
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol. 12, No. 3, March 2014, pp. 2406 ∼ 2413
DOI: http://dx.doi.org/10.11591/telkomnika.v12.i3.3629 � 2406

A Practical Algorithm and Data Structures for
Range Selection Queries

Daxin Zhu and Xiaodong Wang*1

Quanzhou Normal University
362000 Quanzhou, Fujian, China

1*Corresponding author, e-mail: wangxiaodong@qztc.edu.cn

Abstract

In this work, we consider the problem of building an efficient data structure for range selection
queries. While there are several theoretical solutions to the problem, only a few have been tried out, and
there is little idea on how the others would perform. The computation model used in this paper is the RAM
model with word-size Θ(logn). Our data structure is a practical linear space data structure that supports
range selection queries in O(logn) time with O(n logn) preprocessing time.

Keywords: Range selection queries, data structures, preprocessing time

Copyright c© 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
A generalized median finding problem is studied in this paper. The classical problem of

median finding is to find the median item, the item of rank n/2 in an unsorted array of size n. In
the comparison model, where items in the array can be compared only using comparisons, the
complexities of the algorithms are defined by the number of comparisons performed by the algo-
rithms. It has been known for a long time that this problem can be solved using O(n) comparisons
in the worst case. Many researches showed that the number of comparisons needed for solving
the median finding algorithm is between (2 + ε)n and 2.95n in the worst case[13]. Closing this
gap for a deterministic algorithm is an open problem. However, the median of an unsorted array
of size n can be found in 1.5n+ o(n) comparisons by using a randomized algorithm.

In this work, we study the following generalization of the median problem. We consider
the problem of building an efficient data structure for range selection queries. The problem is
to preprocess an input array A of n integers, such that given a query (i, j, k), we can report the
kth smallest integer in the subarray A[i], A[i + 1], · · · , A[j] efficiently. In the rest of the paper, the
subarray A[i], A[i + 1], · · · , A[j] is denoted as A[i, j]. A special case of the problem is known as
range median query, which arises when k is fixed to b(j − i + 1)/2c. The prefix selection query
is another special case of the problem, which arises when i is fixed to 0. These problems have
many important applications in statistical analysis, and have been studied extensively in the last
few years, see e.g. [6, 10, 12].

If we want to support fast range median queries, then we can use a data structure support-
ing range median queries in constant time using O(n2 log log n/ log n) words of space presented
in [2]. The space bound of this data structure was later improved to O(n2 logk n/ log n), for any
constant k [3]. A data structure that supports range median queries in expected constant time
with expected O(n3/2) space, under the assumption that all inputs are equally likely can also be
found in [1]. A linear space data structure capable of answering range median queries in O(nε)
time for any constant ε > 0 was also available. These results can be improved to linear space and
O(log n) query time by data structures, which also supports range selection queries in the same
bound. Finally, a linear space data structure with O(log n/ log log n) query time for range selection
was developed [11], where it was also shown how to augment the range selection data structure
to support 2d dominance counting queries in the same query bound.

Received July 15, 2013; Revised September 23, 2013; Accepted October 12, 2013

TELKOMNIKA ISSN: 2302-4046 � 2407

The wavelet tree is a data structure to represent a sequence and answer some queries on
it. This data structure was invented in 2003 by Grossi, Gupta, and Vitter [8]. The wavelet tree is a
versatile data structure. It serves a number of purposes such as string processing and geometry.
The wavelet tree can be regarded as a device that represents a sequence, a reordering, or a grid
of points. Many competitive solutions to a number of problems are based on wavelet trees such as
basic and weighted point grids, sets of rectangles, strings, permutations, binary relations, graphs,
inverted indexes, document retrieval indexes, full-text indexes, XML indexes, and general numeric
sequences. One of the efficient application of the wavelet tree was in solving the range quantile
query problem[5, 6, 7]. The range quantile query problem can be solved by using the wavelet tree
structure in O(log σ) time and just o(n) extra bits. This is close to O(log n/ log log n).

