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 Switchgear plays a crucial role in power systems, providing protection and 

control over electrical equipment. However, tracking (surface discharge) can 

lead to insulation degradation and switchgear failure, necessitating reliable 

and effective identification of tracking defects. In this paper, we propose a 

hybrid one-dimension convolutional neural network long short-term memory 

networks (1D-CNN-LSTM) model as a solution to this problem. Data from 

both time domain analysis (TDA) and frequency domain analysis (FDA) are 

utilized for model evaluation. The model achieved error-free accuracy of 

100% in both TDA and FDA during the training, validation, and testing 

phases. The model's performance is further assessed using performance 

measures and the visualization of accuracy and loss curves. The results show 

that the hybrid 1D-CNN-LSTM model works well to accurately find and 

classify surface discharge tracking defects in switchgear. The model offers 

precise and dependable fault identification, which has the potential to 

significantly enhance switchgear functionality. By enabling proactive 

maintenance and timely intervention, the proposed model contributes to the 

overall reliability and performance of switchgear in power systems. The 

findings of this research provide valuable insights for the design and 

implementation of advanced fault detection systems in switchgear 

applications. 
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1. INTRODUCTION  

In recent years, there has been a significant increase in electricity consumption, emphasizing the 

need for a reliable power distribution network to ensure a stable power supply for end-users [1]. A key 

component of this network is switchgear, which plays a crucial role in disconnecting and isolating specific 

buses to ensure the safety of maintenance personnel during repairs, component replacement, and fault 

monitoring [2]. Switchgear encompasses a range of devices, including switches, fuses, circuit breakers, 

isolators, relays, transformers, instruments, lightning arresters, and control panels, and is responsible for 

controlling and regulating electrical circuits within the power system [3], [4]. Switchgear can be classified 

based on insulation materials (air-insulated, oil-insulated, and gas-insulated) as well as voltage levels (low, 

medium, and high voltage) [5], [6]. To maintain a consistent and uninterrupted power supply, continuous 

monitoring and maintenance of switchgear's operational performance are crucial [7]. Malfunctioning 

https://creativecommons.org/licenses/by-sa/4.0/
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switchgear can have severe consequences, leading to increased customer interruptions and regulatory 

assessments [8]. Common switchgear problems include surface discharges (tracking), corona, and arcing 

faults, which emit audible waves in the ultrasonic frequency range [9]–[11]. Surface discharge, specifically 

tracking, is a prevalent issue that can cause erosion and material deterioration due to conductive channels on 

the surface of materials [12], [13]. This phenomenon generates surface currents that dissipate energy as heat 

and degrade the material, eventually leading to complete electrical breakdown [14]. Although few 

researchers focus on the electrical tracking phenomena, most studies analyzing electrical tracking resistance 

primarily examine the material properties [15]–[18]. Significant contributions have been made in the field of 

switchgear defects and monitoring techniques. Fitton [19] conducted an extensive study on surface 

discharges in oil-insulated apparatus, providing valuable insights into the mechanisms of surface discharges 

in transformers. Lim and Bae [20] compared various SF6 candidate gases for surface insulation in eco-

friendly gas insulated switchers (GIS) and solid insulated switchers (SIS), highlighting the effects of moisture 

and electric field intensity on surface flashover characteristics. Dai et al. [21] investigated creepage discharge 

experiments on power transformer insulating barriers, confirming the impact of moisture on flashover 

breakdown voltage. In a similar vein, Gu [22] developed a CNN-based algorithm for detecting partial 

discharge patterns, utilizing fractal theory for feature extraction and distinguishing defect types. Their 

proposed method showed promising results in assessing GIS insulation status and guiding maintenance 

decisions.  

Furthermore Yuan et al. [23] explored the use of visible images and machine learning (ML) for 

recognizing surface discharge states. They analyzed the chromatic, gray-scale, and morphological properties 

of visible images and employed clustering and spectrum correlation investigations to classify the images into 

four stages. Their findings demonstrated that ML techniques, particularly those based on chromatic 

characteristics, achieved high recognition accuracy in identifying surface discharge states. This approach 

holds potential for efficient and accurate fault recognition and localization. The existing literature highlights 

the need for comprehensive and accurate methods to detect and classify surface discharge (tracking) faults in 

switchgear. Currently, there is a lack of advanced techniques that combine the extraction of relevant features 

from the input signal and the capture of temporal dependencies in the data. Furthermore, real-time and 

reliable fault detection methods are needed to ensure the safe and efficient operation of switchgear systems. 

