
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol.12, No.3, March 2014, pp. 2227 ~ 2235
DOI: http://dx.doi.org/10.11591/telkomnika.v12i3.4491  2227

Received August 22, 2013; Revised September 26, 2013; Accepted October 17, 2013

Architecture and Task Scheduling of Video Streaming
on Multi-core Platform

Jun Li*1,2, Hong Ni1, Lingfang Wang1, Jun Chen1
1National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of

Sciences, Beijing, China 100190
2University of Chinese Academy of Sciences, Beijing, China 100190

*Corresponding author, e-mail: lij@dsp.ac.cn

Abstract
Compared with traditional video streaming server, streaming on multi-core platform has many

advantages: flexible and configurable on the number of executing core according to system requirements;
fault-tolerant; and fitting well to future process technologies, more cores will be available in advanced
process technologies, meanwhile the complexity per core does not increase. In this paper, we focused on
the video streaming issues on multi-core processor, including architecture and task scheduling. We
proposed a pipeline-parallel hybrid multi-core architecture and service migration based task scheduling
strategy on multi-core processor to improve the efficiency of video streaming and increase the number of
concurrence. We implemented the task scheduling algorithm with proposed architecture, and provided
evidences of 48% outperformance based on Cavium OCTEON CN5860 multi-core processor than full
parallel architecture, meanwhile, request success rate higher than REM algorithm.

Keywords: multi-core platform, pipeline-parallel hybrid architecture, service migration, task scheduling

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

VoD system provides service to terminal users by streaming traditional video contents.
It is usually composed of center task scheduler and a number of multimedia streaming servers.
The center scheduler is responsible for task assignment and management, user interactive
operation and service status maintenance, which includes session parameters, video contents
distribution and playing statistical information. Meanwhile, streaming server takes change of
multimedia streaming with instruction from scheduler. As a main component, video streaming
server always is the key module in current interactive on demand industry standards, like ISA
(Interactive Service Architecture) [1], NGOD (Next Generation on Demand) [2] and so on. Both
in ISA and NGOD, video streaming system is designed and used to push multimedia to STB
(Set-Top-Box). VSS (Video streaming system) works with others modules like SM (Session
Manager), VRM (Video stream Resource Management) STB (Set-Top-Box) and so on. Terminal
users send their VCR (Video Cassette Recording) signaling to VSS by STB, and then VSS
parses the signaling, replaces current streaming with corresponding content.

For a video streaming application, like VSS, the server may service thousands of users
concurrently, which brings in huge pressure to VoD system. Meanwhile, computer hardware
manufacturers have moved decisively to multi-core and are currently experimenting with
increasingly advanced many-core architectures. And more and more network acceleration
devices use multi-core processor to achieve much higher targets. But on multi-core platform,
how to integrate those cores and scheduler modules on each core is still under research, which
is also the most significant to figure out. In the long term, writing portable, efficient and correct
parallel programs targeting multi-core architectures must become no more challenging than
writing the same ones for sequential computers. To date, however, most applications running on
multi-core machines do not exploit fully the potential of these platforms. In this paper, based on
multi-core platform, we proposed a pipeline-parallel hybrid streaming server multi-core
architecture to address problems like concurrence, stability and so on. There existed several
tools and libraries available for constructing streaming applications, but many of them are
oriented to coarse grain computations, such as StreamIt [3], Brook [4], and CUDA [5]. Some
other tools, as TBB (Threading Building Block) [6], provide explicit mechanisms for parallel

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 3, March 2014: 2227 – 2235

2228

paradigm, while some others, as openMP [7] and Cilk [8] mainly offers mechanisms for data
parallelism and Divide&Conquer computations. These mechanisms can also be exploited to
implement video streaming system, as we shall compare our method with them in Section 3.
Some other efforts also have been made to study streaming architecture on multi-core platform.
As in [9] proposed a design of a flexible dataflow architecture aimed at addressing many of the
shortcomings of existing systems including a unified execution model for both demand driven
and event driven models; it designed a resource scheduler that can automatically make
decisions on how to allocate computing resources; and support for more general streaming data
structures which include unstructured elements. As in [10] introduced and discussed FastFlow,
a programming framework specifically targeting cache-coherent shared-memory multi-cores.
FastFlow is implemented as a stack of C++ template libraries. The lowest layer of FastFlow
provides very efficient lock-free and memory-free synchronization base mechanisms. Since
video streaming application can be constructed based on FastFlow and some other multi-core
tools, but all of those methods did not optimize. In this paper, we proposed pipeline-parallel
hybrid system architecture, by analyzing and making full use of features of video streaming
application, to promote system concurrency performance.