Previously, the best linear space data structure supported range selection queries in
O(log n) time. In the dynamic case the only known data structure uses O(n log n) space and
supports updates and queries in O(n log2 n) time. For dominance queries, linear space data
structures supporting queries in O(log n/ log log n) time is known. In the dynamic case [4] de-
scribes an O(n) space data structure that supports dominance queries in O((log n/ log log n)2)

time and updates in O(log9/2 n/(log log n)2) time.
We present a practical study on data structures for sequences supporting range selection

queries. While there are several theoretical solutions to the problem, only a few have been tried
out, and there is little idea on how the others would perform [1, 8, 9, 11]. The computation model
used in this paper is the RAM model with word-size Θ(log n). The data structure presented in this
paper has the same basic approach as in [4]. We design a practical linear space data structure
that supports range selection queries in O(log n) time.

The organization of the paper is as follows. In the following 3 sections we describe our
general data structure design paradigm.

In section 2 we give an extremely simple data structure for answering range selection
queries with O(n log n) time and space. Then we reduce total space costs since only the array
stored in the left subtree is used. By using bit-vectors, the query time of the algorithm can also
be reduced further. Finally we obtained a data structure for solving range selection problem with
preprocessing timeO(n log n) usingO(n) space and query timeO(log n). This improves the space
consumption compared to [4] by a factor O(log2 n/ log log n).

In section 3 we give a computational study of the presented data structure which demon-
strates that the achieved results are not only of theoretical interest, but also that the techniques
developed may actually lead to a practical data structure for general range selection algorithms.

Some concluding remarks are in section 4.

2. The Design of Data Structure
2.1. A Simple Data Structure

Let A = (A[0], A[1], · · · , A[n − 1]) be the input array. Our data structure is a complete
binary tree. We sort the array A and build a corresponding complete binary tree T that stores the
n elements in the leaves in sorted order.

For a node v in the tree T , the subtree rooted at node v is denoted as Tv, and the number
of leaves in Tv is denoted as |Tv|. In each node v of T , the |Tv| elements in the leaves of subtree
rooted at node v are stored in an array Av of size |Tv| sorted by their index in A.

The construction of the basic data structure can be described as follows.

Algorithm 2..1: PREPROCESS(A,n)

comment: Build range select data structure

y ← INDEXSORT(A)
v ← BUILD(y, 0, n− 1)
return (v)

A Practical Algorithm and Data Structures for Range Selection ...(D. Zhu)

2408 � ISSN: 2302-4046

In the above algorithm, we first sort the input array A into an index array y by the algorithm
INDEXSORT(A) such that the sequence A[y[0]], A[y[1]], · · · , A[y[n − 1]] is exactly the n elements
A[0], A[1], · · · , A[n− 1] of the input array in sorted order. Then the actual construction of the tree
T is performed by the recursive algorithm BUILD(y, first, last) as follows.

Algorithm 2..2: BUILD(y, first, last)

comment: Construct the tree recursively

mid← (first+ last)/2
if last > first

then
{
left← BUILD(y, first,mid)
right← BUILD(y,mid+ 1, last)

v ← MAKE-TREE(left, right)
Av ← MERGE(left.Av, right.Av)
return (v)

In the algorithm BUILD(y, first, last), the parameters first and last indicate the begin and
end positions of array Av in array y, which is the index array computed by INDEXSORT(A). The
tree T is built recursively in a bottom up manner. The sub-algorithm MERGE(left.Av, right.Av)
merges the two arrays in the subtrees of v into an array Av of size |Tv| = last − first + 1 sorted
by their index in A. This merge procedure is exactly the same as the merge procedure of merge
sort algorithm.

Since our algorithm for constructing the basic data structure is essentially a sorting pro-
cess, we can readily conclude that our algorithm uses O(n log n) time and O(n log n) words of
space in the worst case.

If we visit the nodes of the complete binary tree T by an in-order traversal we can see
that, at any node v of T , the elements in the array Av are subdivided into two parts of (almost)
equal size and stored in the left child and the right child nodes of v. The two parts in the subtrees
are recursively subdivided further.

To answer a range selection query, we first visit the root of T and determine in which of
its two subtrees the element of the desired rank lies. Once this is known, the search continues
recursively in the appropriate subtree until a trivial problem of constant size is encountered.

The algorithm for answering the range selection queries (i, j, k) is described as follows.