While these studies have contributed to the understanding of switchgear faults and monitoring techniques, 

there is still a need for advanced methods that can effectively detect and classify surface discharge (tracking) 

faults in real-time. This article addresses this gap by proposing a novel hybrid one-dimension convolutional 

neural network long short-term memory networks (1D-CNN-LSTM) model, which combines the strengths of 

convolutional neural networks (CNN) and long short-term memory networks (LSTM) to improve the 

accuracy and reliability of fault detection in switchgear systems. 

The 1D CNN and LSTM have shown promising results in detecting faults in switchgear [24], [25]. 

The combination of 1D CNN and LSTM has been proven effective in detecting faults in switchgear [26]. The 

1D CNN extracts relevant features from the input signal, while the LSTM captures the temporal 

dependencies in the data [27]. This combination allows for accurate and reliable detection of  

faults in switchgear. Several studies have reported successful applications of hybrid models in various  

fields [28]–[32]. 

The following summarizes the objectives of the research and its contributions: 

- The objective of this study was to improved the overall safety and dependability of power systems. by 

improving the hybrid 1D-CNN-LSTM model for detecting tracking faults, also known as surface 

discharge, in switchgear. 

- A novel hybrid approach has been developed in this study for detecting tracking faults, by leveraging 

the strengths of both 1D-CNN and LSTM models. The primary focus of this study was to apply the 

hybrid technique for the first time in detecting a tracking fault in switchgear. 

- Evaluation of the hybrid 1D-CNN-LSTM model in the time domain analysis (TDA) and frequency 

domain analysis (FDA), a new approach not done before in similar studies using this technique. 

- The effectiveness of the hybrid model has been proven in rapidly detecting and distinguishing tracking 

faults from other types of flaws, a hybrid approach is considered optimal for the detection of a tracking 

(surface discharge) fault in both domains. 

The article follows a specific structure. Section 2 describes the methodology of the hybrid 1D-CNN-

LSTM model, including the detailed description of the development process. The collected experimental data 

from switchgear systems will be analyzed using the proposed model. In section 3, the results and discussion 

will showcase the effectiveness of the hybrid model in detecting and classifying tracking faults. Finally, 

section 4 concludes the article by summarizing the findings and discussing the implications for enhancing the 

reliability and safety of power distribution systems. 
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2. METHOD  

In this article, Figure 1 provides a visual representation of the various stages that the authors 

conducted in their study. The first crucial step involved acquiring sound data, which was carefully collected 

from switchgear systems. To extract meaningful information from the dataset, the authors employed the Mel-

Spectrogram technique, a widely used method for feature extraction in audio signal processing. The dataset 

used in the study encompassed a comprehensive range of switchgear failures, including both tracking and 

non-tracking errors such as arcing, corona, mechanical faults, and normal operation.  

This diverse dataset allowed for a thorough evaluation of the hybrid model's performance across 

different fault types, ensuring its robustness and effectiveness in fault detection. To ensure the accuracy and 

reliability of the hybrid model, the dataset was partitioned into three distinct phases: training, validation, and 

testing. The training phase involved feeding the model with labeled data to learn the underlying patterns and 

characteristics of different fault types. The validation phase served as a checkpoint to fine-tune the model's 

parameters and optimize its performance. Finally, the testing phase was used to evaluate the model's 

effectiveness in detecting and classifying switchgear faults.  

The key innovation of the proposed approach lies in the hybrid model, which combines two powerful 

deep learning (DL) architectures, namely 1D-CNN and LSTM. The 1D-CNN component enables the model to 

extract spatial features from the input data, capturing important patterns and correlations within the signal. The 

LSTM component, on the other hand, leverages its sequential processing capability to capture temporal 

dependencies and long-term patterns in the time series data. By integrating these two models, the hybrid 

approach achieves exceptional accuracy in detecting and classifying tracking errors in switchgear systems. This 

method plays a crucial role in identifying potential faults and mitigating major losses that can result from 

switchgear malfunctions. Moreover, it offers insights and actionable information to improve the overall 

performance and reliability of switchgear systems, ensuring their optimal operation and minimizing downtime. 

