variance 

were used for descriptive analysis and data pre-processing. The results indicated that the XGB classifier 

performed the best regardless of whether the distribution of dry beans within each class was even or uneven. 

They found that the XGB classifier had an ACC of 93.0% for unbalanced classes and 95.4% for balanced 

classes [7]. Lawi and Adhitya [8] evaluated the quality of cocoa beans based on their digital pictures’ 

morphology. The area, perimeter, major axis length, minor axis length, aspect ratio, circularity, roundness, and 

ferret diameter were some of the morphological or physical parameters they derived. Normal, broken, fractured, 

and skin-damaged beans are the four types of imperfect cocoa beans [8]. In this study, a multiclass ensemble 

least-squares SVM (MELS-SVM) was utilized as the classification model. The findings of the proposed model 

showed that the four cocoa bean classes could be accurately classified with a precision of 99.705% using only 

the morphological feature input parameters [8]. 

Further, using computer vision, Taspinar et al. [9] developed a system for classifying dried beans. A 

total of 33,064 images representing 14 bean species were collected to form the collection. Transfer learning 

was used to train three separate pre-trained convolutional neural networks (CNN) utilizing 33,064 photos of 

14 different species of beans. In particular, they used CNN models InceptionV3, VGG16, and VGG19. SVM 

and LR models use the retrieved features as inputs. Six different models (InceptionV3+SVM, VGG16+SVM, 

VGG19+SVM, InceptionV3+LR, VGG16+LR, and VGG19+LR) were used to assign classes to the photos. 

The accuracy in classifying data was 79.60% for InceptionV3+SVM, 81.97% for VGG16+SVM, and 80.64% 

for VGG19+SVM. The VGG16+LR model exhibited the best data classification accuracy. With a classification 

accuracy of 84.48%. InceptionV3 surpassed its competitors. To determine the color of a typical high-quality 

coffee bean, Gonzales et al. [10] used a picture of a batch of beans as a reference. Researchers have removed 

coffee beans whose area values were much lower than those of typical coffee beans. Coffee beans with skin 

flaws and fading have a smaller surface area than healthy beans because their form of extraction is imperfect. 

gourmet coffee beans. Researchers effectively separated low-quality beans from high-quality ones using an 

image processing method that allowed them to recognize differences [10]. Nasirahmadi and Behroozi-Khazaei 

[11] used a multilayer perceptron artificial neural network (MLP-ANN) and machine vision methods to classify 

beans according to their colors. Among the bean varieties gathered were the Khomein1, KS21108, Khomein2, 

Sarab1, Khomein3, KS21409, Akhtar2, Sarab2, KS21205, and G11870, all of which are cultivated in Iran. The 

MLP-ANN classifier was then fed the retrieved six color features of the beans and the six color features of the 

spots on the beans [11]. High levels of sensitivity and specificity were achieved by the MLP-ANN classifier 

throughout the training, validation, and testing stages, with values of 100%, 97.33%, and 96%, respectively. 

These findings suggest that the MLP-ANN classifier is useful for properly categorizing beans into their 

respective classes [11]. The accuracy of automated temporal change detection between two photographs of 

beans was proposed by Alban [12] they used a strategy based on the analysis of texture and spatial color 

qualities that are important for bean seeds. To do this, they used wavelet transform and fuzzy-logic 

segmentation. Digital image processing based on color and texture analysis [12] is used in the suggested 

methodology, making it a more accurate and robust method for grading beans that are difficult to cook. 

