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Abstract 
In this paper a design of the switching-surface for the nonlinear system is studied. The aim was to 

prove that with the linear matrix inequality the coefficients of the sliding surface can be determined 
optimally for the control law structure. The advantages of the use of the linear matrix inequality reside in 
the accurate determination of the coefficients of the sliding surface. The sliding mode control for dynamic 
positioning of the ship with our proposed switching-surface is done. The objective of this control was to 
make sure that the ship follows a predetermined track. The good trackings are observed from the 
simulation results which confirm the robustness of the control law obtained by our proposed switching-
surface. 

  
Keywords: control, sliding mode, switching-surface, LMI, dynamic positioning 

    
Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 

 
 

1. Introduction  
Dynamic positioning system (DPS) has been applied on vessel since the 1960s, and 

today DPS is equipped on many new vessels used for freight transport, offshore exploration and 
exploitation [1]. The objective of dynamic positioning systems in ship is to maintain the marine 
vessel in a fixed position and heading in the horizontal plane or to follow a predetermined track 
by means of the ship propulsion system [2]. In this perspective; we have designed a control law 
for the ship to achieve the desired behaviors. In the aspect of control methods, fuzzy control and 
sliding mode control are different from conventional control theory, and each of them has its 
advantages and disadvantages. Fuzzy control needs not an accurate mathematical model of 
object creation and has a good robustness. However, once control rule and coefficient are fixed, 
fuzzy control cannot adapt condition change well. Sliding mode control has the advantage of 
fast response characteristic, and it is not sensitive to parameter variation and fast load changes 
[3]. Too many fuzzy rules make the network structure become complex and have the poor 
generalization capability and over fitting [4]. The disadvantage of the sliding mode control is the 
presence of the chattering in the controller (most frequently in the first order sliding mode) which 
can be mitigate or reduced by the use of the higher order sliding mode control. The designed 
control law for the ship in this paper is a sliding mode or switching control law. This control law 
was obtained from a switching-surface based on the linear matrix inequality approaches. Sliding 
mode controller is an influential nonlinear controller to certain and uncertain systems which it is 
based on system’s dynamic model [5].  

The purpose of the switching control law is to drive the plant’s state trajectory onto a 
prespecified (user-chosen) surface in the state space and to maintain the plant’s state trajectory 
on this surface for all subsequent time. This surface is called a switching-surface and the 
resulting motion of the state trajectory a sliding mode [6]. The sliding mode control or variable 
structure control design generally breaks down into two phases. The first phase is to design or 
choose a sliding manifold/switching surface, so that the plant state restricted to the surface has 
desired dynamics. The second phase is to design a switched control that will drive the plant 
state to the switching surface and maintain it on the surface upon interception [6, 7]. 
In this study we use the linear matrix inequality known as LMI in the design of the sliding 
manifold/switching surface. After the determination of the optimized sliding surface we design a 
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sliding mode controller which will be used in the tracking control for dynamic positioning of the 
ship. The simulations result shows the good tracking of the positions, and velocities of the ship. 
This paper is organized in 7 sections. The LMI formulation is presented in Section 2. In Section 
3, the non-linear model is drawn which is intended for the switching-surface design by the LMI in 
Section 4. Sliding mode controller is determined in Section 5. In Section 6 an application to the 
tracking control for dynamic positioning of the ship is presented. This Section is divided in two 
subsections. At first the system model of the Ship is presented while the second part shows the 
simulation results obtained by MATLAB. Finally a conclusion is given in the Section 7. 

 
 

2. The LMI formulation 
The history of LMIs in the analysis of dynamical systems goes back more than 100 

years. The story begins in about 1890, when Lyapunov published his seminal work introducing 

what we now call Lyapunov theory [8]. He showed that the differential equation    tAXtX  is 

stable if and only if there exists a positive definite matrix P such that 0 PAPAT . 
 

2.1. Definition 
The typical linear matrix inequality or LMI problem has the form:  nXXXf ,...,,min 21  

subject to:     0,...,,,...,, 2121  nn XXXRXXXL  where nXXX ,...,, 21  are matrix variables with 

some prescribed structure,  .L ,  .R are affine combinations of nXXX ,...,, 21 and their transpose, 

and  nXXXf ,...,,min 21 is a linear function of the entries of nXXX ,...,, 21 , finally “ 0 ” stands for 

“semi-definite” [8, 9]. Many control problems such as the standard Lyapunov can be formulated 
as LMI minimization or feasibility problem. 

 
2.2 Theorem  

Lyapunov theorem 
 

      
 







00

,

XtX

tAXttXftX
  (1) 

 
The equilibrium point 0eX is stable in the sense of Lyapunov if: There is a Lyapunov 

function    0tXV continue in  tX  such that   00 V  , and    0tXV . 