 

 

 
 

Figure 1. Flowchart outlining the research technique 
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2.1.  Raw data collection 

The authors of this article employed airborne ultrasonic test (AUT) equipment to gather data, which 

was subsequently saved in various file formats, including waveform audio (wav), moving picture experts 

group (MPEG), and mp3. To prepare the data for deep learning (DL) algorithms, a process known as data 

transformation was employed. This involved organizing and modifying the data into a suitable format, 

specifically a matrix structure compatible with the analytical software MATLAB. The dataset used in the 

study was collected from test results using four different models of ultrasonic testing equipment: the ultra 

transient earth voltage (TEV) plus, ultra TEV plus 2, ultra probe 9,000, and ultra probe 10,000. These devices 

provided valuable information for detecting surface discharge problems in switchgear. Table 1 presents a 

summary of the sample sizes and distributions of the tracking and non-tracking datasets related to the TDA 

and FDA. These datasets were crucial for training the hybrid 1D-CNN-LSTM model, which was specifically 

designed to detect and diagnose surface discharge issues in switchgear. By utilizing this data, the authors 

were able to assess the effectiveness of their proposed method and validate its capability to generate reliable 

findings for defect diagnostics. The application of this technique for switchgear fault detection and 

prevention has significant benefits. By effectively identifying and addressing switchgear problems, it 

becomes possible to minimize losses and enhance overall performance. The author’s approach holds promise 

for improved maintenance strategies and more reliable operation of switchgear systems. 

 

 

Table 1. Switchgear fault datasets: tracking vs. Non-tracking in TDA and FDA 
Fault No. of Samples in TDA No. of Samples in FDA 

Arcing 54*20001 53 *10001 

Corona 41*20001 39 *10001 

Tracking 313*20001 40 *10001 

Mechanical 17*20001 16 *10001 

Normal 13*20001 12 *10001 

Overall Size 17.5. MegaByte 11.3 MegaByte 

 

 

2.2.  Data pre-prpcessing 

In this research, a crucial step was the pre-processing of the gathered data to transform it into a 

suitable format for the algorithms used. This involved combining or converting the data to meet the 

requirements of the MATLAB software. Additionally, the data was subjected to feature extraction using the 

Mel Spectrogram, which represents a sound signal in the frequency domain as a 2D image with time on the 

x-axis and frequency on the y-axis. The Mel scale was employed to approximate the non-linear frequency 

response of the human auditory system, providing valuable information about the signal's frequency content. 

The extracted features from the Mel Spectrogram were utilized to detect and classify tracking faults in 

switchgear. Relevant features were obtained from both the time domain, including the mean and variance of 

the signal envelope, zero-crossing rate, and root-mean-square (RMS) level, as well as the frequency domain, 

such as the mean and variance of the Mel Spectrogram and spectral centroid of normalized frames. By 

combining features from both domains, the hybrid 1D-CNN-LSTM model effectively identified tracking 

faults in switchgear that might not be distinguishable in either domain alone. During the preprocessing stage, 

the tracking and non-tracking data, encompassing various fault types like corona, arcing, mechanical, and 

normal, were combined. The dataset was then divided into three distinct phases: training, validation, and 

testing.  

The majority of the dataset (70%) was allocated for training, while the remaining 30% was evenly 

split between the validation (15%) and testing (15%) stages. The Google Colab platform was utilized for 

preliminary data processing and model programming, ensuring proper data structuring for the DL algorithms' 

interpretation the successful translation of the data into a suitable format facilitated the accomplishment of 

the study's objectives, which included the precise detection of surface discharge flaws in switchgear, fault 

identification, and the prevention of significant losses. 

 

2.3.  Hybrid model 

The hybrid 1D-CNN-LSTM model is a type of DL model that combines the strengths of two 

different neural network architectures: 1D-CNN and LSTM. The 1D-CNN is effective at extracting local 

features from time series data, while the LSTM can model temporal dependencies and long-term memory. By 

combining these two architectures, the 1D-CNN-LSTM model can effectively capture both local and 

temporal features from the Mel Spectrograms as shown in Figure 2. The feature extraction process involves 

passing the normalised Mel Spectrogram frames through a 1D-CNN, which applies a set of convolutional 

filters to the input, producing a set of feature maps. The feature maps are then passed through a max-pooling 
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layer, which reduces the spatial dimension of the feature maps while preserving their most important 

features. The resulting features are then passed through a set of fully connected (FC) layers, which further 

process the features and prepare them for input into an LSTM layer. The LSTM layer processes the sequence 

of features generated by the 1D-CNN, modelling the temporal dependencies between them, and producing a 

final output that can be used for classification. The final output is then passed through a set of FC layers to 

produce the predicted class label. Figure 3. shows the layers that are used in the hybrid 1D-CNN-LSTM 

model in both domains. 

