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Abstract 
A new algorithm is presented to compute both one dimensional stable and unstable manifolds of 

planar maps. It is proved that the gradient of the global manifold can be predicted by the known points on 
the manifold with a gradient prediction scheme and it can be used to locate the image or preimage of the 
new point quickly. The performance of the algorithm is demonstrated with hyper chaotic Lorenz system. 
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1. Introduction 
2D manifold is a collection of 1D sub-manifolds. So the first step is to compute enough 

1D sub-manifolds to cover the 2D manifold. During the computation, the corresponding for 
messages of mesh points on the 1D sub-manifold is recorded [1-2].  

As mentioned above, 2D manifold is a collection of 1D sub-manifolds. So the first step 
is to compute enough 1D sub-manifolds to cover the 2D manifold. During the computation, the 
Foliation arc-length of mesh points on the 1D sub-manifold is labeled [3-5].  
 
 
2. The Procedure of 2D Manifold Computation 

Take a round circle centered at hyperbolic fixed point 0x  on the 2D local manifold, then 

select N  mesh points on the circle uniformly. The Foliation arc-length of the 1D sub-manifold is 

ARC . Label the 1D sub-manifold as 1L  and take it as a reference line. Then compute another 

1D sub-manifold 2L  through the next point on the circle up to Foliation arc-length ARC  and 
check the distance between 2L  and the reference line. The distance is measured by the 

greatest distance between two mesh points of the same Foliation arc-length with one point 
taken from 1L  and the other taken from 2L . If the distance is greater than maxSIZE  (the 

maximum size of the mesh), a new 1D sub-manifold need to be inserted between them. The 
new 1D sub-manifold is through the midpoint of the two mesh points corresponding to 1L  and 

2L  on the circle. Then evaluate the distance between the new 1D sub-manifold and the 

reference line, if the distance is still greater than maxSIZE , go on to insert new 1D sub-manifold 

with the method mentioned above. Otherwise, take the new 1D sub-manifold as the reference 
line and compute the next 1D sub-manifold through the next point on the circle [4-9]. 

After the mentioned process is completed, we need to check the distance between 
neighboring 1D sub-manifolds again to remove those who lie to close to each other. For three 
adjacent 1D sub-manifolds iL , 1iL   and 2iL  , if the distance between iL  and 1iL   is smaller 

than minSIZE  (the minimum size of the mesh)and the distance between iL  and 2iL   is less than 

maxSIZE , 1iL   is deleted. 

In the next step, the result is visualized. For every 1D sub-manifold that has been 
computed, pick out the points whose Foliation arc-length is * ( 1,2, )k step k    to represent the 
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original 1D sub-manifold. Mesh size is defined by the value of step . Because the Foliation arc-

length of mesh points of the original 1D sub-manifold is not exactly an integer multiple of step , 

linear interpolation is required to get the expected points. Connect the mesh points who have 
the same Foliation arc-length on all the reconstructed 1D sub-manifolds successively with line 
segments to visualize the 2D manifold as circles, that is to say, the foliation arc-length of the 
mesh points on the same circle is identical. We can also represent the 2D manifold as a surface 
by covering it with triangular grids. The triangulation between two neighboring circles is depicted 
in Figure 1. 

 
 

1k i 

k i

 
 

Figure 1. The Triangulation between Two Neighboring Circles 
 
 

If all the sub-manifolds are computed from the initial circle, it will be seemingly 
unnecessary to use the “intricate” procedures presented in the previous subsection. But the 
potential risk is that too many sub-manifolds are accumulated in the weak direction of the 2D 
manifold, and if the distance between adjacent points on the initial circle approaches the 
computational precision limits, no more sub-manifolds could be inserted even if the distance is 
still too great. An alternative is to compute the 2D manifold with higher computation precision, 
but the computation expense will be too great. In this paper, we apply an integrated method: if 
the distance between the counterparts on the initial circle of two adjacent sub-manifolds is 
greater than threshold precision , then add a new point on the initial circle between them and 

compute the inserted sub-manifold through it; otherwise, the recursive procedure is employed. 
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Figure 2. Visualization of 2D Manifold 
 
 

In the next step, the result is visualized by triangulation. And this step can be 
incorporated with the aforementioned recursive algorithm. 
 
