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Abstract 
Large-scale development of electric vehicles (EVs) will have a significant impact on the power 

grid with their great demand for electric power consumption. It is necessary to design the optimal charging 
scheme for EVs. In this paper, we propose a centralized and a decentralized scheme of optimal decision-
making on charging of EVs based on a dynamic pricing model. The objective of both schemes is to 
minimize the costs of EVs by establishing EV charging optimal schedules that fills the overnight load 
valley. The centralized scheme,whose objective is to minimize the total charging costs of all EVs, 
determines the charging schedules of EVs through solving a global optimization problem by the utility.The 
decentralized scheme is based on congestion game theory,under which the charging schedules are 
determined locally and directly by EVs to minimize their own costs. Detailed mathematical models and 
solution procedures are presented for both the centralized and decentralized schemes. Results show that 
both schemes have good performance on valley-filling. 

  
Keywords: electric vehicles, minimum cost, optimal charging, valley-filling 
 

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 
 
 
1. Introduction 

The charging of a large population of EVs has a significant impact on the power grid [1-
18]. A number of studies have been undertaken to explore the potential impacts of high 
penetrations of EVs on the power grid and many centralized optimization approachs for EV 
charging have been proposed [2-12]. Different centralized optimization approachs have different 
objectives, such as to minimize generation costs, power losses and load variance, or maximize 
load factor and supportable EV penetration level. All of them have not considered the costs of 
EVs. 

So far, few decentralized optimal schemes for EV charging have been presented [15-
17]. Ma [15] proposes a decentralized charging strategy, which is only effective in the case 
where all EVs consume the same amount of energy at the same charging power. Gan [16] gives 
two decentralized algorithms, one synchronous and one asynchronous, of which the latter is 
more practical, but its convergence rate is lower and its performance is likely to be affected by 
communication delays and failures. Vaya [17] proposes a decentralized charging strategy based 
on tariff, where different prices can be defined at different nodes, but the amount of calculation 
of the scheme increases with the number of nodes in grid. 

In order to encourage EVs to charge during load valleys, we model the charging price, 
seen by all EVs, as a monotone increasing function of the total load on the grid. Based on this 
pricing model, we propose a centralized and a decentralized scheme of optimal decision-making 
on charging of EVs. 

However, under the decentralized scheme, with this dynamic charging price, if EVs 
predict a low price at a certain time, they will all charge, which then results in large peak in 
demand at that time. In the end, there can be unpredictable and large peaks in demand and 
prices, which, in turn, result in higher costs for individual EV. Thus, EVs should consider the 
others’ charging strategies when making a decision on its own charging strategy. In this 
scenario, game theory provides a framework to evaluate and design EVs charging strategy, 
since it naturally models interactions in distributed decision making processes [18-20]. At 
present, the applications of the game theory in power system mainly focus on topics of 
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electricity market. In this paper, we utilize game theory to solve EVs decentralized optimal 
charging problem. Our contributions are summarized as follows. 

We formulate a centralized optimal charging scheme whose objective is to minimize the 
total cost of EVs, which is different with other centralized approaches [4-15]. The global optimal 
solution fills the load valley effectively. 

We formulate a decentralized optimal charging scheme, which is also effective in the 
case where EVs consume different amount of energy at different charging power. We build a 
congestion game model of EVs charging. We prove the EV charging congestion game model is 
a potential game, which is sure to have a Nash equilibrium solution. Then a distributed solution 
is proposed. The equilibrium solution can fills the load valley effectively as the centralized 
method. 

 
 

2. Centralized Scheme 
Centralized scheme requires the utility to collect much private information from all the 

EVs, such as state of charge, charing capacity and the initial of departure time, and on this 
basis, the utility solves the global optimal problem whose objective is to minimize the total cost 
of all EVs, attaining the charging profiles of all EVs and then centrally control EVs’ charging.  

We assume the charging price is dynamic, which is modeled as a monotone increasing 
linear function of the total load including non-EVs base load and EVs charging load on the grid 
The charing price model is given as follows: 
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Where t  is charging interval, k is price coefficient, tq is the total load at interval t , ts  is the total 

charging load at interval  t , tl is the base load at interval t . 

