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Abstract 
A new empirical technique to construct predictive models of vacuum pyrolysis process is 

presented in this study. Pyrolysis of biomass for preparing bio-oil was studied on a vacuum pyrolysis 
system, where rape straw was chosen as the raw material. The experiments ran based on orthogonal 
experimental design method. The operation factors of the system including pyrolysis temperature, system 
pressure, heating rate and holding time were chosen as input variables, while bio-oil yield and energy 
transformation ratio were selected as output to establish the prediction models based on Generalized 
Regression Neural Network (GRNN). The operation factors of the system were optimized for maximizing 
bio-oil yield and energy transformation ratio, and the optimization result was confirmed by experiments. 
The results of research showed that the predicted values are fit well with the experimental values, which 
verifies the effectiveness of the prediction models. Optimal conditions are obtained at pyrolysis 
temperature of 486.8℃, heating rate of 18.1℃/min, reactor pressure of 5.0kPa and holding time of 
55.0min. Confirmation runs give 41.9%, 42.5% and 42.1% of bio-oil yield and 34.3%, 34.0% and 34.9% of 
energy transformation ratio compared to 43.6% and 35.5% of predicted value. Therefore, the forecasting 
model based on the GRNN is able to result in good prediction and has research value to the reality. 
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1. Introduction 

With the continuous development of modernization process of society, the contradiction 
between supply and demand of energy will become increasingly prominent. According to the 
Statistics data released by National Bureau of China in February 2013, crude oil imports in 2012 
reached 270 million tons, accounting for 60% crude oil consumption of the whole year [1]. Social 
production and energy security situation of China become more serious, and long-term use of 
petroleum energy causes a serious negative impact on the environment, such as the 
greenhouse effect, global warming, destruction of the ecological balance and acid rain. The total 
theory national biomass resources are about 50 billion tons of standard coal, which is nearly 1.5 
times of the total energy consumption in China [2]. So it is significant to ease the pressure of 
energy and environment by making full use of biomass resources. The biomass with relatively 
low energy density can be converted to liquid fuel with higher energy density by pyrolysis 
liquefaction, which makes biomass pyrolysis liquefaction becoming a hotspot of alternative 
energy research around the world [3-5]. Biomass pyrolysis can be divided into several types 
according to the reaction conditions [6], such as conventional pyrolysis, fast pyrolysis, vacuum 
pyrolysis and so on. The vacuum pyrolysis attracts extensive attention from researchers, whose 
liquefied energy consumption is relatively low and bio-oil yield is high [7, 8]. The bio-oil yield and 
energy transformation ratio are affected by pyrolysis system operation factors and raw material 
properties [9], and it is a nonlinear relationship between these parameters and evaluation index 
of pyrolytic liquefaction, which makes the prediction of evaluation index become more 
complicated. The complexity has been circumvented in an empirical way [10]. Over the years, 
many scholars have tried a variety of traditional methods to predict, such as regression model, 
grey prediction model, Markov model and so on [10-12]. Although current forecasting methods 
have advantages, the established model can not essence and comprehensively reflect the inner 
structure and complex characteristics of the prediction dynamic data, which can lost a certain 
amount of information. 

While artificial neural network (ANN) has unique characteristics, such as parallel 
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structure, adaptive, self-organization, associative memory, strong fault tolerance and 
robustness, and unique information processing method, adapted the complexity, nonlinearity 
and uncertainty, and made remarkable achievements in practical [10, 13]. Radial basis function 
(RBF) networks, especially Generalized Regression Neural Network (GRNN), is able to serve 
as a predictor for estimating the future values of the variables or for modeling the process or 
system of output variables to input variables. GRNN provides estimates of continuous variables 
and converges to the underlying (linear or nonlinear) regression surface. This generalized 
regression neural network is a one-pass learning algorithm with a highly parallel structure. The 
algorithm form can be used for any regression problem in which an assumption of linearity is not 
justified. One of the impressive advantages of GRNN can be designed very quickly. It has 
property of requiring no iterative training. It approximates a function between input and output 
vectors, drawing the function directly from the training data. Furthermore, it is consistent. If the 
training set size becomes large, the estimation error approach zero. The GRNN has achieved 
good results in the prediction study [14, 15]. 

