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Abstract 
Because network traffic is complex and the existing prediction models have various limitations, a 

new network traffic prediction model based on wavelet transform and optimized support vector machine 
(ChOSVM) is proposed. Firstly, the network traffic is decomposed to the scale coefficients and wavelet 
coefficients by non-decimated wavelet transform based on suitable wavelet base and decomposition level. 
Then they are sent individually into different SVM with suitable kernel function for prediction. The 
parameters of SVM are selected by chaos particle swarm optimization. Finally predictions are combined 
into the final result by wavelet reconstruction. Experiments on network traffic of different time granularity 
show that compared with other network traffic prediction models, ChOSVM has better performance. 
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1. Introduction 

With the rapid development of the network communication technology, the network is 
carrying more and more application service [1-5]. It requires higher quality of network service, 
traffic control and network management. Network traffic analysis and prediction have significant 
meanings for large-scale network capacity planning, network equipment design, network 
resource management and user behavior regulation. Traffic prediction with high quality is 
getting more and more important [6, 7]. 

Indeed, Traffic modeling is fundamental to the network performance evaluation and the 
design of network control scheme that is crucial for the success of high-speed networks [8]. This 
is because network traffic capacity will help each webmaster to optimize their website, maximize 
online marketing conversions and result in campaign tracking [9, 10]. Furthermore, detecting the 
efficiency and performance of IP networks based on accurate and advanced traffic 
measurements is an important topic in which research needs to explore a new scheme for 
monitoring network traffic and then find out its proper approach to predict the actual traffic 
accurately [11, 12]. Many models have been developed to study complex traffic phenomena 
[13-18] and the demand for accurate traffic parameter prediction has long been recognized in 
the international scientific literature [20-22]. 

The main purpose here is to obtain a better understanding of the characteristics of the 
network traffic. One of the methods used for the preventive control is to predict the near future 
traffic in the network and then take appropriate measures such as controlling buffer sizes. 
Several works developed in the literature are interested to resolve the problem of improving the 
efficiency and effectiveness of network traffic monitoring by forecasting data packet flow in 
advance. Therefore, an accurate network traffic prediction model should have the ability to 
capture the prominent traffic characteristics, e.g. short  and long range dependence, self-
similarity in large time  scale and multi-fractal in small-time scale. Several traffic prediction 
schemes have been proposed. 

Using quantum particle swarm optimization[26-28] to handle complex problems with lots 
of extremum  has the problem of relapsing into local extremum, slow convergence velocity and 
low convergence precision. A quantum particle swarm optimization based on chaotic searching 
is proposed. Extremum disturbance can help particles quickly break away from the local 
optimum, and chaotic searching can improve the local searching ability. The experiment results 
show that the proposed algorithm is better than traditional quantum particle swarm optimization 
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in ability of breaking away from the local optimum, converging speed and precision. Then we 
use chaos particle swarm optimization algorithm to optimize the parameters of SVM [23-25]. 
Simulations and comparisons demonstrate the effectiveness an efficiency of SVM parameter 
optimization using chaos particle swarm optimization algorithm. Since network traffic is complex 
and the existing prediction models have various limitations, a new network traffic prediction 
model based on wavelet transform and optimized support vector machine is proposed. Firstly, 
the network is decomposed to the scaling coefficients and wavelet coefficients by non-
decimated wavelet transform based on suitable wavelet basis and decomposition level. Then 
they are sent individually into different SVM with suitable kernel function for prediction. The 
parameters of SVM are selected by chaos particle swarm optimization algorithm. Finally 
predictions are combined into the final result by wavelet reconstruction. Experiments on network 
traffic of different time granularity show that compared with other network traffic prediction 
models, our proposed method has better performance. 

In the next section, we introduce an improved quantum particle swarm optimization. In 
Section 3 we propose a new network traffic prediction based on chaos particle swarm 
optimization SVM. In Section 4, we test the performance of different network traffic prediction 
model. In Section 5 we conclude the paper and give some remarks. 