By choosing       tPXtXtXV T , where P is a symmetric positive definite matrix; the 

system (Equation 1) is asymptotically stable if there exist 0P , 0Q such that: 

 

QPAPAT     (2) 

 
The matrix equation (Equation 2) is the algebraic Lyapunov equation. 
Note that: for 0Q the matrix equality (Equation 2) can be written as: 

 

0 PAPAT .      (3) 
 
The inequality matrix (Equation 3) is called a Lyapunov inequality on P and it is a 

special form of an LMI. The feasibility solution of this LMI can be finding by Matlab.  
 
 

3. The Non-linear Model  
Consider the systems that have a state model nonlinear in the state vector  .X and 

linear in the control vector  .U  of the form [6, 10]: 

 

         tXUtXBtXfutXFtX ,,,,,     (4) 
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Where   nRtX  ,   mRtU  and   mnRtXB , ; further, each entry in  Xf and  tXB ,  is assumed 

continuous with the bounded continuous derivative with respect to X . 
The dynamics of equation (Equation 4) can be write as: 
 

 
     









tXUtXBtXfX

tXfX

,,,

,

222

11




         (5) 

 

Where mnRX 1 , mRX 2 and   nT RXXX  21,  

In this part, we consider the non-linear systems (Equation 5) which have 1f linear; so 1X

can be written as: 
 

  212111
2

1
12111 XAXA

X

X
AAX 








        (6) 

 
For the equation (Equation 6) consider 2X as a new control law; the objective is to find a 

stabilizing state-feedback law 12 KXX   where K is an unknown matrix which will be determined 

by the linear matrix inequality (LMI). 
In equation (Equation 6) we replace 2X by 1KX and we obtain: 

 

  112111121111 XKAAKXAXAX         (7) 

 
By analogy with (Equation 1); the linear system (Equation 7) is stable if and only if a 

symmetric positive definite matrix P exist such that the inequality (Equation 8) or equivalently 
(Equation 9) where 0H yields [8]. 

 

    012111211  KAAPPKAA T       (8) 

 

    012111211  HKAAKAAH T       (9) 

 

From (Equation 9) let define KHY  , so that for 0H we have 1 YHK  and 
substituting K into (Equation 9) we obtain the LMI (Equation 10). The feasibility solution of this 
LMI can be find through Matlab. 

 

012121111  TTT AYYAHAHA       (10) 

 
 

4. Switching-surface design by the LMI  
Consider the regular form (Equation 5) for the design of the switching-surface. 
 

4.1. Proposition 
For the system dynamic (Equation 5) which has 1f linear, our proposed switching-

surface is defined by:  
 

       rr
r

r XXSXXS
XX

XX
SStX 222111

22

11
21, 











 .      (11) 

 
Where rX 1 and rX 2 are the desired functions;  21 SS is the matrix gain which we want find by the 

LMI with the condition 2S non singular. 

The system (Equation 5) is in a sliding mode, that is, for some 1t ,   0, tX for all 1tt  .  
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  0, tX  rr XXSSXSSX 211
1

211
1

22         (12)  

 
The goal is to determine 1S and 2S to achieve a desired behavior of the linear system 

(Equation 6); replacing 2X by 1KX in equation (Eq. 12) we find out:  

 

1211
1

211
1

22 KXXXSSXSSX rr   













0211
1

2

1
1

2

rr XXSS

SSK
  

 
Without loss of generality we can take IS 2 (matrix identity), finally we get 1SK  . 

The switching-surface becomes: 
 
      rr XXIXXKtX 2211,  .       (13) 

 
 

5. Sliding Mode Controller 
In the precedent section, the sliding surface (Equation 13) for the system dynamic 

(Equation 5) which has 1f linear has been determined by the LMI. 

 
5.1. Theorem 

For the system model defined in (Equation 5) which has 1f linear, the sliding mode 

controller which makes the tracking errors tend asymptotically to zeros in finite time can be 
written as: 

 
     tXUtXUtXU req ,,,         (14) 

 

Where   )(),(, 1
2 XtXBtXUeq  with   rr XXXKAAIKtXfX 21112112 ][),()(   is the 

equivalent control, and      ),(,, 1
2 tXsigntXBtXUr  is the robust control term. 

Proof: Let consider the candidate Lyapunov functionV :  
 

  TTTT VV  )(
2

1

2

1
 

 
The first derivative with respect to t  of   (Equation 13) is done: 

     rr XXIXXKtX 2211,   . Replacing 2X  from the system (Equation 5) and 1X  from 

the equation (Equation 7) we determine: 
 

            rr XtXUtXBtXfIXXKAAKtX 222111211 ,,,,      (15) 

 
The equivalent control law: constitutes a control input which, when exiting the system, 

produces the motion of the system on the sliding surface whenever the initial state is on the 
surface [6]. It is determined by assuming   0, tX , from where we obtain: 

 

)(),(),( 1
2 XtXBtXU eq         (16) 

 

With   rr XXXKAAIKtXfX 21112112 ][),()(   . 