 
3. Simulation 

In this paper Lorenz system is used as an example for simulation. Lorenz system is a 
model describing the dynamics of atmospheric convection, and it is well known for its butterfly 
shaped chaotic attractor [10-11]. The model is written as: 
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When 10  , 28   and 8/ 3  , the attractor is chaotic, as shown in Figure 2(a). 

The model is continuous and in the form of an ordinary differential equation. By using difference, 
the system is discredited. 
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The previous is simplified as: 
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In order to maintain the property of the continuous Lorenz system, the value of T  need 

to be appropriate. If T  is too great, the approximation is to coarse and the discrete system is 
not chaotic anymore; on the other hand, if T  is too small, the evolution speed of the system is 
too slow. We find that when 0.01T  , the discrete Lorenz system has a chaotic attractor similar 
to that of the continuous Lorenz system, at the same time, the system evolves at a moderate 
speed. 

The origin is a hyperbolic fixed point of the discrete Lorenz system, and the Jacobian 
matrix at it is: 

 
0.9 0.1 0

0.28 0.99 0

0 0 0.9733

A

 
   
  

                               (4) 

 
Jacobian matrix A  has 3 real eigenvalues: 1 0.7717  , 2 1.1183   and 3 0.9733  . 

It is interesting to notice that the discrete Lorenz has 2D stable manifold, which is also similar to 
that of the continuous Lorenz system. 

In Figure 3(a) and Figure 3(b), the 2D stable manifold is represented by 1D sub-
manifolds. Figure 3(a) and Figure 3(b) showed the same manifold seen from different direction.  
In order to show more details, the upper part and lower part of the manifold are plotted 
separately. The minimum distance between adjacent 1D sub-manifold is 0.001precision  . 

However, if all the sub-manifolds are computed with starting points on the initial circle, the 2D 
manifold can only be computed up to arc-length 80 with the same accuracy parameters 

because the minimum distance is approximately 2410  and is approaching the accuracy limits. 
Totally 1263 sub-manifolds are computed with starting points on the initial circle to cover the 2D 
manifold. In contrast, when 80ARC  , only 1020 sub-manifolds are computed with the 
proposed algorithm and only 25 of these sub-manifolds are computed with starting points on the 
initial circle. The minimum distance is 0.001precision  . We can see that the proposed 

algorithm not only reduces the total number of sub-manifolds but also avoids generating too 
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many points near the initial circle. So our algorithm has obvious advantages especially when 
computing a large piece of 2D manifold. 

 

 
   Figure 3(a). Part of the Stable Manifold, Represented by 1D Sub-manifolds 

 
 

 
 

Figure 3(b). Part of the Stable Manifolds, Represented by 1D Sub-manifolds 
 

 

  
 

Figure 4. Part of the Stable Manifold, 
Represented by 1D Sub-manifolds 

Figure 5. The 2D Stable Manifold of Discrete 
Lorenz System, using both Foliation Arc-

length and Euclid Arc-length 
 

 
In Figure 4, part of the stable manifold is plotted and represented by a group of 1D sub-

manifolds. The green ones are starting from the initial circle, while the red ones are computed 
with the algorithm. The minimum distance between adjacent 1D sub-manifolds is 
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0.001precision  , and there are totally 369 sub-manifolds in the 2D manifold of Figure 4 and 

246 of them are computed with starting points on the initial circle. However, if all the sub-
manifolds are computed with starting points on the initial circle, the minimum distance is 

approximately 510  and the number of 1D sub-manifolds is 452. The number of sub-manifolds 
and the density of points near the initial circle are both reduced by applying the proposed 
algorithm. 

In Figure 5, we use both Foliation arc-length and Euclid arc-length to control the growth. 
Compared to Figure 5, the growth of lower part of the manifold is getting a little worse, but the 
growth of the upper part (which has a complicated structure) is improving. So, the overall 
performance is improved. 

 
 

4. Conclusion 
Compared to the algorithm in reference [3], it is clear that our algorithm does better in 

controlling the growth of the 2D manifold. What’s more, the algorithm in reference [3] only 
computes 2D unstable manifold of a map while our algorithm is capable of computing both 2D 
stable and unstable manifold. 

The weak point of our algorithm is too much mesh points are generated at the inner part 
of the 2D manifold, and it is a promising key point where the algorithm can be revised in the 
future.  
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