Currently, the use of ANN simulation prediction is applied to biomass pyrolysis 
gasification and the pyrolysis weightlessness process [16, 17]. In this study, multi-factor and 
multi-level orthogonal experiments for pyrolysis liquefaction were presented, where rape straw 
was chosen as the raw material. With pyrolysis system factors as input, the GRNN prediction 
models of bio-oil yield and energy transformation ratio were established and targeted to system 
factor optimization about bio-oil yield and energy transformation ratio, which provided 
experimental and theoretical basis for the high-efficient conversion and utilization of biomass 
resources. 
 
 
2. Experiment and Methodology 
2.1. Materials 

The rape straw used in this study was collected from rural area in Zhenjiang, China. 
The Rape straw was ground and sieved for small particles in the 100~150μm range. Lu et al. 
[18] found that a decrease in particle size will tend to higher liquid product yields. The sample 
was dried at 105℃ for 2h to remove external moisture. The proximate analysis was performed 
according to ASTM D-2974 using the thermo-gravimetric analysis TGA/DSC 1 for determination 
of moisture, volatile matter, fixed carbon and ash content in rape straw. The ultimate analysis of 
the dried sample was carried out in an elemental analyzer (Model: FLASH1112A, Italy). The 
results of proximate, ultimate analysis of rape straw are shown in Table 1. 

 
 

Table 1. Proximate and Ultimate Analysis of Rape Straw 
Mad Aad Vad FCad  C H N S Oa 

6.12% 3.69% 72.84% 17.35%  42.22% 5.53% 0.41% 0.07% 51.77% 

ad, Air dry base; aOxygen by difference. 
 
 
2.2. Experimental Procedure 

Vacuum pyrolysis of rape straw was conducted in a fixed-bed reactor. The scheme of 
the vacuum pyrolysis system is shown in Figure 1. The reactor consisted of a 1.5m long quartz 
tube (diameter 60mm), heated by six well-insulated, computer controlled heating elements. The 
heated reactor chamber was connected to a condensation trap and a vacuum pump. The pipes 
leading from the reactor to the condensation trap were maintained at 150℃ to limit 
condensation before the trap. The condensation temperature was set at -20℃ for all 
experiments (The cooling medium: ethylene glycol). The bio-oil collected was then removed and 
weighed. A control program was used to control the final pyrolysis temperature, heating rate and 
pyrolysis time. Once the reactor was loaded (150±5g of biomass), heating started after the 
reactor was sealed and evacuated to the desired operating pressure. A typical run would take 
between 1h and 2h depending on the conditions employed. At last, Protective gas (Nitrogen) 
was introduced into the reactor to prevent products oxidation at high temperature. Pyrolysis 
experiments were run according to orthogonal design. 
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Figure 1. Scheme of the Vacuum Pyrolysis System 
 
 
2.3. Experimental Design 

In this study, four main factors that have effects on bio-oil yield were considered, 
including pyrolysis temperature, reactor pressure, heating rate and holding time. As shown in 
Table 2, each factor has five levels in the range of experimental parameters. For this problem, 
the minimum orthogonal array is selected as L25(5

4). All experimental runs were repeated to 
ensure reliability of the data and results’ reproducibility. Experiment variables and levels are 
shown in Table 2. 

 
 

Table 2. Experiment Variables and Levels 

Levels Pyrolysis temperature x1/℃ System pressure x2/kPa 
Heating rate 
x3/℃·min-1 

Holding time 
x4/min 

-2 400 5 4 15 
-1 450 20 8 30 

0 500 35 12 45 
1 550 50 16 60 
2 600 65 20 75 

 
 
2.4. Calculation Method 

In the results presented, the yield of the bio-oil has been defined as Equation (1): 
 

 100%1m
Bio - oil yield

m
                                                          (1) 

 
Where m is the initial mass of rape straw [g], ml is the mass of collected bio-oil [g]. 