 
 

2. An Improved Quantum Particle Swarm Optimization 
2.1. Quantum Particle Swarm Optimization 

In quantum particle swarm optimization, particle can searches for global optimal 
solution in the feasible solution space. The algorithm has small parameters and is easy to 
control. The state of particle is represented by position vector and each particle must converge 

to its own random point iPP , 1 2( , , , )i i i idPP PP PP PP  . Particles move according to the 

following three equation. 
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1, 2, ,j d  , (0,1)r rand , (0,1)u rand . N  is the number of particle and d  is 

dimension of particle. ( 1)mbest k   is average position of particle individual optimal position 

( )pbest k  in the k-th iteration. ( )ijP k  is the j-th dimension position of  the i-th particle in the k-th 

iteration. ( )gjP k  is the j-th dimension global optimal position in the k-th iteration. ( 1)ijPP k   is 

random point between ( )ijP k  and ( )gjP k . ( )k  is contraction expansion coefficient, which 

can control the convergence speed of the algorithm.  
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( )if k  is the fitness value of the i-th particle of the k-th iteration, min ( )f k  is the optimal 

fitness of the k-th population, ( )avgf k  is the average fitness of the k-th population. The process 

of quantum particle swarm optimization is as follows. 
Step 1. Iteration time 0k  .Initialize the position vector of each particle in the swarm. 

Step 2. Calculate fitness value if  of each particle according to objective function. 

Step 3. Update individual optimal fitness Pbestfitness of each particle and individual 

optimal position iP . 

Step 4. Update global optimal fitness Gbestfitness of each particle and individual 

optimal position gP . 

Step 5. Calculate the new position of each particle according to (1), (2) and (3). 
Step 6. 1k k   and return to step2 to recalculate, until meet the stopping condition. 
 

2.2. An Improved Particle Swarm Optimization Based on Chaos 
In QPSO evolution process, each particle go on next searching by studying its individual 

optimal location and the current global optimal location. When each particle traps in local 
optimum, it can use other particles to jump out of local optimal. But when most of the particles 
are trapped in local optimal, algorithm stagnation phenomenon will occur. In multi-start PSO 
after each iteration for several times, it reserves the current particle swarm optimal position and 
all particles are initialized, in order to improve the diversity of population to expand the search 
space. But all particle swarm initialization will completely destroy the structure of the particle 
swarm, which will greatly slow down the rate of convergence of the algorithm. Huwang 
proposed an improved algorithm, which adjusted individual optimal value and global optimal 
value and make particle converge to the new position. It can experience new search path and 
area to find the new solution. In continuous populations, if it can not find a optimal solution, it 
begin to disturb individual optimal position of particle and the global optimal position and forces 
to change individual history optimal fitness and global optimal fitness of particle. 

If pPIterCount T , then do individual extreme disturbance to reset each dimension of  

individual optimal position of particle. 
 

(0,1) ( ( ) ( )) ( )ijP rand Xup j Xdown j Xdown j          (5) 

 

PIterCount  is stagnation steps of particle individual. pT  is threshold of stagnation 

steps of particle individual. ( )Xup j  is upper limit of the j-th dimension of particle and 

( )Xdown j  is lower limit of the j-th dimension of particle. Then update history optimal fitness of 

particle 1 2( ) ( , , , )i i idPbestfitness i f P P P  . If gGItercount T ,  then do global extreme disturbance 

to reset each dimension of  global optimal position of particle. 
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GItercount is global optimal stagnation steps, and pT  is threshold of global optimal 

stagnation steps. Then update global optimal fitness 1 2( ) ( , , , )g g gdGbestfitness i f P P P  .Group 

fitness variance is defined as (7). 
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N  is the number of population and f  is normalized scaling factor, which can limit the size of 
2 . 
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2  reflects convergence degree of all particles in the particle swarm. The smaller the 

2 , the particle swarm tend to be converge. Otherwise particle swarm is in random searching 
stage. With the iteration times increasing, individual fitness of particle swarm is more and more 

close, so 2  will be smaller and smaller. When 2 T  , algorithm will do local searching 
intensively. 

 
 

 
 

Figure 1. Chaos Searching Flow Chart 
 
 

Using ergodicity, regularity, and randomness of chaos variable can optimize the 
searching process. If the particles find solution near global optimal solution, the chaos search 
can greatly enhance the local refined search ability of particle swarm. If particles trapped in local 
optimum, the chaos search can also help particles out of local optimum to a certain extent. In 
this paper, the chaotic search algorithm is aimed at each dimension of global optimal location 

gP  of quantum particle swarm optimization. The process of chaos searching is as follows and 

its flow chart is Figure 1. 
Step 1. 0i   and i  is label of chaos searching of particle swarm. 