Algorithm 2..3: QUERY(v, first, last, i, j, k)

comment: Answer range selection queries (i, j, k)

mid← (first+ last)/2
if last = first

then return (A[y[first]])
l← RANK(v.left, i− 1)
r ← RANK(v.left, j)
s← r − l
if k ≤ s

then return (QUERY(v.left, first,mid, l, r − 1, k))
else return (QUERY(v.right,mid+ 1, last, i− l, j − r, k − s))

In the above algorithm QUERY(v, first, last, i, j, k), we want to find the element of rank
k in the subarray A[i, j] from node v of T , where array Av begins at position first and ends at
position last of array y.

TELKOMNIKA Vol. 12, No. 3, March 2014 : 2406 ∼ 2413

TELKOMNIKA ISSN: 2302-4046 � 2409

The number l is the rank of i − 1 in the array Av of the left subtree v.left. It means that
there are l elements in the left subtree v.left are to the left of i in the subarray A[i, j]. The number
r is the rank of j in the array Av of the left subtree v.left. It means that there are r elements in
the left subtree v.left are to the left of and up to j in the subarray A[i, j]. Thus the number s is the
number of elements in the array Av of the left subtree v.left contained in in the subarray A[i, j].

If k ≤ s then the element of rank k in A[i, j] is the element of rank k in the subarray
Av[l, r− 1] of the left subtree v.left. Otherwise, the element of rank k is the element of rank k− s
in the subarray Av[i− l, j − r] of the right subtree v.right.

Thus the algorithm reduces the problem of finding an element of a given rank in the
subarray A[i, j] to the same problem, but on a smaller array. This reduction is applied recursively
by the algorithm.

The number l and r can be found in O(log((last− first+ 1)/2)) time by a binary search.
The query descends log n levels of recursion, so the algorithm Query would get a total execution

time of up to
logn∑
i=1

O(log n/2i) = O(log2 n).

2.2. An Improved Data Structure
In the algorithm QUERY(v, first, last, i, j, k) we can see that to find out in which subtrees

the element of rank k lies, only the array stored in the left subtree is used. Therefor, we can lift it
to the node v and thus save half of the total space costs. Furthermore, we note that to compute
the numbers l and r, the information available in the arrays stored at the interior nodes of our data
structure can be reduced further. We can use a bit-vector to store the information we need, where
a 1-bit indicates whether an element of the original array is in Av. Since we have n positions one
very level, a total of O(n log n) bits are used in our data structure.

With these bit-vectors, the execution time of the algorithm Query can also be reduced.
In order to compute the number l and r in the query algorithm efficiently, we can store a

table with ranks for indices that are a multiple of the size of machine word w. General ranks are
then the sum of the next smaller table entry and the number of 1-bits in the bit-vector between
this rounded position and the query position. In this way, the number l and r can be computed in
O(1) time. Therefore the execution time of the algorithm Query can be reduced to O(log n).

Summing up, we have obtained a data structure for solving range selection problem with
preprocessing timeO(n log n) usingO(n) space and query timeO(log n). This improves the space
consumption compared to [16] by a factor O(log2 n/ log log n).

3. The Implementation and Experiments
In this section we will describe the implementation of the data structure presented in

last section. Based on the discussion above, we can design an node class for the nodes of the
complete binary tree of our new data structure.

1 c lass node –
2 p u b l i c :
3 node () – ˝ / / cons t r uc to r
4 void i n i t (vector ¡ int ¿& y , i n t f i r s t , i n t l a s t) ;
5 i n t rank (i n t k) ;
6 p r i v a t e :
7 b i t v e c t o r low ; / / elements i n the l e f t subtree
8 vector ¡ int ¿ t ; / / a t ab l e o f ranks
9 ˝ ;

In the node class we store a bitvector low to indicate the elements in the left subtree of
current node sorted by their index in A.

The vector t is a table with ranks for indices that are a multiple of the size of machine
word w. With the vector t the rank of an index in the bitvector low can be computed in O(1) time

A Practical Algorithm and Data Structures for Range Selection ...(D. Zhu)

2410 � ISSN: 2302-4046

as follows.