 

 

 
 

Figure 2. Diagram of a combined 1D-CNN and LSTM model 

 

 

 
 

Figure 3. Illustration of a model for detecting tracking and non-tracking faults in switchgear in both domains 

 

 

The equations for the 1D-CNN model and the LSTM model that are utilized in the hybrid 1D-CNN-

LSTM model are as:  

- For the 1D-CNN Model, as shown in (1):  

 

𝑌𝑖 = 𝑅𝑒𝐿𝑈(𝑊 ∗ 𝑋𝑖 + 𝑏) (1) 

 

where 𝑋𝑖 is the input at position 𝑖, 𝑊 is the convolutional filter matrix, 𝑏 is the bias vector, and 𝑅𝑒𝐿𝑈() 

is the Rectified Linear Unit activation function. 𝑌𝑖 is the output at position 𝑖. 
- For LSTM layer as (2)-(7): 

 

𝑖𝑡 = 𝜎( 𝑥𝑡𝑈𝑖 + ℎ𝑡−1𝑊𝑖 + 𝑏𝑖) (2) 
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𝑓𝑡 = 𝜎( 𝑥𝑡𝑈𝑓 + ℎ𝑡−1𝑊𝑓 + 𝑏𝑓) (3) 

 

𝑂𝑡 = 𝜎( 𝑥𝑡𝑈𝑜 + ℎ𝑡−1𝑊𝑜 + 𝑏𝑜) (4) 

 

𝐶𝑡 = 𝜎( 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ �̌� 𝑡𝑈𝑖 + 𝑏𝑐) (5) 

 

�̌� = 𝑡𝑎𝑛ℎ( 𝑥𝑡𝑈g + ℎ𝑡−1𝑊g) (6) 

 

ℎ𝑡 = 𝑡𝑎𝑛ℎ( 𝐶𝑡) ⊙ 𝑂𝑡 (7) 

 

where 𝑥𝑡 is the input at time 𝑡, ℎ𝑡 is the hidden state at time 𝑡, 𝐶𝑡  is the cell state at time 𝑡, 𝑊𝑓, 𝑊𝑖, 𝑊g, 

and 𝑊𝑜 are weight matrices for the forget gate, input gate, cell input, and output gate, respectively, 𝑏𝑓, 

𝑏𝑖, 𝑏𝑐, and 𝑏𝑜  are bias vectors for the same gates, and 𝜎() and 𝑡𝑎𝑛ℎ() are the sigmoid and hyperbolic 

tangent activation functions, respectively. 

 

 

3. RESULTS AND DISCUSSION  

In order to analyze the suggested model, Table 2 was utilized. This table displays a confusion 

matrix, in which the values 0 and 1 respectively indicate tracking and non-tracking states in both the time and 

frequency domains. The performance of the model was evaluated using a number of different indices, 

including categorization, reliability, dependability, sensitivity, and the F1 measure, as can be seen illustrated 

in (8)–(11). To determine how correctly relevant samples were recognized and retrieved from the data, 

respectively, the recall and precision metrics were utilized for the evaluation. As demonstrated in (11), cross-

entropy loss was also used to evaluate how well the model's predictions matched the target data. This 

evaluation was carried out using the model. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = 100 ×
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (8) 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 (𝐸𝑅𝑅)(%) = 100 × 
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
= 100 ×

𝐹𝑃+𝐹𝑁

𝑃+𝑁
 (9) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)(%) = 100 ×  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐷𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦)(%) = 100 ×
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11) 

 

𝐹1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (%) = 100 × 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙) 
 (12) 

 

 

Table 2. Confusion matrix for tracking and non-tracking faults in both domains 
 Predictive tracking (0)     Predictive non-tracking (1) 

Actual tracking (0) TP FP 

Actual non-tracking (1) FN TN 

 

 

Where false positive (FP) and false negative (FN) refer to inaccurate predictions, while true positive (TP) and 

true negative (TN) refer to accurate ones. 

The proposed model was created to detect tracking faults of switchgear in the TDA. The model was 

trained, validated, and tested on a dataset consisting of 438 samples, as shown in Table 3. The evaluation 

results revealed a 0% error rate in tracking detection and 100% accuracy. Table 4 presents the outcomes of 

the 1D-CNN-LSTM model that was trained, validated, and tested in the TDA with a total of 306 datasets 

being used for instruction. In the training phase, the model was able to accurately identify 85 situations of 

tracking and 221 situations of non-tracking, yielding an accuracy of 100% and an error rate of 0%. This 

resulted in a perfect accuracy rating. During the validation phase, a total of 66 datasets were analyzed, and 

out of them, 25 situations of tracking and 41 situations of non-tracking were successfully recognized. This 

resulted in an accuracy rating of 100% overall and a rate of 0% for errors. During the testing phase, a total of 

66 datasets were utilized, 15 of which were determined to be tracking and 51 of which were determined to be 

non-tracking. In this phase as well, the model was successful in that it attained a perfect accuracy of 100% 
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with a zero-error rate, indicating its usefulness in TDA. The classification of tracking faults in the FDA was 

conducted using a total of 160 samples, and the results are presented in Table 5. The analysis showed that the 

classification of tracking faults achieved an accuracy of 100% with a 0% error rate. 