Step 2. Do chaos searching to the i-th dimension of gP . 

(1) Iteration time 0l   and chaos variable ( )iC l  belonging to [ 1,1]  is generated randomly 

which does not include chaos fixed point. 
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(2) If ( ) 0iC l  , (9) sets up. Otherwise (10) sets up. 
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If ( )if P Gbsetfitness , ( )iGbsetfitness f P , gi iP P . 

(3) 1l l  , ( ) sin(2 / ( 1))i iC l C l  . 

(4) Repeat (2) and (3) until given maximum chaos iteration time cN  comes. 

Step 3. 1i i   
Step 4.  Return to step 2 to recalculate until all dimensions of particle experience chaos 

searching. 
The proposed new particle swarm algorithm based on chaos searching and extreme 

disturbance is as follows and its flow chart is Figure 2. 

Step 1. Iteration time 0k   and maximum chaos iteration time cN  is established. 

Position of each particle in the swarm is initialized. 

Step 2. Calculate fitness of each particle according to objective function if . 

Step 3. Update individual optimal fitness Pbestfitness  and individual optimal position 

iP . 

Step 4. According to PIterCount  determine whether the particle stops. If it stops, then 
do individual extreme disturbance. Otherwise turn to step 5. 

Step 5.  Update global optimal fitness Gbestfitness  and global optimal position gP . 

Step 6. According to GItercount  determine whether the swarm stops. If it stops, then 
do global extreme disturbance and turn to step 7. 

Step 7. Calculate swarm fitness variance 2 . If 2 T  , do chaos searching and turn 
to step 8. 

Step 8. Calculate new position of each particle according to (1), (2) and (3). 
Step 9. 1k k   and return to step 2 to recalculate until the terminal condition is met. 
 

3. A New Network Traffic Prediction Scheme Based on Chaos Particle Swarm SVM 
Parameters selection of SVM is a kind of combinatorial optimization problem and is the 

search for an optimal solution in search space. Parameter optimization process of SVM based 
on intelligent algorithm is as follows and its flow chart is Figure 3. 

Step 1. Within given parameter range, produce N  number of particles randomly, which 

is N  groups of SVM parameters ( , , )C  . Use real coding so that we need randomly initialize 

within the area of solution. 
Step 2. Calculate fitness of each particle. 

(1) For each particle training set ( , )i ix y  ,  with n  number of samples is divided into k  number 

of subset 1 2, , , kG G G , 1, 2, ,i n  . 

(2) iG  groups of samples are used to check and other subsets are used to train SVM. Error is 

calculated by (11). jy  is the actual value and �jy  is output value. 
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(3) repeat (2) from 1G  until k  groups of data are checked. 

(4) Calculate fitness of particle using (12). 

1

1
i

k

G
i

fitness E
n 

  .      (12) 

 
Step 3. According to the process of improved  particle swarm optimization based on 

chaos, go on the iteration until meeting the termination condition. 
Step 4. output optimal solution ( , , )C  .  

Real network traffic shows not only short correlation and long correlation, but also has a 
periodic feature. To forecast the network traffic, the key point is to extract and separate different 
ingredients of the network traffic and set up model according to different characteristics to 
simplify complex issues. Considering sequence after the  Trous wavelet transform of the 
sequence can establish direct contact at the time point of each time scale, which has the time 
shift invariance and better generalization ability of support vector machine (SVM). This paper 
proposes a network traffic prediction model based on wavelet transformation and optimized 
SVM. 

 
 

 
 

Figure 2. Parameter Optimization Process of Proposed Scheme 
 
 

 
 

Figure 3. Architecture of Network Traffic Prediction 
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Architecture of network traffic prediction is shown in Figure 3. The detailed prediction 
process is as follows. 

Step 1. Wavelet decomposition and reconstruction. The choice of wavelet base and 
wavelet decomposition series have an impact on forecasting accuracy. Wavelet decomposition 
series L is neither too small nor too big. Too small L can't effectively isolate different frequency 
characteristics of the network traffic. Too big L can result in model prediction error accumulated 
to the final forecasting result, which lower prediction accuracy and also can increase the 
computational complexity. So we should choose suitable wavelet base and decomposition 

series to decompose network traffic data into wavelet coefficients 1 2, , , Ld d d  and scale 

coefficient La . 

