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ABSTRACT

Generative adversarial networks have succeeded promising results in the med-
ical imaging field. One of the most significant challenges in this regard is the
lack of or limited data sharing. In our work, an approach for combining genera-
tive adversarial network (GAN) and variational autoencoder (VAE) models has
been proposed to improve the accuracy and efficiency of medical image analysis
tasks. Our approach leverages the capacity of VAEs to acquire condensed feature
representations, and the ability of GANs to generate high-quality synthetic im-
ages to learn an embedding that keeps high-level abstract visual qualities. Incep-
tion score (IS) and Fréchet inception distance (FID) score have been generated
in order to demonstrate the high quality of images. Based on the score results,
our approach demonstrates the potential of VAE-GAN fusion models and clearly
outperforms existing methods on a variety of medical image analysis tasks. The
suggested algorithm is explained, as are the results and evaluations.
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1. INTRODUCTION
The scarce accessibility of medical data for researchers is a result of legal and regulatory measures

that safeguard individual privacy. This occurs because personal medical information is considered extremely
sensitive and confidential [1]. The scarcity of data poses a significant challenge for researchers, who rely on
extensive datasets to test hypotheses and develop novel treatments and therapies [2]. Without access to real-
world data, researchers may struggle to grasp the full extent of a medical condition or identify trends and
patterns critical for new treatment development [3]. One potential solution is generating data that mimics real-
world data without being based on actual individuals. This can be achieved using simulations or other methods
that enable researchers to study complex systems without real-world data [4].

Although not a perfect substitute for real-world data, this approach can offer valuable insights and help
researchers better understand various medical conditions’ underlying mechanisms [5]. It can also bridge data
gaps and provide researchers with larger datasets, even if not based on real individuals [6]. Researchers face
significant challenges due to the lack of medical data resulting from laws and regulations restricting the public
sharing of private information [7]. By generating data resembling real-world data, researchers can overcome
these obstacles and continue making substantial contributions to the medical field [7].

Journal homepage: http://ijeecs.iaescore.com



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 495

GANs, or generative adversarial networks, are a class of deep learning models that can create new
data samples resembling those in a training dataset [8]. They have found applications in various domains,
such as image, text, and music generation. In the field of medical imaging, GANs have been employed for
several tasks, including generating synthetic medical images, enhancing the quality of low-resolution images,
and imputing missing or corrupted image data.

Many papers have been published in recent years on topics including such GAN-based image synthe-
sis, image translation, and image super-resolution in medical imaging, indicating that there is a growing body
of literature on the use of GANs in medical imaging. The researchers in [9]-[11] demonstrate the potential
of GANs to improve the accuracy and efficiency of medical image analysis tasks, while also highlighting the
challenges and limitations of using GANs in this context. Several studies like [11]-[15] illustrate the utiliza-
tion of GANs in the field of medical imaging, underscoring their potential to enhance both the precision and
effectiveness of tasks related to medical image analysis.

Variational autoencoders (VAEs) [16] are a type of generative model that uses a combination of neural
networks and statistical methods to learn a compact representation of a dataset, referred to as the latent space,
from which novel data samples can be produced. VAEs were first introduced in 2013 by Kingma and Welling
[17], and have since been widely used in a variety of applications, including image generation, text generation,
and representation learning. VAEs are based on the concept of learning a distribution across data, rather than
utilizing a deterministic mapping from input to output. This enables VAEs to capture the diversity of the data
and generate novel samples that resemble the training set. VAEs consist of two networks: a decoder network
that converts the latent representation back to the original input domain, and an encoder network that associates
each input data sample with a latent representation. Generally, the feedforward neural networks composing the
encoder and decoder networks are trained to optimize the likelihood of the training data.

The following papers [18]-[20] are examples of research that has explored the use of VAEs in various
applications. These papers show some of the various applications of VAEs in a variety of domains, as well as
the potential of these models for unsupervised learning and generative modeling. Combining VAE and GAN
models might increase the efficiency and adaptability of generative models while also enabling new applications
in a range of fields. The remainder of the essay is structured as follows: An overview of relevant studies on
the topic is given in section 2. The difficulties of implementing VAE using GAN models are covered in section
3. We provide a summary of the suggested approach and its execution in section 4. The topic and prospective
paths for this study are covered in detail in section 5. Finally, in section 6, we wrap up our research and list its
main results.