1 i n t node : : rank (i n t k)
2 –
3 i f (k¿low . s ize ()) return 0;
4 i n t a=0 ,b=k /w;
5 for (i n t i =w*b ; i ¡= k ; i ++)a+=low [i] ;
6 i f (b¿0)a+= t [b - 1] ;
7 return a ;
8 ˝

the complete binary tree of our new data structure is built recursively in a bottom up
manner. For the current node, the two arrays of its subtrees are merged into one array and
then the bitvector low is formed. According to the information of low, the vector t can then be
constructed readily. The merge procedure is exactly the same as the merge procedure of merge
sort algorithm. The following algorithm init performs these tasks.

1 void node : : i n i t (vector ¡ int ¿& y , i n t f i r s t , i n t l a s t)
2 –
3 deque ¡ int ¿ dq ; / / a dequeue f o r merging two sor ted ar rays
4 i n t k= f i r s t , j =(l a s t - f i r s t) / 2 ,
5 mid =(f i r s t + l a s t) / 2 , a=0 , b=(l a s t - f i r s t +1) /w;
6 low . res i ze (l a s t - f i r s t +1) ;
7 t . r es i ze (b) ;
8 i f (f i r s t == l a s t)– low [0] = t rue ; return ; ˝
9 / / push˙back y [f i r s t , mid] from l e f t to r i g h t

10 for (i n t i = f i r s t ; i ¡= mid ; i ++)dq . push˙back (y [i]) ;
11 / / push˙back y [mid+1 , l a s t] from r i g h t to l e f t
12 for (i n t i = l a s t ; i ¿mid ; i - -) dq . push˙back (y [i]) ;
13 while (! dq . empty ())
14 i f (dq . f r o n t () ¿dq . back ()) –
15 y [k++]=dq . back () ; dq . pop˙back () ; / / pop back
16 ˝
17 else–
18 i f (j ¿=0)– low [k - f i r s t]= t r ue ; j - - ; ˝
19 y [k++]=dq . f r o n t () ; dq . p o p ˙ f r o n t () ; / / pop f r o n t
20 ˝
21 j =k =0;
22 while (b¿0)–
23 / / preprocessing t
24 for (i n t i =0; i ¡w; i ++) j +=low [k+ i] ;
25 t [a++]= j ; k+=w; b - - ;
26 ˝
27 ˝

In the algorithm init, the parameters first and last indicate the begin and end positions
of array Av in array y, which is the index array computed by the Indexsort algorithm. The size of
bitvector low must be last− first+ 1 bits.

A dequeue is used for merging two sorted arrays y[first,mid] and y[mid+ 1, last]. In the
merge process, if the next element comes from the first array y[first,mid], then the corresponding
bit of bitvector low is marked true. When the two arrays are sorted, the bitvector low is built. The
table t can then be constructed easily from the bitvector low.

With the class node, we can design a new class rmedian for our new data structure
for general range selection query as follows. In the class rmedian, array data is used to store

TELKOMNIKA Vol. 12, No. 3, March 2014 : 2406 ∼ 2413

TELKOMNIKA ISSN: 2302-4046 � 2411

the input sequence. The arrays y and z are used to store the sorted index arrays of the input
sequence.

1 c lass rmedian–
2 p u b l i c :
3 rmedian () – ˝ / / cons t r uc to r
4 rmedian (vector ¡ int ¿& dt)– i n i t (d t) ; ˝ / / cons t r uc to r
5 i n t median (i n t l e f t , i n t r i g h t) ;
6 p r i v a t e :
7 vector ¡ int ¿ data , y , z ;
8 vector ¡ node¿ bt ; / / a complete b inary t ree
9 void i n i t (vector ¡ int ¿& dt) ;

10 void b u i l d (i n t ind , i n t f i r s t , i n t l a s t) ;
11 i n t query (i n t ind , i n t f i r s t , i n t l a s t ,
12 i n t l e f t , i n t r i g h t , i n t rank) ;
13 ˝ ;

The main part of the class is a vector bt of element type node. This vector is used to store
the complete binary tree T that the n elements of the input sequence are stored in its leaves in
sorted order. The vector bt is in fact an array indexed binary tree. The root of the tree is bt[0].
For a given index i of a node, the left and right child node of bt[i] are bt[2 ∗ i + 1] and bt[2 ∗ i + 2]
respectively. The parent node of of bt[i] is bt[(i− 1)/2].