Based on (1), the total cost of EVs charging at t is: 
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Thus, the centralized scheme to minimize the total cost of EVs charging is described as 

the following optimal problem: 
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Where T is the number of intervals during the charging period in a day, tis ,  is the charging 

strategy of Ev i  at t,which only has two values that “0” means no charging and “1” means 

charging, N is the number of EVs,ωi is the charging power of Ev i, DiC , is the charging capacity 

of Ev i. (6) guarantees the  battery of every EV to be full at the end of the charging. 
The above global optimal problem is a nonlinear integer programming with linear 

constraints, which can be solved by branch and bound method [22]. However,the size of this 
centralized optimization increases with the increasing number of EVs. If only the  total charging 
load at every interval are viewed as optimization variables, the optimazation problem can be 
easily solved by interior point method [22], but it is a very elaborate problem to define the 
charging strategy of every EV. 

 
 

3. Decentralized Scheme  
As can be seen in section 2, it is difficult to work out the optimum solution of the 

centralized scheme when the number of EVs is huge. What’s more, the centralized approach 
may be unrealizable due to a reluctance among EV owners to allow third parties to directly 
control their charging behaviors [7]. Hence, a decentralized scheme is more suitable for the 
case with a high penetration level of EVs. In this section, we propose a decentralized scheme 
based on congestion game theory.  
 
3.1. Basics of Congestion Game 
3.1.1. The Definition of Congestion Game 

A congestion model [23-24]can be defined as a tuple     EeeNii cSEN  ,,, where: 

N={1， ， ，2 ... n} denotes the set of  player. 
E={1， ， ，2 ... r} denotes the set of resource. 

Each player i has a strategy space Si， in which each specific strategy ii Ss  is the set 

of resource, that is E
iS 2 . 

The congestion cost of  resource Ee  is determined by a function ce( ) that depends 
on the congestion level. 

Based on this congestion model, a congestion game is defined as a tuple 

    NiiNii cSN  ,, ，where the cost of player i under the strategy combination of 

 nsss ,,1  is: 
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Where  sne denotes the number of players using resource e under the strategy combination of 

s, and is called the congestion level of redource e. 
 

3.1.2. Existence of the Nash equilibrium Solution of Congestion Game 

If a congestion game admits a real function RS : ( iNi SS  ) with  argument 

of   strategy combinations, when any player i change its strategy from is to is , always satisfies 

the following: 
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then the congestion game is called a potential game,function  is potential function [23-24]. 

Where is denotes the others’ strategies besides player i.  

Theorem: Every potential game has at least one pure Nash equilibrium [23-24]. 
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3.2. Game Model of EVs Charging 
We assume that EVs charge with the constant power,EVs’ decentralized optimal 

decision-making on charging can be described as the following congestion game: 
The players are the set of n EVs, N={1， ， ，2 ... n}; 
The resources E are the charging intervals t during charging period, t={1， ， ，2 ... T}; 

The strategy of EV i is the charging  vector  tii ss , ,  Tt ,1 ; 

Under the strategy combination of  nsss ,,1 , the charging cost of EV i is: 
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Where  sqt  is the congestion level of the congestion game,  sJ t
 is the set of EVs charging at t 

under  ns,,ss 1 , ωi is constant charging power of EV i. 

In the game, each EV defines its opimal charging strategy to minimize its charging cost. 
 
3.3. Existence of the Nash Equilibrium Solution of EV Charging Game 

We formulate the potential function of the EV charging game model as follows: 
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The proof of the potential function is given in Appendix.It indicates the EV charging 

game is a potential game.We can then use Theorem in  3.1.2 to guarantee the convergence of 
the game to a pure Nash equilibrium. 
 
3.4. Distributed Solution of EV Charging Game 

The equilibrium solution of  the game is attained by iterations according to the following 
steps: 

1) Initializations. Each EV proposes initiazed charging strategy stochasticly when 
iteration m=0. 

2) The utility broadcasts the base load to all EVs and initiazed aggregate EV demand to 
EV  i. 

3) EV i solves the following optimization problem to attain the optimum charging 

strategy and reports it to the utility,if      
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Where i is charging power of EVs other than EV i at t. 
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4) Update next EV’s aggregate EV demand, the EV calculates its optimum charging 
strategy according to 3). 

5) Repeating 4) until all EVs’ optimum charging strategies calculation are finished. 
6) Next iteration begins, repeating 4)~5)，until all EVs’ strategies won’t change. 
From the above steps, we can see that each EV make a decision on the optimal 

strategy and update it based on the other Evs’ strategies, until an equilibrium is reached. The 
local computational complexity of the distributed solution has no relevance to the EV population 
size. 
 