Our unique contribution in this paper is two-fold. Firstly, we propose an architecture that integrates the
strengths of both GANs and VAEs, thus effectively mitigating the individual limitations of these two advanced
methods. This integrated approach aims to enhance the process of generating synthetic medical data, thereby
addressing the scarcity issue that has long hampered progress in the field. Secondly, we provide a compre-
hensive evaluation of our proposed algorithm using various scores, which stands to substantiate our approach’s
efficacy and reliability. By successfully addressing the limitations of the existing models, we hope our research
will lead to significant advancements in medical research, particularly in areas where the accessibility of real-
world data is limited or restricted. This effort not only pushes the boundaries of synthetic data generation but
also opens new avenues for researchers to gain deeper insights into various medical conditions and ultimately
drive innovation in treatment developments.

2. RELATED WORKS
A form of the generative model called variational autoencoder-generative adversarial networks (VAE-

GANs) combines the benefits of VAEs and GANs. A number of papers on VAE-GANs have been published,
exploring various aspects of these models, such as their ability to generate high-quality synthetic data, learn
robust and interpretable latent representations, and their potential for use in a variety of applications, such as
image generation, text generation, and data augmentation. Among the remarkable publications in this field is
the original VAE-GAN paper by Larsen et al. [21], which introduced the VAE-GAN model and demonstrated
its effectiveness on several benchmark datasets. Then, the paper by Zhang et al. [22], proposed an improved
VAE-GAN model that used a hierarchical latent structure to better capture the structure of the data. Other works
have focused on improving the stability and performance of VAE-GANs, such as the use of adversarial training
techniques by Meschederet et al. [23] or the incorporation of auxiliary tasks by Li et al. [24]. VAE-GANs have
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shown promise as a powerful tool for generative modeling and have been applied to a wide range of tasks and
domains. There are numerous original papers in the medical imaging field that demonstrate the application of
VAE-GAN [25], which introduces a unique VAE-GAN architecture. Dozens of trials have been carried out to
establish its effectiveness. Trial outcomes indicate that this VAE-GAN model outperforms previous state-of-
the-art arterial spin labeling (ASL) image synthesis approaches, with an accuracy improvement of up to 42.41%
in dementia detection tasks after adding synthesized ASL pictures from the new model. Mostapha et al. works
[26] is also one of the recent works that use VAE-GAN architecture, in this study, a generative adversarial
network using a 3D variational autoencoder is proposed as a semi-supervised out-of-sample detection approach
(VAE-GAN).

Cackowski et al. [27], suggests a deep-learning method for quick and flexible MR picture harmo-
nization (ImUnity). A VAE-GAN network, along with a confusion module, an optional biological preservation
module, picture contrast modifications, and several 2D slices from different anatomical regions in each patient
in the training database, is employed for self-supervised training. VAE-GAN algorithms being used in the
medical industry [28], [29].

3. CHALLENGES OF DEPLOYING VAE WITH GAN
VAEs outperform other generative models in several ways, including the ability to learn a continuous

and structured latent space and handle complex data distributions. They do, however, have a few limitations,
including the need for careful design and optimization, as well as the possibility of mode collapse, in which
the model only learns to generate a limited number of modes or types of data. Despite these limitations, VAEs
continues to be a popular and effective tool for generative modeling, as well as an active field of research in
deep learning [30], [31].

VAEs and GANs are both generative models signify their ability to create additional data instances that
closely resemble an existing training data set. VAEs are a type of deep learning model that uses a combination
of neural networks and statistical methods to learn a compact representation of a dataset, known as the latent
space, from which new data samples can be generated. GANs, on the other hand, take a different approach,
involving two neural networks that compete to produce the most realistic-looking data samples [32].

