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Abstract 
High dimensional data is usually produced by the source that only enjoys a limited number of 

degrees of freedom. Manifold leaning technique plays an important part in finding the correlation among 
the high dimensional data datasets. By making use of manifold alignment, the paired mapping relationship 
can be explored easily. However, the common manifold alignment algorithm can only give the mapping 
result of the training set, and cannot deal with a new coming point. A new manifold alignment algorithm is 
proposed in this paper. The benefit of our algorithm is two fold: First, the method is a semi-supervised 
approach, which makes better use of the local geometry information of the unpaired points and improves 
the learning effect when the labeled proportion is very low. Second, an extended spectral aggression trick 
is used in the algorithm, which can produce a linear mapping between the raw data space and the aligned 
space. The experiments result shows that, the correlation mapping can be precisely obtained, the hidden 
space can be aligned effectively, and the cost of mapping a coming point is very low. 

 
Keywords: manifold alignment, out of sample, affine transformation, spectral regression 
 

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 
 
 
1. Prefix 

High dimensional data is usually produced by the source that only enjoys a limited 
number of degrees of freedom (e.g. many head image sequence obtained only by changing 
light and pos parameters). This kind of data can be thought of as having a low-dimensional 
manifold embedded, and the degree of the freedom is the intrinsic dimensionality. By unfolding 
the manifold, the influential factor can be observed. In recent years, many techniques [1-6] are 
proposed to distill the embedded low-dimensional manifold. These algorithms avoid the curse of 
dimensionality and have been successfully applied to the fields of high-dimensional data 
visualization, data compression, data classification, correspondence learning [7].  

Correspondence learning is primarily inspecting the inner correspondence between 
data sets, learning the shared latent structure, and finding the mapping relationship. Given 
some paired corresponding points, if the two high dimensional data sets can be mapped into a 
global low-dimensional space, the relationship between them can be inspected clearly. This 
procedure is something like aligning the manifolds together with some given information. There 
has been a body of work related to this problem. Ham et al[8] uses a global Laplace graph [2] to 
describe the local geometry structure of multiple high-dimensional data sets, and get their low-
dimensional embedding by spectral decomposition. Verbeek et al [9] use Gaussian process 
regression to learn the shared latent structure among data sets. Shon et al [10] uses extended 
Gaussian process model to study the relationship between motion data and the robotic gesture 
data. Lafon et al [11] use Diffusion Maps to get the manifolds of different datasets separately, 
then use Nystrom algorithm to find an affine transformation to align them. The algorithm is 
successfully applied to the problems of lip-reading and image alignment. Bai et al’s method is 
similar to Lafon’s. He use ISOMAP [5] to transform the embed nodes of graphs into a metric 
space for graph-matching. However, all these techniques are non-linear, which can not give a 
clear mapping between the training data and the aligned data. As a result, they have to retrain 
all data when a new point is coming.  

A linear manifold alignment algorithm based on affine transformation is proposed in this 
paper. In this algorithm, the clear transformation between original sample space and the hidden 
space can be obtained during the training step, which can be used to realize the fast and 
accurate out of sample transformation. Unlike some common linear subspace learning methods 
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(PCA, LPP et al.) which can reflect the character of only one data set, manifold alignment based 
on affine transformation can reflects the common character of multiple data sets. In our 
approach, the Laplacian eigenmaps [2] is used to get the nonlinear alignment result, then an 
extended spectral regression method [13, 14] is used to obtain the affine transformation 
parameters. The effect of our method is validated by image sequence alignment in the 
experiments.  

 
 

2. The Principle of Semi-supervised Affine Alignment 

Suppose, the two high-dimensional data sets to be align are  1, , x

x

d
nX x x  � , 

 1, , y

y

d

nY y y  � , and they can be aligned together by applying two sets of affine 

transformation parameters xT , yT . The aligned low dimensional data set is noted by 

 1, , z

z

d
nZ z z  �  ( x zd d , y zd d ), where xZ , yZ  respectively represent the low-

dimensional maping result of X , Y . In the ideal case, the labeled maching points should be 

mapped to the same point in the low-dimensional space, so we let l x yZ Z Z   to represent 

the intersection of xZ  and yZ . l  is used to represent the number of matching points, and the 

number of points in Z  is z x yn n n l   . The principle of semi-supersed affine alignment is 

described as Figure 1. 
 
  

 
 

Figure 1. The Principle of the Semi-supervised Affine Alignment 
 
 

3. Semi-supervised Affine Alignment Algorithm 
3.1. The Constraint of Laplace Graph and Nonlinear Alignment 

The Laplace graph is used here to describe the local geometrical information of the 
high-dimensional data. Though there are many methods to define Laplace graph, random walk 
is used here for its invariance of translation. Generally, let’s make a graph to describe the high-

dimensional data set X , the connection strength of ix , jx  in X is defined by 

   2 2, exp / 2x i jw i j x x    , where   is a scale parameter. Let i� denote the 

collection of ix 's k -close neighbors.,    ,
i

x x
j

d i w i j


 
�

 denote the density at the 

neighbor of ix , then the approximate matrix could be written as 1
x x xL I D W  . Similarly, 

there is approximate matrix 1
y y yL I D W  for Y . The approximate error for X  and Y is 

described by e . 
 