The high heat value (HHV) of the bio-oil was measured by using a bomb calorimeter, so 
energy transformation ratio of vacuum pyrolysis liquefaction process can be obtained as 
Equation (2): 

 

100%l lq m
Energy transformation ratio

qm
                                            (2) 

 
Where q is the HHV of rape straw [17883kJ/kg], and ql is the HHV of the bio-oil [kJ/kg]. 
 
2.5. Principle of Generalized Regression Neural Network 

The joint probability density function f(x, y) is assumed to be the random vector x and 
the random variable y. When observation vector of x is x0, the expected value of y relative to x0 
regression is: 
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The unknown probability density function f(x0, y) can be obtained by training samples{ , }n
i i ix y  

through the Parzen nonparametric estimates [18]: 
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Where p is the dimension of the input vector; n is training sample capacity; σ is the smooth 
factor; Di is euclidean distance between x0 and xi. The formula is defined an Equation (5): 
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As shown in formula (6), the larger σ is, the greater the input region of the probability 

density function overwrites is, and the smaller σ is, steeper and closer to the expected value of 
the network output the probability density function curve is. 

The structure of GRNN is shown in Figure 2. GRNN is mainly composed of radial basis 
neuron layer and a special linear layer. 

 
 

 
 

Figure 2. Scheme of Generalized Regression Neural Network 
 
 

Radial basic layer input is that the Euclidean distance between the input vector X and 
the neuron weights IW1 multiplied by the threshold value b, where the neuron weights IW1 is 
training sample vector. Output of radial basis neuron layer is defined as Equation (7). 
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Firstly, the linear layer nprod module has radial basis neuron layer output multiplied by 

corresponding variable yi, and then makes weighted sum, which is defined as Equation (8). 
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Secondary, the output results are arithmetic summed, which is defined as Equation (9).  
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                                                                      (9) 

 
The input of the linear transfer function, Y is obtained by the results of SD and SN 

dividing, which is output after processing by the function Y. 
 
 
3. Results and Discussion 
3.1. Experimental Results 

Biomass vacuum pyrolysis liquefaction experiments were run according to orthogonal 
design, including a total of 25 experimental points, and 3 sample test points. Factor combination 
and experimental results are shown in Table 3. 

 
 

Table 3. Factor Combination and Experimental Results 

Experimental No. 
Factor assigned 

Bio-oil yield/% Energy transformation ratio/% 
x1 x2 x3 x4 

1 -2 -2 -2 -2 30.40 20.45 
2 -2 -1 2 0 37.44 29.85 
3 -2 0 1 2 36.61 29.65 
4 -2 1 0 -1 34.24 26.45 
5 -2 2 -1 1 30.98 22.55 
6 -1 -2 2 2 42.30 33.67 
7 -1 -1 1 -1 40.98 32.68 
8 -1 0 0 1 38.51 30.51 
9 -1 1 -1 -2 33.95 24.63 
10 -1 2 -2 0 29.04 18.76 
11 0 -2 1 1 43.03 34.34 
12 0 -1 0 -2 39.52 30.67 
13 0 0 -1 0 35.40 26.53 
14 0 1 -2 2 29.44 19.31 
15 0 2 2 -1 40.47 29.96 
16 1 -2 0 0 38.76 30.17 
17 1 -1 -1 2 33.59 24.67 
18 1 0 -2 -1 27.29 17.70 
19 1 1 2 1 39.60 29.05 
20 1 2 1 -2 37.70 27.05 
21 2 -2 -1 -1 29.49 21.15 
22 2 -1 -2 1 22.67 13.69 
23 2 0 2 -2 35.96 24.38 
24 2 1 1 0 34.02 23.97 
25 2 2 0 2 30.23 20.50 
26 1 0 0 0 36.69 25.84 
27 0 0 1 0 41.04 29.09 
28 0 -1 0 0 39.91 30.90 

 
 
3.2. Establishment of GRNN Prediction Model 

(1) Selection of input and output 
The samples of number from 1 to 25 were selected as a training set of the network, 

while number from 26 to 28 are selected as a set of test. While the level value of the four factors 
about pyrolysis temperature, system pressure, heating rate and holding time setted as the 
independent variable. For the process of biomass vacuum pyrolysis liquefaction, the ideal 
situation is that higher bio-oil yields and energy transformation ratio of the bio-oil could be 
obtained at the same time under a certain condition. Therefore, three GRNN models of different 
relationships are established. 