 
4. Results and Analysis 

We examine EVs charging starting from 20:00 PM to 05:00 AM. The charging period is 
evenly divided into 10 intervals.Each interval has a length of 1 h. The base load at each interval 
is simulated by scaling the typical day load in Guangdong grid of china in winter of 2006 by a 
factor of 1/5700. The total number of the EVs is set to 100 by default.We set k=2×10-4yuan/ 
kWh/kW. 

In order to show the schems proposed in this paper are effective for EVs with different 
charing capacity and different charing power, we assume there are three types of EVs: charging 
power 6kW with charging capacity of 24kWh, charging power 5kW with battery capacity of 
20kWh, charging power 3kW with battery capacity of 12kWh, respectively occupy 50%, 30% 
and 20% of the total number of EVs. To simplify the analysis, we assume the charging capacity 
equals the battery capacity. 

We set  =10-4yuan, the distributed solution of the decentralized scheme in section 3.4 
converges after 5 iterations. 

We compare  the centralized and decentralized schemes proposed in this paper with 
the free chaging scheme, in which the charging strategy of an EV at an interval is allocated 
based on the electricity price on the previous day. 

The variation of the charging load in each interval of three schemes is shown in  
Figure 1. We can see from Figure 1 that under three schemes, EVs charge at the intervals with 
a lower base load to achieve a low cost.  

 

 
 

Figure 1. Charging Load of EVs 
 
 
The variation of the total load in each interval of three schemes with 100 EVs and 200 

EVs are shown in Figure 2 and Figure 3. We can see from  Figure 2 that all the schemes 
achieve “valley-filling”, however, under the centralized and decentralized schemes the total load 
profile are much flatter, while the load fluctuation brought by the free charging scheme is larger. 
Figure 3 shows that with the number of EVs increases, the load fluctuation brought by the free 
charging scheme is more obvious, and there will be new load peaks. 
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Figure 2. Load Profiles in Three Charging 
Scheme with 100 EVs 

Figure 3. Load Profiles in Three Charging 
Scheme with 200 EVs 

 
 

The comparison of the total charging costs of all EVs with different EV numbers of three 
schems is given in Figure 4. We can see from Figure 4 that under the centralized and 
decentralized schemes, EVs will pay the utility almost the same cost, which is less than that 
under the free charging schem. Furthmore, compared with the free charging scheme, the 
centralized and decentralized scheme will get more cost saving when the number of EV 
increases. When the number of EV is 100, 200, 300 and 400, the corresponding saving is  
4.7%, 10.8%, 17.18% and 22.75%. 

 

 
 

Figure 4. Cost of EVs in Three Charging Schemes 
 
 

5. Conclusion 
In this paper,we present a centralized and a decentralized optimal decision-making on 

charging of electric vehicles to fill load valley,by means of dynamic pricing model.We first 
formulate the global optimal problem of centralized scheme, in which the charging strategies of 
EVs are optimized to minimize the total cost. The globally optimal solution provides the globally 
minimal total cost. However, the centralized optimal scheme poses the problem of EV 
acceptance and requrie the utility to have strong calculation capability when the number of EVs 
is large. To develop a more practical scheme, we formulate the decentralized scheme based on 
the game theory, under which each EV defines optimum charging strategy to minimize its 
charging cost based on the other EVs’ strategies. Under the scheme, the decision-making is 
made by EVs, so the scheme is more willing to be accepted, what’s more, the number of EV will 
not affect the amount of calculation, therefore, the decentralized scheme is a more practical 
sheme. Simulations results show that the decentralized scheme can achieve a close 
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performance on flattening the day load profile compared to the centralized scheme. Future 
works will focus on the optimal scheme of EVs charging and discharging. 
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Appendix-Proof of Potential Function 

Proof：When the charging strategy of Ev i change form si to is ，and the other 

Evs’ strategies keep s-i，there exists two situations： 
(1) Ev i charged at t before，after it change its strategy it didn’t charge at t, thus the 

decreased cost of Ev i is: 
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Thus    scs tit ,  . 

(2) Ev i didn’t charge at t before，after it change its strategy it charge at t, thus the 
increased cost of Ev i is: 
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Thus    scs tit ,  . 

All this leads up to:        scscss i
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That is       iiiiii sscssc ,,    iiii ssss   ,,  . 

 
 
 