22

x x y yF F
e Z L Z L                     (1) 
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Where 
F

.  denotes Frobenius norm. Let xS , yS as 0-1 selection matrix satisfying x xZ ZS ,

y yZ ZS , and let x yS S S   , { , }x yL diag L L ,   TB SL SL , the formula (1) could be 

written as: 
 

 2 T

F
e ZSL trace ZBZ                  (2) 

 
When minimizing formula (2), for the propose of ensuring the uniqueness of the solution, 

z

T
dZZ I  is imposed as another restriction. The best solution for minimizing formula (2)  can 

be obtained by calculating B 's 2nd to  1zd  nd smallest eigenvalue responding 

eigenvectors. Then the best non-linear solution is denoted as xZ  and yZ .  

 
3.2. Spectral Regression and Affine Alignment 

xZ , yZ  obtained above as the best solution can give the accurate coincidence of 

the matching points. However, the mapping is non-linear and cannot be applied to a new 
testing point. In our method, spectral regression [13] is used to preserve the affine 
transformation relationship when aligning the manifold.  

For a normal point ix  in X , we want to find an affine transformation xT , by applying 

which the result xiz  can mostly approximate to the best solution xiz  in xZ , that is: 

 

1
i

xi x xi

x
z T z

 
  

 
                    (3) 

 
The error of approximation is denoted as: 
 

2

2
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                   (4) 

 

Where xia  is the parameter influencing the coincidence accuracy of the matching points. Is 

this paper, it's defined as: 
 

1 xi l
xi

xi l

z Z
a

z Z


  




                  (5) 

 

Here   is a const value to distinguish different influence between matching points and un-
matching points. The total approximate error can be accumulated as:  
 

  2

x xi x x x
F

i

e e T X Z A                    (6) 

 

Where 
11

xn

X
X



 
  
 

 ,  1 , ,
xx x xnA diag a a  .  

When minimizing formula (6), the optimal affine transformation can be obtained as: 
 

  1* * T T T T
x xT Z AA X XAA X I


               (7) 
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Here, R  . Similarly,  
 

  1* * T T T T
y yT Z AA Y YAA Y I


                (8) 

 

By applying 
*
xT

, 
*
yT

 to X  and Y , the optimal affine transformation for them are 

* *
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4. Experiments and Discussion 
The experiment of image sequence alignment is used here to validate the effectiveness 

of our algorithm. COIL20 are data set about rotating toys, and CUbiC FacePix is data set about 
head pos. Two image sequences in COIL20 are showed in Figure 2, where each image is 
obtained by rotating the toy every 5 degree. It’s clear that the embedded manifold is a circular. 
Two image sequences in CUbiC FacePix are showed in Figure 3, where each image is taken 
from different head pos. It’s clear that the embedded manifold is half circle.  

 
 

 
(a) obj1 

 

 
(b) obj2 

Figure 2. Two Image Sequences of COIL20 
 
 

 
(a) obj1 

 

 
(b) obj2 

Figure 3. Two Image Sequences of CUbiC FacePix 
 
 

In the experiment, every data set is randomly divided into two parts, one part for training 
denoted by small solid point, and another part for testing denoted by big hollow point. Then 
some matching points are taken from the training points denoted by big solid point. By applying 
the affine transformation obtained in training, the two high-dimensional datasets can be aligned 
in a global low-dimensional space. For the continuous linear character of affine transformation, 
the mapping result of training points and testing points are melted together. 

The Figure 4 is the aligning result of two image sequences in COIL20. The affine align 
algorithm can find the embedded manifold of separate data set, and the low-dimensional data is 
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aligned approximately together. The Figure 5 is the aligning result of two image sequences in 
FacePix. The mapping result of testing points and training points are uniformly distributed, and 
the mating points are almost coincided. 

 
 

 
(a) obj1 

 
(b) obj2 

 
(c) obj1+obj2 

 
Figure 4. Affine Alignment of COIL20 Dataset 

 
 

      

 
(a) obj1 

 
(b) obj2 

 
(c) obj1+obj2 

 
Figure 5. Affine Alignment of CUbiC FacePix Dataset 

            
 

The cost time for projecting a new point between affine alignment and retraining is 
listed in Table 1. It’s clear that the time for projecting a new point is largely cut off by our 
algorithm. 

 
 

Table 1. The Cost Time for Projecting a New Point 
Dataset Affine alignment(s) Retraining(s)
COIL20 2.1 4e   1.4 1e   
CUbiC FacePix 7.3 5e   3.1 1e   

 
 

4. Conclusion 
Semi-supervised manifold alignment based on affine transformation proposed in this 

paper simultaneously fulfils the two requirements of manifold alignment and retaining the linear 
mapping. It obtains the clear mapping relationship between the original space and the aligned 
space, and the linear mapping can be used to give a fast and accurate out of sample mapping 
transformation.  
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