(2) Experimental data processing 
a. Data packet: let the twenty-five (No.1~25) samples as the testing sample and 

selected the last three (No.26~28) samples as the training sample. b. Data transfer: processed 
the data of input and output between the interval (0~1), which also known as data normalization. 
Generally, the data were normalized following formula Equation (10), and then analyzing. 
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Where x


 is the data after normalization, x is the true value before normalization, xmin is 
the minimum value of the experimental data, xmax is the maximum value of the experimental 
data. 

(3) Establishment of the network 
Using the neural network toolbox of the software matlab7.0 programming and 

constructing the GRNN predicition model. The call format of GRNN is defined as Equation (11): 
 
net=newgrnn(P,T,SPREAD)                                                      (11) 
 

Where P is an R×Q matrix, T is an S×Q matrix, SPREAD is the expansion speed of radial basis 
function, which is the smooth factor, default value is 1. As the smooth factor affecting the 
performance of the network, the training of GRNN is to find the optimal smooth factor. 
Therefore, we need to continuously determining the optimal value. Every time we started from 
0.1 and increase a unit volume (0.1), obtained the predictive value of the estimated point 
respectively, and selected the smooth factor as the optimal value, which the corresponded root 
meansquare error (RMSE) between the predictive of the estimated point and the actual value of 
the sample is minimum. Model prediction performance was measured by RMSE defined as 
Equation (12): 
 

2

1
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j jj
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                                                               (12) 

 
Where dj and outj represent actual etch measurement and model prediction corresponding to the 
jth experiment. The remaining r indicates the total number of test vector. In this study, the 
method of circuit training was employed and the code as follows: 

for smooth =0.1:0.1:2;      %% smooth value vassignment 
net=newgrnn(p_train,t_train, smooth);      %%build GRNN network model 
disp(['Current smooth value is', num2str(spread)]);      %%display current smooth  

value 
test_Out=sim(net,p_cv_test);   %%output predicted value under conditions of test  

sample 
test_Out=postmnmx(test_Out,mint,maxt);   %%reverse normalization calculation 
error=t_cv_test-test_Out;   %%prediction error calculation 
disp(['Current mse is',num2str(mse(error))])   %%display current network mean  

square error 
if mse(error)<mse_max   %%determine current mean square error 

mse_max=mse(error);   %% assignment for mse_max 
desired_smooth=smooth;   %%assignment for desired_smooth 

                  end 
              end 

disp(['Optimal smooth value is',num2str(desired_smooth)])   %%display optimal smooth 
value 

 
3.3. Training and Testing 
3.3.1. Prediction Model of Bio-oil Yield  

According to the cycle validation analysis, when the smooth factor σ1 was 0.4, the better 
prediction of bio-oil yield was obtained by GRNN model about system factors and bio-oil yield, 
which is shown in Table 4 with the comparison of the model prediction values and the 
experimental values. It can be seen that the absolute value of the relative error between the 
prediction of the model and the experimental values is less than 5%, indicating that the 
predicted value is within the acceptable range and the model can be used to predict bio-oil 
yield. 
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Table 4. Predictive and Experimental Value of Bio-oil Yield 
No. Experimental values/% Predicted values/% Relative error/% 
26 36.69 34.97 4.68 
27 41.04 40.59 1.10 
28 39.91 40.45 -1.35 

 
 
3.3.2. Prediction Model of Energy Transformation Ratio 

According to the cycle validation analysis, when the smooth factor σ2 was 0.3, the better 
prediction of energy transformation ratio was obtained by GRNN model about system factors 
and energy transformation ratio, which is shown in Table 5 with the comparison of the model 
prediction values and the experimental values. It can be seen that the absolute value of the 
relative error between the prediction of the model and the experimental values is less than 5%, 
indicating that the predicted value is within the acceptable range and the model can be used to 
predict energy transformation ratio. 