Step 2. Data processing. Due to the bigger change range of the data, in order to 
improve the prediction accuracy, each signal component is normalized. 
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After normalization  [0,1]x . 

Step 3. Model initialization. Determine the training set and test set, according to 
minimum cross validation error criterion choose a suitable embedding dimension m for each 
coefficient component. Input vector and output vector of SVM prediction model are obtained 
according to embedding dimension m . 

Step 4. Determination of SVM model. The processed signal through wavelet transform 
is approximately  smooth in the high frequency part. This portion of the signal can be predicted 
using the traditional linear model. But the complexity of network traffic requires constantly 
adjusting the model parameters in order to adapt to the changing of the flow condition. 
Parameter optimization of SVM is based on improved chaos particle swarm. 

Step 5. SVM training and prediction. We adopt minimum sequence algorithm. 
Step 6. Each prediction result is normalized inversely according to (14). 
 

 [max( ) min( )] min( )i i ix x x x x    .      (14) 

 
Then do wavelet reconstruction to get the final prediction of network traffic. 
 
 
4. Experiment Results and Analysis 
4.1. Rough Time Granularity Network Traffic Prediction 

Experimental platform is matlab7.0. In order to evaluate prediction performance, this 
paper we choose root mean square error as performance index. 
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iy  is the real value and �iy  is prediction value. The smaller the RMSE , the better the 

prediction performance.  
Rough time granularity network traffic data comes from 

http://newsfeed.ntcu.net/~news/2006, which collected a total of 43 days network traffic per hour 
of primary node router. There are 1032 rough time granularity data. 240 data of the first 10 days 
is taken as training set and 792 data of the last 33days is taken as testing set. Basic parameter 
of chaos particle swarm optimization SVM is shown in Table 1 and Table 2. 
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Table 1. Parameter of Chaos Particle Swarm Optimization SVM 
Coefficient component Population size Maxiter 

cN  pT  gT  

Scale coefficient 20 12 10 4 5 
Wavelet coefficient 20 12 10 4 5 

 
 

Table 2. Parameter of Chaos Particle Swarm Optimization SVM 
RBF core 
parameter   

Sigmoid core 

parameter k  

Sigmoid and Polynomial 
core parameter v  

Polynomial core 

parameter d  

c    

[0.01,3] [0.001,1] [0,1] 2 [0.1,1000] [0.001,0.1] 
[0.01,3] [0.001,1] [0,1] 2 [0.1,1000] [0.006,0.1] 

 
 

Table 3. Model Prediction Performance under Different Wavelet Decomposition Series 
Decomposition serial 1 2 3 4 5 
RMSE 10.3625 5.8964 3.5903 3.2386 3.1537 

 
 

Table 4. Model Prediction Performance under Different Wavelet Base 
Wavelet 
base 

RMSE 
a3 d1 d2 d3 combination 

haar 2.4075 7.5996 4.5394 3.0675 6.6557 
db3 1.3444 3.6425 3.1063 1.4526 3.5903 
db4 1.0255 3.3561 2.8812 1.2347 3.2265 
db6 0.6569 2.9786 2.5573 0.8569 2.5379 
db8 0.1163 2.5255 1.7973 0.5846 2.1383 

 
 

Table 5. Embedding Dimension of Each Signal Component 
Signal component a3 d1 d2 d3 
Embedding dimension m 8 10 8 6 

 
 

Table 3 is model prediction performance under different wavelet decomposition serials. 
When decomposition becomes from 1 level to 3 level, RMSE decreases quickly and later RMSE 
decreases slowly. Considering the computation complexity and prediction accuracy, the traffic 
data is decomposed into 3 levels. Table 4 gives the model prediction performance under 
different wavelet base. We can see that prediction performance of db8 wavelet base is better 
than other wavelet base. So in this paper, we adopt db8 wavelet base to decompose network 
traffic data into 3 levels. Then we obtain corresponding wavelet coefficient d1, d2, d3 and scale 
coefficient a3. Table 5 is embedding dimension of each signal component. Table 6 is prediction 
performance contrast under different core function after db8 wavelet decomposition. We can 
see that Linear core SVM is better than other core SVM and in scale coefficient layer, RBF core 
SVM has better performance. We compare the performance of proposed algorithm with other 
prediction models including SVM model, model based on wavelet transformation and BP 
naming WaBPNN, WFIRNN and WaSVM using standard particle swarm optimization to 
optimize its parameters. Input node of BP of each signal component is the same with 
embedding dimension m. Number of hidden layer node is 12. Order of FIR is 12 2  and 
number of output node is 1. We do 20 times experiment to acquire mean value of RMSE. Table 
7 is SVM model optimization parameter of each layer. Table 8 is prediction performance 
contrast of different model. 