To achieve standardization in seed categorization, Koklu and Ozkan [13] developed a computer vision 

system to distinguish between seven registered types of dry beans that share comparable characteristics. To 

create the classification model, they took high-quality photographs of 13,611 grains representing seven types 

of registered dry beans. After the segmentation and feature extraction processes were applied to the collected 

bean images, 16 features (12-and four-shaped features) were obtained for each grain. Using 10-fold cross-

validation, we constructed four distinct classification models: MLP, SVM, k-NN, and DT. The performance of 

the models was compared using established measures. Classification rates for Barbunya, Bombay, Cali, 

Dermason, Horoz, Seker, and Sira beans were 92.36%, 100.00%, 95.03%, 94.36%, 94.92%, 94.67%, and 
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86.84%, respectively, using the SVM model [13]. Nasution et al. [14] devised a system to determine the quality 

of coffee beans by measuring their human systems integration (HSI) values. A backpropagation artificial neural 

network was trained to distinguish high-quality seeds from those of lower grades using the HSI value acquired 

from the converted RGB values of the beans. Testing showed that the developed program could identify poorly 

trained coffee bean samples using a user interface built in MATLAB R2013a [14]. To create a smartphone app 

that can successfully recognize and classify seed photos using a CNN, a deep learning approach, Başol and 

Toklu [15] adjusted pre-trained ResNet50, Inceptionv3, Xception, and Inception-ResNetV2 models. Images 

were scaled down to 224×224 for the ResNet50 model and 299×299 for the Inceptionv3, Xception, and 

Inception-ResNetV2 models when comparing their accuracies on the Seed15 dataset. The ResNet50 model 

used a pool size of 4×4 in its average pooling layer, whereas Inceptionv3, Xception, and Inception-ResNetV2 

models used pool sizes of 8×8. The Xception model was shown to have the best accuracy (88%) of the four 

pre-trained models, followed by the InceptionResNetV2 (61%), InceptionV3 (37%), and ResNet50 (91%) 

models [15]. 

 

 

3. MATERIAL AND METHOD 

3.1.  About dataset 

For this experiment, seven different types of dried beans were used, which were chosen for their 

specific shape, size, and marketability. To standardize seed categorization, a computer vision system was 

developed to distinguish between the seven recorded varieties of dry beans that had many features.  

The categorization model was created by photographing 13,611 individual grains of seven distinct registered 

types of dry beans using a high-resolution camera. The computer vision system captured photos of beans, and 

then the images underwent segmentation and feature extraction. In total, 16 characteristics, including 12 spatial 

dimensions and four geometric shapes, were determined from the grains. Seven different types of dry beans 

were used in this study, which were chosen based on characteristics such as form, shape, type, structure, 

categorization by the Turkish Standards Institute, and consumer desires. Seker, Barbunya, Bombay, Cali, 

Dermosan, Horoz, and Sira have only a few names for these species. Table 1 [16] shows the common 

characteristics of all designated dry beans. 
 

 

Table 1. Dry beans and their features 
Dry beans Features 

Cali Its seeds are white, somewhat plumper than dried beans, and shaped like kidneys. 

Horoz These dry beans are medium in size and shape, with a long, cylindrical shape and a white color. 

Dermason White in color with a rounded end and a round end on each bean, this kind of dry bean is flatter.  
Seker White, large, and round, these seeds are everything from little. 

Bombay Its flesh is white, its seeds are enormous, and its shape is round and rounded. 

Barbunya Its big, almost spherical seeds have a beige base with scarlet streaks or variegated, spotted coloring. 
Sira The seeds of this plant are tiny, white, flat, and physically symmetrical, with one end being flat and the 

other being rounded. 

 

 

3.2.  Feature extraction 

Various characteristics of each dry bean were identified and subsequently extracted. Owing to the lack 

of a distinct color feature, the extracted features primarily revolved around dimensions and shape. Therefore, 

feature analysis was employed to determine the dimensional and shape-related features of dry beans. 

Geometry-related features were obtained from binary images using MATLAB software. The features extracted 

from each dry bean encompassed a total of 12 dimensional and four shape-related features, with the values 

being measured in terms of pixel count. They are the most useful dimensional features used in the classification 

of dry bean seeds [17]:  

(a) Area (A): Area of a bean zone and the number of pixels within its boundaries. 
 

A = ∑ 1𝑟,𝑐 ∈ 𝑅 , where r, c is the size of region R (1) 
 

(b) Perimeter (P): Bean circumference was defined as the length of its border. 

(c) Major axis length (L): distance between the ends of the longest line that can be drawn from a bean. 