 
 

Table 5. Predictive and Experimental Value of Energy Transformation Ratio 
No. Experimental values/% Predicted values/% Relative error/% 
26 25.84 26.66 -3.17 
27 29.09 30.37 -4.40 
28 30.90 31.97 -3.46 

 
 
3.3.3. Weighted Model of Bio-oil Yield and Energy Transformation Ratio 

Assuming that importance of bio-oil yield and energy transformation ratio was 
equivalent, two each were summed by the weight of 50% of each. When the smooth factor σ3 
was 0.1, GRNN model about the system factors and their weighted values was obtained. The 
variations with the conditions of the test of bio-oil yield, energy transformation ratio and their 
weighted values were compared, which is shown in Figure 3. It can be seen that the variations 
of bio-oil yield, energy transformation ratio and weighted values are similar, indicating that when 
the predicted value of the weighted model outputs is larger, bio-oil yield and energy 
transformation ratio can reach a larger value simultaneously, which can be used to optimize the 
factors of biomass vacuum pyrolysis liquefaction system. 
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Figure 3. Variations of Three Kinds of Dependent Variables 
 
 
3.4. Optimization and Confirmation 

According to the optimization of the weighted model using Matlab software, when 
pyrolysis temperature is 486.8℃, system pressure is 5.0kPa, heating rate is 18.1℃/min and 
holding time is 55.0min, the weighted value is the highest. The conditions are substituted into 
the GRNN prediction model of bio-oil yield and energy transformation ratio, the predictive values 
of bio-oil yield and energy transformation ratio are 43.6% and 35.5% respectively. Both of them 
are higher. 
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The confirmation runs were performed three times (No.29~31) under this condition to 
obtain the comparison with predicted values. The predictive and experimental values of bio-oil 
yield and energy transformation ratio are shown in Table 6. It can be seen that the absolute 
value of the relative error between the model prediction and the experimental values is less than 
5%, indicating that the results of vacuum pyrolysis system factors optimized by GRNN weighted 
model are accurate, while bio-oil yield and energy transformation ratio obtained under this 
condition are both higher. Therefore, the forecasting model based on the generalized regression 
neural network is able to result in good prediction and has research value to the reality. 

 
 

Table 6. Predictive and Experimental Values of Bio-oil Yield and Energy Transformation Ratio 

No. 
Bio-oil yield/% 

 
Energy transformation ratio/% 

Experimental 
values 

Predicted 
values 

Relative 
error 

Experimental 
values 

Predicted 
values 

Relative 
error 

29 41.9 43.6 -4.1  34.3 35.5 -3.5 
30 42.5 43.6 -2.6 34.0 35.5 -4.4 
31 42.1 43.6 -3.6 34.9 35.5 -1.7 

 
 
4. Conclusion 

In this study, the orthogonal experimental design method was employed to minimize the 
number of experiments. In further, the GRNN prediction model of bio-oil yield and energy 
transformation ratio were established using the orthogonal experimental data. The results show 
that GRNN has a faster learning speed, the ability of dealing with the instability data, accurate 
prediction for sample, network structure with low human subjective factors and stability 
prediction, has great practical value for dealing with the complex problems of pyrolysis process. 
Prediction is accuracy about bio-oil yield and energy transformation ratio. When pyrolysis 
temperature is 486.8℃, system pressure is 5.0kPa, heating rate of is 18.1℃/min, holding time is 
55.0min, bio-oil yield and energy transformation ratio become higher of 43.6% and 35.5% 
respectively, which is confirmed by the experiments. 
 
 
Acknowledgements 

This work is currently supported by the National Natural Science Foundation of China 
(No.51276085), the Natural Science Foundation of Jiangsu Province (No.BK2011488) and the 
Priority Academic Program Development of Jiangsu Higher Education Institutions ([2011]No.6). 
 