The robust control law: In equation (Equation 15), we have to replace  tXU ,  by the 

equation (Equation 14) and ),( tXU eq  by the equation (Equation 16). Finally, 

     tXUtXIBtX r ,,, 2  and    ],,[ 2 tXUtXIBV r
T . 
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By assuming     )(,, 2
1 signtXBtXU r

 , the derivative of the Lyapunov function V is 

negative ( 0 V ) which mean that the system is stable. 

 
 

6. Application to the Tracking Control for Dynamic Positioning of the Ship 
In this section, we want show through the simulations that the proposed technique leads 

to a good tracking trajectory in Ship dynamic positioning. In this perspective, using the dynamic 
model of the Ship; we have determined the state representation of the system which is used in 
the Matlab simulation. 

 
6.1. System Model of the Ship 

The reduced equations of motion of dynamic positioning (DP) ship in surge, sway and 
yaw can be expressed as follows [2]: 

 

 









J

DM




                  (17) 

 

Where 3],,[ Rrvu T  denotes the low-frequency velocity vector,   is a vector of control 

forces and moments, Tyx ],,[   denotes the position and orientation vector with coordinates 

in the earth-fixed frame,  J is a velocity transformation matrix that transforms velocities of the 

ship-fixed to the earth-fixed reference frame. The inertia matrix M is assumed to be positive 
definite, and 0D is a matrix representing linear hydrodynamic damping [2, 11]. 

The successive derivative of  from the system (Equation 17) is done: 

 
 
           
               
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
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



















BABBABBA

BAMJJDMJJ

J

][][

][
11

111     (18) 

 

with         11 ][  JDMJJA  , and     1 MJB  . 

The system (Equation 18) can be represented in state space as (Equation 5) with the 
variables: 1x , 12 xx   and 23 xx  . 
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
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
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




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

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

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
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2

1

2

1

tXUtXBtXfx

tXfx
I

O

x

x
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x

x







 (19) 

 

with 3
2

1
1 ),( x

I

O

x

x

OO

IO
tXf 

























 , 2

1
3

1
2 ][][),( xABBAxBBAtXf    , ),( tXU ,

 TxxxX 321 , and BtXB ),(2 ; where I and O are respectively the identity and null matrix 

with appropriate dimensions. By taking: 









2

1
1 x

x
X ; 32 xX  ; 










OO

IO
A11 ; 










I

O
A12  we get 

the linear form: 2121111 XAXAX  . 

Let denote the desired functions as: T
rrr xxX ],[ 211  , rr xX 32  with 

T
rrrrr yxx ],,[ 11111    ; T

rrrrrr yxx ],,[ 222212    , and T
rrrrr yxx ],,[ 333323    . 

From the system equation (Equation 18), we have the relation   J , similarly for the desired 

trajectory we can take   rrr J 111   where: T
rrr

T
rrrr yxyx ],,[],,[ 1111   and T

rrrr rvu ],,[1  . 
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Note that rrr yx ,,  represents the desired positions, and rrr rvu ,,  the desired velocities of the 

ship. 
The proposed switching-surface is done by the equation (Equation 13) and the sliding 

mode control law by the equation (Equation 14). 
 

6.2. Simulation Results 
The desired positions are rr yx , (chooses to be squares), and r (choose to be 

sinusoidal); the desired linear velocities are ru , and rv ; the desired angular velocity is rr . 

The numerical parameters of the model is done [11]:  
 



















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

















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000358.0

D , and  

 

   
   
   















 


100

0cossin

0sincos

1 


 xJJ  

 
According to the above parameters, the LMI (Equation 10) is feasible and the solutions 

obtained by Matlab done the values of H and K :  
 











2221

1211

HH

HH
H , and  21 KKK   

 
Where 311 7339.1 IH  , 32112 8510.0 IHH  , 322 3614.1 IH  , 31 5773.1 IK  , 32 6865.1 IK  , 

and 


















100

010

001

3I . 

  

 
 

Figure 1. Positions )(x and )(rx  
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Figure 2. Positions )(y and )(ry  

 

 
 

Figure 3. Yaw Angle )( and )(r  

 

 
 

Figure 4. The Position y in Function of x  
 

 
 

Figure 5. Velocities )(u and )(ru  
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Figure 6. Velocities )(v and )(rv  

 

 
 

Figure 7. Yaw Velocities )(r and )(rr  
 
 

We can observe respectively the real )(x , )(y  and the desired )(rx , )(ry  

positions (Figure 1, Figure 2), the real )( and the desired )(r yaw angles (Figure 3), the 

position y in function of x (Figure 4); respectively the real )(u , )(v  and the desired )(ru , 

)(rv  velocities (Figure 5, Figure 6), the real )(r and the desired )(rr yaw velocities (Figure 

7). 
 
 

7. Conclusion  
In this work, the switching-surface is designed using the LMI optimization technique for 

the non-linear systems defined in (Equation 5) satisfying the linear condition as defined 
previously. With the designed switching-surface; a sliding mode controller is proposed. As an 
application, the system model of the ship is used for the tracking trajectory in dynamic 
positioning. The simulations result shows the good performance of the used technique. 
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