(d) Minor axis length (l): The longest line that can be drawn from the beam while standing perpendicular to 

the main axis. 

(e) Aspect ratio (K): The relationship between L and l is defined. 
 

K = 
L

I
 (2) 
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(f) Eccentricity (Ec): eccentricity of an ellipse with the same moments as the region. 

(g) Convex area (C): number of pixels in the smallest convex polygon that can contain the area of a bean 

seed. 

(h) Equivalent diameter (Ed): diameter of a circle with the same area as the bean seed area; 
 

d= √
4 ∗ 𝐴

𝛱
 (3) 

 

(i) Extent (Ex): the ratio of pixels in the bounding box to the bean area; 
 

Ex = 
𝐴

𝐴𝐵
, where AB Area of bounding rectangle (4) 

 

(j) Solidity (S) is also known as convexity. Ratio of pixels in convex shell to those in beans; 
 

S = 
𝐴

𝐶
 (5) 

 

(k) Roundness (R): calculated using the formula; 
 

R = 
4𝜋𝐴

𝑃2  (6) 

 

(l) Compactness (CO): measures the roundness of an object; 
 

CO = 
 𝐸𝑑

𝑙
 (7) 

 

The shape features used in the classification of bean seeds were as [18]. 
 

Shape factor1 (SF1) =
𝐿

𝐴
 (8) 

 

ShapeFactor2 (SF2) =
𝑙

𝐴
 (9) 

 

ShapeFactor3 (SF3) =
𝐴

𝐿

𝐴
∗

𝐿

𝐴
∗𝜋

 (10) 

 

ShapeFactor3 (SF3) =
𝐴

𝐿

𝐴
∗

𝑙

𝐴
∗𝜋

 (11) 

 

3.3.  Support vector machine 

SVM is a relatively recent and promising technique for learning separate functions in pattern 

recognition (classification) tasks or for obtaining good function estimates in regression issues [19]. Instead of 

offering a regression model and an algorithm, SVMs offer a classification learning model and an algorithm 

[20]. The goal of employing an SVM is to identify a classification criterion (i.e., a decision function) that can 

accurately classify unknown data with good generalization at the testing stage [21]. A training set is said to be 

linearly separable if a linear discriminant function exists, with a sign corresponding to the class of each training 

example. Typically, infinitely separating hyperplanes exist if a training set can be linearly separated. Choose a 

separation hyperplane that maximizes the margin or leaves the greatest distance between it and the nearest 

example [22]. For example, consider a set of data points made up of n vectors xi, each linked to a value yi that 

indicates whether the element belongs to the fraud class (+1) or not (-1). 

A linear hyperplane for a set of training data, xi for i=1, 2, … n, is defined as;  
 

wT x+b=0 (12) 
 

where w is an n-dimensional vector and b is a bias term. 

The optimal hyperplane is required to satisfy the constrained minimization as (13).  
 

𝑚𝑖𝑛
𝑤,𝑏

 ø(w) =
1

2
 wT. w 

Subject to yi (xi. w+b) ≥1, for i=1, 2, … m (13) 
 

In these cases, the constraint can be enforced using a lagrange multiplier(α), as shown (14). 
 

L (w, b, α) = 
1

2
wT. w-∑ (𝑛

𝑖=1 yi (wT xi +b)-1) (14) 
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To find the minimum of (3) over w, b (while fixing all αi), we set the gradient vector to zero. 
 

W= ∑ α𝑛
𝑖=1  ixi yi and ∑ α𝑛

𝑖=1  iyi = 0 (15) 
 

The solution of the cost function, which yields the maximum hyperplane utilized to categorize citrus fruit types, 

is as (16). 
 

L (w, b, α) = ∑ α𝑛
𝑖=1 I- ∑  ∑ α𝑛

𝑗=1
𝑛
𝑖=1 i αjyiyjxixj 

Subject to ∑ α𝑚
𝑖 = 1 iyi, Ɐαi≥0 (16) 

 

In the absence of linear separability in the training set, optimal hyperplanes are ineffective for 

classifying credit card fraud detection. Therefore, soft margins were introduced to address this problem.  