Combining VAE and GAN models has the potential to produce more diverse and high-quality gener-
ated samples, as the VAE’s ability to learn a latent space representation can be combined with the GAN’s ability
to generate realistic-looking data. However, training and optimizing such a model can be difficult because the
two types of models can have competing objectives and require different training methods [33]. Research on
the combination of VAE and GAN models is ongoing and has the potential to enhance the quality and variety
of produced data samples. As previously stated, combining VAE and GAN models can be challenging since
these two types of models have different objectives and require different training methods. The following are
some of the specific challenges that may arise when deploying a VAE-GAN fusion model:

- The goals of VAEs and GANs are similar; VAEs are taught to increase the probability of the training data,
whereas GANs are trained to reduce the difference between the produced samples and the training data.
Aligning these goals can be challenging since increasing the probability of training data can lead to overfit-
ting, while reducing the gap between produced samples and training data can lead to underfitting.

- It can be challenging to train both the VAE and the GAN simultaneously since they are typically trained
using different methods and optimization algorithms. For this reason, it may be necessary to employ alternate
training methods, such as training the VAE and GAN in tandem or using a shared latent space representation
for both models.

- Handling mode collapse: one of the difficulties in training GANs is the possibility of mode collapse, which
occurs when a model can only produce a small number of modes or types of data rather than capturing the
full diversity of the training data. This is particularly difficult in a VAE-GAN fusion model, as the GAN’s
tendency to mode collapse can compromise the extent to which the training data’s distribution can be fully
captured by the VAE.

- Optimizing the hyperparameters: the size and structure of the neural networks, the learning rate and opti-
mization algorithm, and the amount of regularization are all hyperparameters that can affect the performance
of VAEs and GANs. Finding the optimal values for these hyperparameters can be difficult, while good per-
formance on a given dataset may necessitate careful tuning and experimentation.
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Deploying a VAE-GAN fusion model can be challenging since it requires careful design and optimization to
achieve good performance.

4. METHOD
Combining GANs with VAEs models offers the potential to increase the quality and diversity of sam-

ples generated while also addressing some of the limitations of each of these models separately [34]. Some of
the potential advantages of VAE-GAN fusion models are as follows:

- Improved generation quality: by combining VAEs ability to learn a compact latent space representation with
GANs ability to generate high-quality synthetic samples, VAE-GAN fusion models can produce diverse and
realistic-looking generated samples. This is especially useful for applications such as image generation,
where the quality of the generated samples is crucial.

- Improved feature learning: whereas GANs are taught to reduce the difference between the produced samples
and the training data, VAEs are often trained to increase the probability of the training data. Combining
these two goals might help VAE-GAN fusion models develop more insightful and understandable feature
representations, which can be beneficial for tasks like representation learning and unsupervised learning.

- Better handling of complex data distributions: VAEs can capture the full diversity of the training data and
handle complex data distributions that other generative models may find difficult to model. Combining VAEs
and GANs can improve GANs’ ability to handle complex data distributions and generate more diverse and
high-quality samples.

- Mode collapse, which occurs when a GAN model only learns to create a small number of modes or types of
data instead of capturing the complete diversity of the training data, is a prevalent problem. By introducing a
VAE into the GAN architecture, it may be able to decrease the incidence of mode collapse and enhance the
model’s capacity to capture all of the variety of training data.

Combining VAE and GAN models could boost the efficacy and adaptability of generative models, allowing for
usecases in many fields.

4.1. Variational autoencoder
Mathematically, VAE algorithms are based on the concept of variational inference, which is a method

of approximating complex probability distributions with simpler distributions. The goal of VAE analysis is to
learn a simpler distribution that closely approximates the true distribution of the data, which is often complex
and unknown. VAEs employ a dual-component model consisting of an encoder network and a decoder network
to accomplish this. The encoder network transforms an input data sample into a parameter vector representing
a distribution in the latent space or a latent representation. Conversely, the decoder network is trained to
reconstruct the input data sample from the latent representation, mapping it back to the initial input space [16].

The key mathematical intuition underlying VAEs is that the encoder network’s latent representation
can be used to approximate the true distribution of the data and that the decoder network can be used to generate
new samples that are similar to the training data. The training objective, which typically involves maximizing
the likelihood of the training data while also regularizing the latent representation to encourage it to be compact
and structured, determines the quality of the approximated distribution and the generated samples. Some of the
key equations that define the VAE algorithm are as follows.