 

 

Table 3. Classification outcomes for tracking fault by using a hybrid model in the TDA 
Time domain 

 Training Validation Testing 

 Samples 306 66 66 

Accuracy rate 100% 100% 100% 

Error rate 0% 0% 0% 

Feature number 20001 

Output number 2 

 

 

Table 4. TDA Results for tracking faults: training, validation, and testing phases 
Hybrid model 

Training phase 

 Tracking Non-tracking 

Actual tracking 85 0 

Actual non-tracking 0 221 

Validation phase 
 Tracking Non-tracking 

Actual tracking 25 0 

Actual non-tracking 0 41 
 Testing Phase  

 Tracking Non- Tracking 

Actual tracking 15 0 
Actual non-tracking 0 51 

 

 

Table 5. Classification outcomes for tracking fault by using a hybrid model in the FDA 
Frequency domain 

 Training Validation Testing 

Samples 112 24 24 

Accuracy rate 100% 100% 100% 

Error rate 0% 0% 0% 

Feature number 10001 

Output number 2 

 

 

The outcomes of the FDA are summarized in Table 6, which contains 112 data samples that were 

used in the training phase. The model identified 26 situations of tracking and 86 situations of non-tracking, 

achieving a perfect score of 100% accuracy with no instances of tracking being missed. During the phase of 

validation, a total of 24 data samples were employed, which led to an accuracy rate of 100% and an error rate 

of 0%. A total of 7 situations of tracking and 17 situations of non-tracking were found. During the testing 

phase, a total of 24 data samples were used, and the results showed an accuracy of 100% with a zero-error 

rate. Additionally, 7 situations of tracking and 17 situations of non-tracking were found. Table 7 exhibits the 

performance metrics for both tracking and non-tracking cases, indicating similar values for the metrics in 

both cases. This suggests that the model's performance was consistent in both scenarios. 

 

 

Table 6. FDA results for tracking faults: training, validation, and testing phases 
Hybrid model 

Training phase 
 Tracking Non-tracking 

Actual tracking 86 0 

Actual non-tracking 0 26 

 Validation phase 

 Tracking Non-tracking 

Actual tracking 17 0 
Actual non-tracking 0 7 

 Testing phase  

 Tracking Non-tracking 
Actual tracking 17 0 

Actual non-tracking 0 7 
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Table 7. Metrics assessment for hybrid 1D-CNN-LSTM method in tracking and non-tracking fault diagnosis 

across TDA and FDA 
Time domain 

Scenario Tracking (0) 

Accuracy Sensitivity Dependability F1-Measure 

100 100 100 100 

Scenario Non-tracking (1) 
Accuracy Sensitivity Dependability F1-Measure 

100 100 100 100 

Frequency domain 
Scenario tracking (0) 

Accuracy Sensitivity Dependability F1-Measure 

100 100 100 100 
Scenario Non-tracking (1) 

Accuracy Sensitivity Dependability F1-Measure 

100 100 100 100 

 

 

4. CONCLUSION  

Switchgear is an essential component of the power system that guards against damage and preserves 

the operation of the equipment. Switchgear, however, is vulnerable to surface discharge tracking, which, if 

ignored, can seriously harm the electrical system. In this study, a hybrid 1D-CNN-LSTM model for surface 

discharge tracking detection in switchgear has been presented. It can be inferred from the outcomes of using 

the hybrid 1D-CNN-LSTM model that this method is very successful for identifying surface discharge 

tracking in switchgear. Impressive results were obtained in all three phases of the study—training, validation, 

and testing—in both the Time and frequency domains. The model had 100% accuracy and 0% error rate for 

tracking fault classification in the time domain, while in the frequency domain, it had 100% accuracy and 0% 

error rate for all phases. The results of this study have significant ramifications for enhancing the 

functionality and dependability of switchgear systems since early surface discharge tracking detection can 

reduce system failures and associated risks. Future study in this field is advised to make use of the hybrid 1D-

CNN-LSTM model, and more investigation is required to fully assess its potential in related fields. Overall, 

this research adds to the expanding body of knowledge in the area of electrical power systems and offers an 

important tool for managing and maintaining switchgear. 
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