In addition, slack variables are introduced to disregard some constraints. That is, the margin offers training 

points. Therefore, we wanted their margin of penetration to be as small as possible. Therefore, the margin 

should be composed of only the fewest possible points;  
 

𝑚𝑖𝑛
𝑤,𝑏,ᶓ

 ø(w) = 
1

2
 wT. w+C ∑ ᶓ𝑚

𝑖 = 1 i 

Subject to yi (w, xi+b) ≥1-ᶓi, for i=1, 2, … n (17) 
 

where ᶓ is the slack variable and the C penalty parameter of the error term. The solution of (6) is; 
 

L (w, b, α) = ∑ α𝑛
𝑖 = 1  i-∑  ∑ α𝑛

𝑗 = 1
𝑛
𝑖 = 1 i αjyiyjxixj 

Subject to 0≤αi≤C, I=1, 2…, m (18) 
∑ α𝑛

𝑖 = 1 iyi, Ɐαi≥0 
 

higher values of C produced lower biases and higher variances, whereas lower values of C provided the 

opposite effects: higher biases and higher variances. Therefore, it is necessary to determine the ideal C value 

for the trade-off between the bias and variance. 

 

3.4.  Optimization techniques 

To achieve optimal results using deep-learning algorithms, it is essential to tune their parameters 

appropriately. Selecting a powerful deep-learning algorithm and adjusting its parameters are critical for 

developing a high-accuracy classification model. However, manually performing parameter optimization can 

be extremely time consuming, particularly when the learning algorithm has many parameters. One of the 

biggest challenges in setting up an SVM model is selecting an appropriate kernel function and determining 

optimal parameter values. Poor classification outcomes often result from inappropriate parameter settings. 

Therefore, it is crucial to identify the most appropriate parameter settings for an SVM model to ensure the best 

possible classification results [23], [24]. 

Hyperparameters in neural networks are parameters that cannot be directly learned from the training 

data, but must be set beforehand. They can greatly impact the performance of the neural network; therefore, 

optimizing them to achieve better training results is important. The number of layers, learning rate, momentum, 

mini-batch size, activation functions, regularization parameters, and dropout rate are some of the 

hyperparameters that can be optimized to improve the neural network performance [25]. However, optimizing 

hyperparameters requires exploring a large search space, which can be computationally expensive and time 

consuming. This is especially true when training deep neural networks, which often have a large number of 

tuning hyperparameters. Nevertheless, these techniques can save time and resources, often leading to improved 

training outcomes [26]. This study employed three methods to tune the SVM parameters: Bayesian 

optimization, grid search, and random search techniques. The aim of parameter tuning is to reduce the testing 

time while maintaining test accuracy, and a feasible parameter setting must achieve an accuracy comparable 

to that of the original model. 

 

3.4.1. Grid search optimization technique 

The grid search method systematically tests a predefined subset of hyperparameter values by 

exhaustively evaluating all the possible combinations of hyperparameters within a specified range.  

The hyperparameters are typically defined using the minimum, maximum, and step sizes for each 

hyperparameter. The search can be conducted on a linear, quadratic, or logarithmic scale. The performance 

metrics were then used to evaluate the performance of each combination of hyperparameters. The grid search 

tunes the SVM hyper-parameters (such as C, γ, and degree) using a performance metric based on the cross-

validation (CV) technique. The primary objective is to determine the optimal hyperparameter values that lead 
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to an accurate prediction of new data by the classifier while avoiding overfitting. To determine the optimal 

values of C and γ using k-fold cross-validation, we divided the available data into k subsets (typically k=10). 

One subset was used as the validation set and the model was trained on the remaining k-1 subsets. Next, we 

evaluated the performance of the SVM classifier on the validation set by using different values of C, γ, and 

other parameters. Next, we repeated this process for all k possible partitions of the data, and calculated the 

average cross-validation error for each combination of hyperparameters. Finally, the combination that achieved 

the highest cross-validation accuracy (or lowest error) was selected and used to train the SVM on the entire 

dataset [27], [28]. 
 