Using the (1), the encoder network maps an input data sample x to a latent representation z:

z = f(x) (1)

where f is the encoder network.
The decoder network restores the original input space from the latent representation z, using the (2):

x′ = g(z) (2)

where g is the decoder network.
The encoder and decoder networks are trained to maximize the likelihood of the training data, using the fol-
lowing objective function as (3):

L(x, x′) = logp(x|x′) (3)
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where x is the input data sample and x’ is the reconstructed data sample.
To regularize the latent representation and encourage it to be compact and structured, VAEs typically

use a prior distribution p(z) over the latent space, and minimize the Kullback-Leibler divergence between the
approximated distribution q(z—x) and the prior distribution, using the following objective function as (4).

DKL(q(z|x)||p(z)) (4)

The objective function for a VAE is typically a combination of the likelihood and regularization objectives [35],
and is given by (5).

L = E[L(x, x′)]−DKL(q(z|x)||p(z)) (5)

These equations define the basic principles and operations of the VAE algorithm and provide a mathematical
foundation for understanding how VAEs create fresh samples that are comparable to the training data and how
they learn a condensed and understandable representation of the data.

4.2. Generative adversarial networks
To create a generative model for a dataset, generative adversarial networks, a subset of deep learning

models, merge neural networks with game theory. GANs were first introduced by Goodfellow et al. in 2014
[8] and have since gained popularity for various applications such as image, text, and audio generation. GANs
consist of two distinct components, including a generator network that is responsible for generating new data
samples and a discriminator network that is trained to differentiate between real and generated samples. These
two networks are trained together in a competitive manner, with the generator attempting to fool the discrim-
inator and the discriminator trying to accurately classify real and generated samples. Through this training
process, the generator network can ultimately generate high-quality synthetic samples that are similar to the
training data.

The key mathematical intuition behind GANs is that the generator network learns a mapping from a
latent space to the original data space and that the discriminator network provides feedback on the realism of
the generated samples. This allows GANs to learn a generative model of the data, and to produce synthetic
samples that are both diverse and realistic-looking. GANs have several advantages over other generative mod-
els [36], such as the ability to handle complex data distributions and the ability to generate high-resolution
images. However, they also have several limitations, such as the potential for mode collapse and the difficulty
of training the generator and discriminator networks simultaneously [37]. Despite these limitations, GANs
remain a popular and effective tool for generative modeling and continue to be an active area of research in the
field of deep learning. Here are some of the key equations that define the GAN algorithm.

The generator network maps a latent representation z to a data sample x, using the (6):

x = G(z) (6)

where G is the generator network.
The discriminator network maps a data sample x to a classification score s, using the (7):

s = D(x) (7)

where D is the discriminator network.
The discriminator and generator networks are trained concurrently, with the generator network trying

to maximize the classification score of the generated samples, and the discriminator network trying to minimize
the classification score of the generated samples. This is achieved using the following objective functions as
(8) and (9).

LG = Ez p(z)[log(1−D(G(z)))] (8)

LD = Ex pdata(x)[log(D(x))] + Ez p(z)[log(1−D(G(z)))] (9)

In the GAN training process, both the generator and discriminator networks are trained simultaneously using
their respective objective functions, denoted as LG and LD. The prior distribution across the latent area is
depicted as p(z), and the genuine data distribution is expressed as p data(x). Data instances and latent repre-
sentations are symbolized by x and z, correspondingly.
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The objective function for a GAN is typically a combination of the generator and discriminator objec-
tive functions, and is given by (10):

L = LG + LD (10)

The (10) define the basic principles and operations of the GAN algorithm and provide a mathematical foun-
dation for understanding how GANs learn a generative model of the data, and how they generate high-quality
synthetic samples that are similar to the training data.