 
 

Table 6. Model Prediction Performance under Different Core Function 
Kernel RMSE 

d1 d2 d3 d4 
Linear 2.2594 1.2693 0.5605 0.2185 
RBF 2.5255 1.7973 0.5846 0.1163 
Sigmoid 2.4742 1.8569 0.5911 0.2531 
Polynomial 2.6367 1.7281 0.6125 0.2593 
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Table 7. SVM Model Optimization Parameter of Each Layer 
Coefficient component Chaos searching threshold T SVM parameter 

  c    

a3 2e-7 0.321 544.949 0.0013 
d1 1e-7   837.359 0.0176 
d2 3e-7   279.916 0.0169 
d3 5e-7   292.234 0.0131 

 
 

Table 8. Prediction Performance Comparison of Different Model 
Model RMSE 

a3 d1 d2 d3 combination 
SVM         14.1358 
WaBPNN 0.7639 6.9036 2.3227 0.9216 8.2274 
WFIRNN 0.3512 3.8963 1.8624 0.7282 3.6329 
WaSVM 0.1532 2.7195 1.5328 0.6571 2.1915 
ChOSVM 0.1163 2.2594 1.2693 0.5605 1.6954 

 
 

It can be seen that prediction of SVM model is the largest. Wavelet neural network is 
easy to trap into local optimization. In a word, prediction accuracy of ChOSVM is better than 
other models. 

 
4.2. Fine Time Granularity Network Traffic Prediction 
 

Table 9. Embedding Dimension of Each Signal Component 
Signal component a2 d1 d2 
Embedding dimension m 7 10 8 

 
 

Table 10. Prediction Performance Comparison of Different Model 
Kernel RMSE 

d1 d2 a2 
Linear 1.9535 1.0368 0.8601 
RBF 2.4641 1.2084 0.8517 
Sigmoid 2.5394 1.2668 0.8823 
Polynomial 2.3898 1.3391 0.9065 

 
 

Table 11. SVM Model Optimization Parameter of Each Layer 
Coefficient component Chaos searching threshold T SVM parameter 

  c    

a2 5e-8 0.689 570.035 0.0021 
d1 3e-7   540.869 0.0172 
d2 5e-8   634.083 0.0151 

 
 

Table 12. Prediction Performance Comparison of Different Model 
Model RMSE 

A2 d1 d2 combination 
SVM       16.4367 
WaBPNN 2.1861 8,8132 3.7541 7.2794 
WFIRNN 1.1861 5.9354 2.1962 4.1478 
WaSVM 0.9065 2.4612 1.2967 1.9763 
ChOSVM 0.8586 1.9535 1.0368 1.5958 

 
 

Fine time granularity network traffic data comes from 
http://ita.ee.lbl.gov/html/contrib/BC.html. We choose BC-Oct89Ext data set. Traffic data is 
transformed into 500 traffic data. The first 200 data is taken as training set and the last 300 data 
is taken as testing set. We adopt db8 wavelet base to decompose traffic data to 2 level. 
Embedding dimension of each signal component is shown in Table 9. Table 10 is prediction 
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performance contrast under different core function after db8 wavelet decomposition. We can 
see that Linear core SVM is better than other core SVM and in scale coefficient layer, RBF core 
SVM has better performance. SVM model optimization parameter is shown in Table 11 and 
prediction performance comparison of different model is shown in Table 12. We compare the 
performance of proposed algorithm with other prediction model including SVM model. It can be 
concluded that prediction accuracy of ChOSVM is better than other models. 

 
 

5. Conclusion 
Network traffic shows obvious multi-scale characteristic, which is composed of different 

signals and different components have different inherent law. Based on the complex 
characteristics of network traffic, this paper puts forward a network prediction model based on 
wavelet decomposition and scale coefficient. The results show that the optimized SVM has 
better generalization ability, ChOSVM can achieve ideal prediction accuracy only using a small 
number of training samples and its performance is obviously better than the single SVM model 
and some existing combination forecasting model. It has good robustness and strong 
generalization ability and high prediction accuracy. 
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