3.4.2. Random search optimization technique 

A grid search can result in unnecessary computations of the hyperparameters that have little impact 

on the performance of the model. A more efficient technique called random search can be used to overcome 

this problem. Hyperparameters were randomly sampled from the search space in a random search, and the 

configuration with the best performance was selected. The intuition behind this approach is that a sufficiently 

large set of random samples is likely to include the global optimum or a close approximation with high 

probability. Furthermore, a random search usually proceeds more quickly than a grid search. Because it can be 

used with a computer cluster that is susceptible to failure and enables the experimenter to change the 

"resolution" on the fly, random search is more useful than grid search. Because the trials are i.i.d., which is not 

the case for a grid search, it is possible to add new trials to the set and disregard failed trials. Of course, 

sequential optimisation, which automates manual search, can probably enhance random search [29], [30]. 
 

3.4.3. Bayesian optimization technique 

Bayesian optimization uses a probabilistic model to approximate the function that maps 

hyperparameters to performance measures. By iteratively selecting hyperparameters for evaluation based on 

this model and updating the model with the results of those evaluations, Bayesian optimization can efficiently 

search the hyperparameter space and find good solutions with fewer evaluations than grid or random searches. 

The Bayesian optimization algorithm updates the prior distribution as new sampling points are tested using this 

information to create a posterior distribution that better represents the true objective function. Based on this 

updated distribution, the algorithm determines the next set of hyperparameters to be tested, targeting the area 

where the global optimum is most likely to be found. This iterative process continued until a satisfactory set of 

hyperparameters was obtained. It may also be used to functions that require a lot of computation time, have 

challenging derivatives, or are not convex. The objective of optimisation in this study is to identify the greatest 

value at the sample point for an unidentified function, f; 
 

x+ = arg max
𝑥∈𝐴

𝑓(𝑥) (19) 

 

where a represents the x search space. The foundation for Bayesian optimisation is the Bayes’ theorem, which 

states that given evidence data E, the posterior probability P (M|E) of a model M is equal to the likelihood P 

(E|M) of overserving E given the model M multiplied by the prior probability. 
 

P(M|E) α P(E|M) P(M) (20) 
 

Bayesian optimization balances exploration and exploitation by selecting the next set of 

hyperparameters for testing based on the balance between their potential for improvement and uncertainty. 

This approach allows the algorithm to efficiently search the hyperparameter space and find the global optimum 

without becoming trapped in a local optimum. As a result, Bayesian optimization has become a popular and 

effective approach for optimizing hyperparameters in ML models. Bayesian optimization outperforms grid and 

random searches when determining optimal hyperparameters with fewer samples. This is because it uses 

previous information to guide the search toward promising areas of the hyperparameter space, while still 

exploring other areas to ensure that the global optimum is not missed. By balancing exploration and 

exploitation, Bayesian optimization can efficiently determine the best set of hyperparameters [31], [32]. 

 

 

4. RESULTS AND DISCUSSION 

In this experiment, three different optimization techniques were used with the SVM model to compare 

the performance of the SVM. The optimization techniques are random search, grid search, and bayesian 

optimization. The proposed method was implemented on an HP Victus laptop with a 12th generation Intel Core 

i7 CPU running on the Windows 11 operating system, including a built-in NVIDIA graphics processing unit, 

and MATLAB 2022a software. The training dataset comprised 70% of the data, the validation dataset 

comprised 20%, and the remaining 10% were reserved for testing the augmented dataset. After validating the 
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data, the validation accuracy was computed and the test accuracy was calculated after testing the data.  

The minimum classification error is determined after processing the data. The SVM models using all three 

optimization techniques were processed similarly. The four parameters of validation accuracy, test accuracy, 

total cost, and minimum classification error were compared to determine the best optimization technique  

using SVM. 

The random search optimization technique randomly selects hyperparameters from a defined search 

space and evaluates the model’s performance using cross-validation. The advantage of random search is that it 

can explore a wider range of hyperparameters than grid search. Among the three optimization techniques, the 

random search optimization technique with an SVM was validated and tested. 