The vector bt can be built recursively in a bottom up manner as follows.

1 void rmedian : : b u i l d (i n t ind , i n t f i r s t , i n t l a s t)
2 –
3 i n t mid =(f i r s t + l a s t) / 2 ;
4 i f (l a s t ¿ f i r s t)–
5 b u i l d (2 * ind +1 , f i r s t , mid) ;
6 b u i l d (2 * ind +2 ,mid+1 , l a s t) ;
7 ˝
8 b t [ind] . i n i t (y , f i r s t , l a s t) ;
9 ˝

Once an instance of rmedian is built, we can then answer any range selection query in
O(log n) time as follows.

For any range selection query QUERY(ind, first, last, left, right, rank), we want to find
the element of rank rank in the subarray A[left, right] from node v = bt[ind] of bt, where array
Av begins at position first and ends at position last of array z.

We first find the number l and r, which are the ranks of left− 1 and right in the array Av
of the left subtree of node v respectively.

Thus the number length = r− l is computed, which is the number of elements in the array
Av of the left subtree of v contained in in the subarray A[left, right].

If rank ≤ length then the element of rank rank in A[left, right] is the element of rank
rank in the subarray Av[l, r − 1] of the left subtree of v. Otherwise, the element of rank rank is
the element of rank rank − length in the subarray Av[left− l, right− r] of the right subtree of v.

The algorithm reduces the problem of finding an element of a given rank in the subarray
A[left, right] to the same problem, but on a smaller array. This reduction is applied recursively by
the algorithm as follows.

1 i n t rmedian : : query (i n t ind , i n t f i r s t , i n t l a s t ,
2 i n t l e f t , i n t r i g h t , i n t rank)
3 –
4 i n t mid =(f i r s t + l a s t) / 2 ;
5 node m=bt [ind] ;

A Practical Algorithm and Data Structures for Range Selection ...(D. Zhu)

2412 � ISSN: 2302-4046

Table 1. The bitvectors of the complete binary tree bt

0111010011101000
10001101 00111100
1100 0011 1010 0110
01 10 01 01 01 01 01 10

6 i f (f i r s t == l a s t) return data [z [f i r s t]] ;
7 i n t l =m. rank (l e f t - 1) , r =m. rank (r i g h t) ;
8 i n t l eng th=r - l ;
9 i f (rank ¡= leng th)

10 return query (2* ind +1 , f i r s t , mid , l , r -1 , rank) ;
11 else
12 return query (2* ind +2 ,mid+1 ,
13 l a s t , l e f t - l , r i g h t - r , rank - leng th) ;
14 ˝

We can explain the implementation of our data structure by an example with the input
array A = [14, 1, 7, 6, 13, 5, 9, 11, 0, 2, 4, 8, 3, 10, 12, 15] of 16 elements as follows. In the first step,
the input array A is sorted into an index array

y = [8, 1, 9, 12, 10, 5, 3, 2, 11, 6, 13, 7, 14, 4, 0, 15] by the algorithm INDEXSORT(A) such that
the sequence A[y[0]], A[y[1]], · · · , A[y[15]] is exactly the 16 elements of the input array in sorted
order.

Then the complete binary tree bt that stores the 16 elements in the leaves in sorted order
is built according to the index array y. The most important data stored in the nodes of bt is the
corresponding bitvector low. The following Table 1 shows the bitvector low in the nodes of bt by a
level-order traversal.

With this basic data structure we can answer any range selection query in O(log n) time.
For example, if we want to find the median of the sub-array A[4, 10] = [13, 5, 9, 11, 0, 2, 4], then a
function call of query(0, 0, 15, 4, 10, 4) will give the result.

The algorithm visit the root of bt first.
According to the bitvector low = [0111010011101000] of the root, the elements of the left

subtree of the root sorted by their indices in A are

A[1], A[2], A[3], A[5], A[8], A[9], A[10], A[12].

The rank of index 3 and index 10 in this sequence can be computed as l = 3 and r = 7 and thus
length = 4. The median is contained in the left subtree. The function call of query(1, 0, 7, 3, 6, 4)
is then applied.