4.3. The proposed algorithms
Our model aims to generate synthetic samples that closely resemble the training data using a GAN

after a VAE learns a compact and structured representation of medical imaging data. The VAE’s encoder net-
work is responsible for transforming input data samples into a latent representation, while the decoder network
is tasked with converting the latent representation back into the original input space. The latent representation
from the VAE is then utilized to train the GAN to create synthetic samples that resemble the training data. By
combining the VAE and GAN, this model can develop a generative model of medical imaging data that can
be used to create new samples and perform unsupervised learning tasks. The Algorithm 1 describes the basic
operations of the VAE-GAN model:

Algorithm 1 Training loop of VAE/GAN model

θEnc, θDec, θDis ← network parameters Initialization

for i=1, 2, .., number of epochs do
X ← select mini batch

Z ← Enc(X)

Lprior ← DKL(q(Z|X)||p(Z))

X̃ ← Dec(Z)

LDisl
llike ← −Eq(Z|X)[p(Disl(X)|Z)]

Zp ← sample from N(0, 1)

Xp ← Dec(Zp)

LGAN ← log(Dis(X)) + log(1−Dis(X̃)) + log(1−Dis(Xp))

θEnc ← θEnc − ▽θEnc
(Lprior + LDisl

llike)

θDec ← θDec − ▽θEnc
(λLDisl

llike − LGAN )

θDis ← θDis − ▽θDis
LDisl
llike − LGAN

end for

The basic training process for the VAE-GAN model is described in this algorithm, which includes
steps for initializing the networks, sampling data from the training dataset, passing the data through the encoder
and decoder networks, computing the loss functions for the VAE and GAN, and updating the network weights.
The algorithm returns the trained VAE-GAN model, which can be used to generate synthetic samples and
perform unsupervised learning tasks. The encoder in our model is a convolutional neural network consisting
of three convolutional layers and one fully connected layer. The first convolutional layer has 64 filters, each
with a 5x5 size and a stride of 2, and employs zero padding to maintain the input’s dimensions. The second
and third convolutional layers have 128 and 256 filters, respectively, and share the same filter size, stride, and
padding as the first layer. The output of the third convolutional layer is flattened and passed through a fully
connected layer with 2,048 units.

The fully connected layer’s output is then fed into two additional fully connected layers, each con-
taining 128 units. These layers correspond to the mean and log variance of the latent representation. The latent
representation is then sampled from a normal distribution using the learned mean and variance. Our model’s
decoder is a deconvolutional neural network with four deconvolutional layers and one fully connected layer.
The decoder takes the latent representation from the encoder and passes it through a fully connected layer with
8x8x256 units, where it is reshaped into a 256x8x8 tensor. Then, four deconvolutional layers with the same
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number of filters, filter size, stride, and padding as their corresponding convolutional layers in the encoder are
applied to this tensor. To ensure pixel values fall within the range [-1, 1], a tanh activation function is applied
to the output of the final deconvolutional layer, resulting in a 1x64x64 tensor.

The discriminator component of our model is a convolutional neural network with four convolutional
layers and one fully connected layer. It takes an image as input and processes it through four convolutional
layers, which have the same filter size, stride, and padding as the corresponding deconvolutional layers in the
decoder. The output of the last convolutional layer is flattened and passed through a fully connected layer with
a single unit, generating a scalar value indicating the likelihood that the input image is real.

The primary purpose of our model is to train a VAE-GAN model. The VAE encodes input images
into a latent space and decodes the latent vectors back into images. The GAN uses a discriminator network to
determine whether an image is real or generated. The VAE and GAN in the model are trained together, with the
GAN providing additional regularization for the VAE. As a result, the model can generate high-quality images
similar to the training data. The model was trained on chest X-ray images and is intended for use in generating
medical imaging.

Our VAE-GAN algorithm generates synthetic chest X-ray images. The model comprises an encoder,
decoder, and discriminator. The encoder is a convolutional neural network that maps an X-ray image to a latent
representation, which is a compact, low-dimensional representation of the image. The decoder, a deconvo-
lutional neural network, takes the latent representation as input and maps it back to an image in the original
space. The discriminator is a convolutional neural network that takes an image as input and outputs a scalar
value representing the likelihood that the image is real (i.e., not generated by the decoder). While the encoder
and decoder aim to generate images similar to the actual ones, the discriminator seeks to differentiate between
real and synthetic images.

The objective of the VAE-GAN model is to generate synthetic images that closely resemble real ones
by learning a mapping from the original X-ray image space to the latent space. This is achieved by minimizing
both the adversarial loss and the reconstruction loss, which represents the discrepancy between the original
image and the one produced by the decoder (i.e., the difference between the probability assigned by the dis-
criminator to the real image and the synthetic image). In summary, our algorithm is a VAE-GAN model that is
designed to generate synthetic X-ray images of the chest. The encoder, decoder, and discriminator in the model
are trained to reduce adversarial loss and reconstruction loss.