The random search optimization technique achieved validation and test accuracy of 92.62 and 92.21, 

in Figure 1, respectively. The minimum classification error in this model was 0.073836. The confusion matrix 

and AUC of the validated data are shown in Figures 1(a) and 1(b), respectively. The confusion matrix and 

AUC of test data are shown in Figures 1(c) and 1(d) continuously. 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 1. Performance of random search optimization with SVM; (a) confusion matrix of validated data,  

(b) area under the curve (AUC) of validated data, (c) confusion matrix of test data, and (d) AUC of test data 

 

 

Bayesian optimization has emerged as a popular technique for addressing optimization problems in 

various domains where traditional numerical methods fall short. For example, one of its popular applications 
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is hyperparameter tuning, which aims to minimize the validation error of a machine-learning algorithm by 

tuning its hyperparameters. The process involves evaluating the objective function, which is the validation 

error, by training the ML model and assessing its performance on the validation data. In this context, Bayesian 

optimization was applied in conjunction with an SVM classifier to improve the accuracy of dry bean 

identification. The Bayesian optimization technique achieved validation accuracy and test accuracy of 93.06 

and 92.29 in Figure 2, respectively. The minimum classification error in this model was 0.069384. The 

confusion matrix and AUC of the validated data are shown in Figures 2(a) and 2(b), respectively. The confusion 

matrix and AUC of test data are shown in Figures 2(c) and 2(d) continuously. Grid search is a systematic search 

based on a predefined subset of the hyperparameter space. It partitions the range of parameters to be optimized 

into a grid and evaluates all the points to obtain the optimal parameters. The grid search optimizes the SVM 

parameters using cross-validation as the performance metric. 
 

 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 2. Performance of bayesian optimization with SVM; (a) confusion matrix of validated data  

(b) AUC of validated data, (c) confusion matrix of test data, and (d) AUC of test data 
 

 

The grid search optimization technique achieved validation and test accuracy of 92.58 and 92.36, 

respectively. The minimum classification error in this model was 0.074208. The performance of grid search 

optimization with SVM is illustrated in Figure 3. The confusion matrix and AUC of the validated data are 

shown in Figures 3(a) and 3(b), respectively. The confusion matrix and AUC of test data are shown in  

Figures 3(c) and 3(d) continuously. The detailed validation accuracy, test accuracy, total cost, and minimum 

classification error of the random search, bayesian, and grid search optimization techniques with SVM are 

shown in Table 2. 
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(a) (b) 

 

  
(c) (d) 

 

Figure 3. Performance of grid search optimization with SVM; (a) confusion matrix of validated data,  

(b) AUC of validated data, (c) confusion matrix of test data, and (d) AUC of test data 
 
 

Table 2. Performance of SVM concerning different optimization techniques 
Sl. 

no. 

Optimization 

techniques 

Validation 

accuracy 

Total cost 

(validation) 

Test 

accuracy 

Total cost 

(test) 

Minimum 

classification error 

1 No optimization 90.02 221 89.21 219 0.19821 
2 Random search 92.62 199 92.21 106 0.073836 

3 Bayesian 93.06 187 92.29 105 0.069384 

4 Grid search 92.58 200 92.36 107 0.074208 

 

 

5. CONCLUSION 

The classification of dry bean seed varieties is critical for seed uniformity and quality assurance. 

Compared with human inspectors, this system has two significant advantages. First, it produces a higher, 

reproducible, and objective sample classification. This study proposes a method for identifying dry beans using 

three different optimization techniques with an SVM. Without any optimization technique, the SVM method 

achieved a lower test accuracy than validation accuracy. Random and grid search optimization techniques have 

more classification errors than Bayesian optimization techniques. The validation accuracy of the Bayesian 

optimization technique was larger than that of the other two methods. The total validation and test costs of the 

Bayesian optimization technique were lower than those of the other methods. After comparing all parameters, 

such as validation accuracy, test accuracy, total validation cost, total test cost, and minimum classification 

error, it was concluded that the Bayesian optimization technique with SVM is the best optimization technique 

for identifying dry beans. 
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