 
References 
[1] Tian Chunrong. China Petroleum and Natural Gas Imports and Exports in 2012. International 

Petroleum Economics. 2013; (3): 44-55. 
[2] Liu Ronghou, Zhang Chunmei. The research status of biomass pyrolysis for liquid products in China. 

Renewable Energy. 2004; 115(3): 11-14. 
[3] Zheng Jilu. Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of 

the pyrolysis system. Journal of Analytical and Applied Pyrolysis. 2007; 80(1): 30-35. 
[4] Y Solantausta, A Oasmaa, K Sipilä, C Lindfors, J Lehto, J Autio, P Jokela, J Alin, J Heiskanen. Bio-oil 

production from biomass: Steps toward demonstration. Energy and Fuels. 2012; 26(1): 233-240. 
[5] M Asadullah, MA Rahman, MM Ali, MS Rahman, MA Motin, MB Sultan, MR Alam. Production of bio-

oil from fixed bed pyrolysis of bagasse. Fuel. 2007; 86(16): 2514-2520. 
[6] Dinesh M, Charles U, Pittman J, Philip HS. Pyrolysis of wood/biomass for bio-oil: a critical review. 

Energy and Fuels. 2006; 20: 848-889. 
[7] Willem A de Jongh, Marion Carrier, JH Knoetze. Vacuum pyrolysis of intruder plant biomasses. 

Journal of Analytical and Applied Pyrolysis. 2011; 92(1): 184-193. 
[8] M Garcìa-Pérez, A Chaala, H Pakdel, D Kretschmer, C Roy. Vacuum pyrolysis of softwood and 

hardwood biomass Comparison between product yields and bio-oil properties. Journal of Analytical 
and Applied Pyrolysis. 2007; 78(1): 104-116. 

[9] Ronghai He, X. Philip Ye, Burton C. English, Justinus A. Satrio. Influence of pyrolysis condition on 
switchgrass bio-oil yield and physicochemical properties. Bioresource Technology. 2009; 100(21): 
5305-5311. 

 
 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 3, March 2014:  2262 – 2270 

2270

[10] Byungwhan Kim, Duk Woo Lee, Kyung Young Park, Serk Rim Choi, Seongjin Choi. Prediction of 
plasma etching using a randomized generalized regression neural network. Vacuum. 2004; 76(1): 37-
43. 

[11] Tzu-Li Tien. A research on the grey prediction model GM (1, n). Applied Mathematics and 
Computation. 2012; 218(9): 4903-4916. 

[12] Yu Jian, Yu Yijun, Lu Xiaoling, Yu Yimin. Web predicition based on hybrid Markov model. WSEAS 
Transactions on Computers. 2006; 5(9): 2137-2141. 

[13] EM Bezerra, MS Bento, JAFF Rocco, et al. Artificial neural network (ANN) prediction of kinetic 
parameters of (CRFC) composites. Computational Materials Science. 2008; 44(2): 656-663. 

[14] Ali Ugur Ozturk, Mustafa Erkan Turan. Prediction of effects of microstructural phases using 
generalized regression neural network. Construction and Building Materials. 2012; 29: 279-283. 

[15] Byungwhan Kim, Minji Kwon, Sang Hee Kwon. Modeling of plasma process data using a multi-
parameterized generalized regression neural network. Microelectronic Engineering. 2009; 86(1): 63-
67. 

[16] Min Fanfei, Zhang Mingxu. BP neural network simulation of biomass pyrolysis gasification in a fixed-
bed reactor. Journal of the China Coal Society. 2012; 37(Supp.1): 161-166. 

[17] Ma Longlong, Chen Ping, Yuan Xiaohua, Yin Xiuli, Wu Chuangzhi, Yan Yongjie. BP neural network 
simulation of biomass gasification in an inner circulating fluidized bed. Acta Energlae Solaris Sinica. 
2007; 28(12): 1354-1359. 

[18] Parzen E. An estimation of a probability density function and mode. Annals of the Institute of 
Statistical Mathematics. 1962; 33: 1065-1076. 