4.4. Datasets and hyper parameters
Our dataset consisted of 1,341 medical images sourced from National Institutes Of Health Chest X-

Ray Dataset [38] contains over 100,000 chest X-ray images, annotated with various pathologies. The dataset
covers a wide range of patient demographics, ensuring the generalizability of our results. The images were
preprocessed by resizing them to a standard resolution of 256x256 pixels, followed by normalization to the
range [0, 1] without any data augmentation techniques.

In the decoder, our models use backward convolution (also called fractional striding) with a stride
of 2 to increase the resolution of the original image. By switching the direction of the convolution, we can
perform backward convolution and employ striding for upsampling. We used the RMSProp algorithm for
model training, setting the learning rate to 0.0001 and the batch size to 32.

It is worth noting that 1,341 images is a relatively small dataset for training a machine learning algo-
rithm, particularly in the domain of medical imaging, where large amounts of data are frequently required to
capture the full range of variability in the data. As a result of the limited size and diversity of the training data,
the algorithm may have limited performance or generalizability. This is a common challenge in medical imag-
ing, and it can be addressed using methods like data augmentation, transfer learning, and active learning. These
challenges highlight the strength of our approach to generating good, realistic images from small amounts of
data.

5. RESULTS AND DISCUSSION
A statistic for assessing the effectiveness of generative models, including VAE-GAN models, is the

inception score [39]. It evaluates the produced pictures’ quality and variety. More realistic and varied pictures
are being produced by the model, as indicated by a higher inception score. The specifics of your model and
the data that it was trained on will dictate how the inception score should be interpreted. The inception score
formula is as (11).
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IS = exp

(
1

N

N∑
i=1

log p(yi|xi)

)
(11)

In (11), IS denotes the inception score, N signifies the total number of images assessed, xi refers to
the ith image under evaluation, and yi is the class label predicted by the inception model for the ith image.
The inception model is a pre-trained deep convolutional neural network employed to assess the generated
images’ quality and diversity. The probability p(yi|xi) illustrates the inception model’s confidence in predicting
the class label yi for the image xi. The inception score is computed as the exponential of the average log
probabilities of the class labels predicted by the inception model for the generated images. Our VAE-GAN
model was trained on a dataset of 1,341 X-ray images. We found the following results Table 1 after evaluating
the model using the inception score.

Table 1. Comparison of IS and standard deviations at different training epochs for the VAE-GAN fusion model
Epoch vs score Mean IS Standard deviation
Real data 1.8542 0.4173
Epoch 1 1.1037 0.0459
Epoch 100 1.6008 0.2334
Epoch 350 1.7742 0.4090
Final epoch 1.8431 0.4186

This indicates that the model was able to generate high-quality and diverse images, as a generated
data inception score closer to that of real data corresponds to more realistic and diverse generated images.
In conclusion, these findings show the power of our VAE-GAN model. The second aspect of evaluating our
model is The Fréchet inception distance (FID) [40], which is a common metric for evaluating the performance
of generative models including VAE-GAN models. It is a measure of the difference in distribution between real
and generated images in an Inception network’s feature space. As indicated by the significant decrease in the
FID score from 172,662 in the first epoch to 0.1334 in the final epoch (see Figure 1). This strongly suggests
that as training progresses, the model will be able to generate more realistic and diverse images.

Figure 1. The FID score during training

A lower FID score signifies better model performance. A score of 0 implies that the real and gen-
erated images share an identical distribution, while higher scores indicate increasing divergence between the
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distributions. An inception network is employed to extract features from a collection of generated images and
a set of real photographs prior to calculating the FID score. The mean and covariance of both distributions are
derived from these features. The FID score is then computed using the squared Euclidean distance between the
means of the two distributions and the trace of the product of their covariances.

The most important factor that supports our model is its fast convergence, demonstrating the impor-
tance of the VAE block in allowing the GAN model to be faster and more stable during the training process.
Furthermore, we used our VAE-GAN model to generate several images as part of our evaluation. Figure 2
show the generated images. These images shows the variety and quality of our model’s images. The high level
of realism in these images further supports the effectiveness of our model in generating realistic images.