In the node bt[1], according to its bitvector low = [10001101], l ,r and length can be
computed as l = 1, r = 3 and length = 2 and thus the recursive call query(4, 4, 7, 2, 3, 2) is
applied.

Similarly, the next recursive call is query(9, 4, 5, 0, 1, 2).
Finally, the function call query(20, 5, 5, 0, 0, 1) gives the query answer A[5] = 5.
We implemented our data structure in C++ and tested them on a personal computer with

Pentium(R) Dual Core CPU 2.10 GHz and 2.0 Gb RAM, using the Microsoft Visual C++ version
8.0 compilers. The word size of the processor is w = 32.

The experiment results show that our data structure is very practical for solving the range
selection query problem.

We also performed some limited experiments on the relative performance of our data
structure. The new data structure has similar or better speed than existing data structures but
uses less space in the worst case.

TELKOMNIKA Vol. 12, No. 3, March 2014 : 2406 ∼ 2413

TELKOMNIKA ISSN: 2302-4046 � 2413

4. Conclusion
We have presented new data structure for solving the range selection query problem.

While there are several theoretical solutions to the problem, only a few have been tried out, and
there is little idea on how the others would perform. The computation model used in this paper
is the RAM model with word-size Θ(log n). Our data structure is a practical linear space data
structure that supports range selection queries in O(log n) time with O(n log n) preprocessing
time.

The computational experiments in Section 3 demonstrate that the achieved results are
not only of theoretical interest, but also that the techniques developed may actually lead to con-
siderably faster algorithms.

Acknowledgement
The authors acknowledge the financial support of Natural Science Foundation of Fujian

under Grant No.2013J01247, and the Haixi Project of Fujian under Grant No.A099.

References
[1] M. J. Atallah and H. Yuan, Data structures for range minimum queries in multidimensional

arrays, In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 150-160, 2010.

[2] G. S. Brodal and A. G. Jorgensen, Data structures for range median queries, In Proceedings
of the 20th International Symposium on Algorithms and Computation, 822-831, 2009.

[3] T. M. Chan, Persistent predecessor search and orthogonal point location in the word RAM,
In Proceedings of the 22nd ACM/SIAM Symposium on Discrete Algorithms (SODA), 1131-
1145, 2011.

[4] G. S. Brodal, B. Gfeller, A. G. Jargensen, P. Sanders, Towards optimal range medians, The-
oretical Computer Science, 412(1):2588-2601, 2011.

[5] T. Gagie, J. Karkkainen, G. Navarro, S. J. Puglisi, Colored range queries and document
retrieval, Theoretical Computer Science, 483(3):36-50, 2013.

[6] T. Gagie, G. Navarro, S.J. Puglisi, New algorithms on wavelet trees and applications to infor-
mation retrieval. Theoretical Computer Science, 426-427:25-41, 2012.

[7] T. Gagie, S.J. Puglisi, A. Turpin, Range Quantile Queries: Another Virtue of Wavelet Trees. ,
Proc. 16th International Symposium on String Processing and Information Retrieval, SPIRE
2009, LNCS 5721:1-6, 2009.

[8] R. Grossi, A. Gupta, J.S. Vitter, High-order entropy-compressed text indexes. Proceedings
of the 14th Symposium on Discrete Algorithms, 841C850, 2003.

[9] A.G. Jorgensen, K.D. Larsen, Range selection and median: Tight cell probe lower bounds
and adaptive data structures, Proceedings of the 22nd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 805-813, 2011.

[10] D. Krizanc, P. Morin, and M. H. M. Smid, Range mode and range median queries on lists and
trees. Nordic Journal of Computing, 12(1):1-17, 2005.

[11] Kasper Green Larsen, The cell probe complexity of dynamic range counting, In Proceedings
44th ACM Symposium on Theory of Computing (STOC), 2012.

[12] H. Petersen and S. Grabowski, Range mode and range median queries in constant time and
sub-quadratic space, Information Processing Letters, 109(4):225-228, 2008.

[13] D. E. Willard, Log-logarithmic worst-case range queries are possible in space Theta(n), In-
formation Processing Letters, 17(2):81-84, 1983.

A Practical Algorithm and Data Structures for Range Selection ...(D. Zhu)