Figure 2. Generated images final

Our research work has been successful in combining VAE and GAN models to produce data that are of
great quality and realistic in appearance. This is a promising result, and it suggests that the combination of VAE
and GAN models can be a powerful approach for generating synthetic images and for performing unsupervised
learning tasks in the domain of medical imaging. Our method effectively produces top-notch artificial images
by utilizing a compact dataset of just 1,341 X-ray pictures, which is a remarkable outcome. As previously
noted, the restricted quantity and variety of training data can pose challenges for machine learning techniques
within the medical imaging field, and attaining excellent performance with smaller datasets can be a tough task.

However, it is important to note that the quality and generalizability of the results obtained with
a machine learning algorithm are determined by many factors, including the design and architecture of the
algorithm, the quality and diversity of the training data, the effectiveness of the training procedure, and the
performance of the algorithm on a held-out test set. Looking to the future, there are many potential directions
for further research and development in this area. Some possible directions include: investigating different
variations and architectures for the VAE and GAN models, and exploring how these different models affect
the quality and diversity of the generated images. Developing new training algorithms and techniques that can
improve the stability and convergence of VAE-GAN models, and that can enable the models to handle larger
and more complex datasets. Applying VAE-GAN models to different types of medical imaging data, such as
X-ray, magnetic resonance imaging (MRI), or ultrasound images, and studying how the models perform on
these different data types. Investigating the potential applications of VAE-GAN models in medical imaging,
such as in data augmentation, anomaly detection, or image synthesis.

The capacity of VAE-GAN models to produce realistic-looking, high-quality synthetic pictures is one
of its main features. By combining the generative modeling capabilities of GANs with the structured and
compact latent representations of VAEs, VAE-GAN models are able to capture complex patterns and structures
in the data and to generate realistic-looking images that can be used for various applications. Another important
aspect of VAE-GAN models is their ability to perform unsupervised learning. By training the VAE and GAN
components jointly, VAE-GAN models are able to learn a generative model of the data without the need for
labeled examples or other forms of supervision. This makes VAE-GAN models well-suited for tasks such as
data augmentation, anomaly detection, and unsupervised representation learning.
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In the context of medical imaging, VAE-GAN models have the potential to offer several benefits.
For example, VAE-GAN models could be used to augment small or limited datasets with synthetic images,
This can enhance the performance of subsequent machine-learning tasks like segmentation or classification.
Additionally, VAE-GAN models could be used to identify abnormal or anomalous images, which could be
useful for detecting rare or unusual medical conditions. In our work, we are tackling some of the challenges
and limitations of VAE-GAN models including the need for large amounts of computational resources (by
using just 341 X-ray images), the potential for mode collapse or other training instability issues (as provided
by FID figure our architecture is more stable and converge quickly), and the difficulty of interpreting and
understanding the learned latent representations (by using VAE to reinforce the GAN model). These challenges
are addressed through research and development in areas such as optimization algorithms [41], regularization
techniques [42], [43], and latent space analysis [44]. As a conclusion to our discussion, VAE-GAN models are
a promising approach for generating synthetic images and for performing unsupervised learning tasks in the
domain of medical imaging. By combining the strengths of VAEs and GANs, VAE-GAN models are able to
learn complex and structured generative models of medical imaging data, which can be used for a wide range
of applications.

6. CONCLUSION
We have successfully merged VAE and GAN models in the realm of medical imaging to create high-

quality synthetic pictures that are equivalent to actual ones. Such encouraging results show that combining
VAE and GAN models can be a useful method for unsupervised learning tasks in medical imaging, such as
synthetic picture synthesis. Future research and development might take many exciting turns. Future research
directions for VAE-GAN models in medical imaging could include looking into different model architectures
and training algorithms, applying VAE-GAN models to different types of medical imaging data, and looking
into the potential applications of VAE-GAN models in medical imaging tasks. There are various intriguing
potentials for continued VAE-GAN model research and development in the realm of medical imaging, and it
will be interesting to see how these models evolve and improve in the upcoming years.
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