Video streaming servers usually works like a cluster, which has to be load banlancing
and fault tolerant. When the scheduler receives a new request from user, it has to allocate the
request to a video server with some strategy which is used for load balancing. In traditional task
scheduling algorithm, the scheduler migrate request to another server when a server has
reached its service capacity, this method is called last-minute migration [11]. In REM algorithm,
Yingqing Zhan [12] proposed double thresholds, min_th and max_th, for service migration.
When the load of current video server is larger than max_th, new request must be migrated out
because of that current video server is in hearvy load. The request will be migrated out with a
kind of possibility, which is the function of system load, when load of current video server is
between in min_th and max_th. New request will be accepted by video server if its load is lower
than min_th, since it has enough service capacity. Based on pipeline-parallel hybrid architecture
on multi-core platform, we introduced the service migration based task scheduling strategy. And
implemented them on Cavium OCTEON CN5860 [13] multi-core processor.

2. Video Streaming on Multi-core Platform
2.1 Pipeline-parallel Hybrid Architecture
 SMP (Symmetrical Multi-Processing) systems are tightly coupled multiprocessor
systems with a pool of homogeneous processors running independently, each processor can
executing the same program or different programs and operating on different data and with
capability of sharing common resources (memory, I/O device, interrupt system and so on) and
connected using a system bus or a crossbar. In this paper, we will construct a pipeline-parallel
hybrid video streaming architecture based on SMP platform.
 Data streaming procedure in VoD system can be considered as a data transmission unit
under signaling control. There may be thousands of users require movies on demand si
multaneously, video streaming server should parse the signaling, allocate session and
streaming resources, obtain content from CDN or local disk caches and reply all of those
requests in a very short time, such as less than 500ms. With the objective of video streaming
server, we partition the system into two parts: control-plane and data-plane. Control-plane
responsable for control related operations, like task construct, signaling parsing, and resources
allocation and soon. And data-plane takes charges of data related operations, like data
obtaining, caching and transmission. In control-plane, each signaling is processed in pipeline
style. Under pressure from large concurrence, data-plane is not easily to perform well. With
multi-core processor, more cores can be easily configured to run data-plane programs
according to the system load situation.

Almost all existed VSS systems, such as ISA and NGOD, have used RTSP protocol to
transfer signaling between video streaming server and other modules like STB, Session
Manager and so on. After the scheduler receiving a signaling from STB, it cannot do any
scheduling until parameters parsed from signaling. Figure 1 gives the parsing time of a single
RTSP message, and total 100 test times with zero system loads. RTSP message parsing time
under different system load is shown in Figure 2(i3-2310M CPU @2.1GHz, 512M memory).

TELKOMNIKA ISSN: 2302-4046 

Architecture and Task Scheduling of Video Streaming on Multi-core Platform (Jun Li)

2229

Figure 1. Time Used for Parsing a RTSP
Message

Figure 2. RTSP Message Parsing Time on
Different System Load

RTSP message parsing time increases with the growth of system load. The first RTSP
protocol content parsing costs 2.52 microseconds with zero system load, and when system load
rising to 2500, a normal RTSP request parsing costs almost 7 microseconds. Assuming that
video streaming system requires a RTSP request or response parsing time less than 5
microseconds to guarantee user experience, it needs another core to process RTSP protocol
parsing when the number of concurrent user rise up to 1600.

In this paper, we assign appropriate number of core to each part of video streaming
system. Multi-core architecture is given in Figure 3. Figure 3(a) and Figure 3(b) show details of
control-plane and data-plane respectively. In control-plane, cores can be configured to process
signaling flexibly. After RTSP signaling parsed, scheduling section do task construct or task
scheduling according to the parameters encapsulated in signaling, and data-planes do
responses to those schedules by stopping streaming or changing contents operations. Data
obtained by data-plane will be cached for anti-jitter purpose, and then, transmitted to STB
through NICs (Network Interface Card). Figure 4 gives a full parallel architecture of video
streaming system. With the advantages of SMP system, each core on the multi-core platform
runs the same program. For a video streaming system, it includes streaming task establishing,
RTSP message parsing, resources allocating, content obtaining and data transmission. Each
core can process video streaming task independently. In this paper, we will make the
comparison between full parallel architecture with pipeline-parallel hybrid architecture.

signaling handle
Task

constructure

control‐plane

Resource
allocate

content obtain cache

data‐plane

transmit

signaling handle

scheduling

(a) control-plane procedure (b) data-plane procedure

Figure 3. Detail of Pipleline-parallel Hybrid Architecture

Task‐constructure

Signaling parsing

Resource allocation

Data obtain

Data transmission

CDN Local disk

STB STB STB

Task‐constructure

Signaling parsing

Resource allocation

Data obtain

Data transmission

Task‐constructure

Signaling parsing

Resource allocation

Data obtain

Data transmission

STB

STB

STB

Other
Modules
like SM

Figure 4. Full Parallel Architecture for Video Streaming with Multi-core Platform

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 3, March 2014: 2227 – 2235

2230

(a) control-plane execution procedure (b) data-plane execution procedure

Figure 5. Each Execute Procedure of Hybrid Architecture

Figure 5(a) and Figure 5(b) provide the pseudo-code of video streaming with pipeline-
parallel hybrid architecture.

2.2. Service Migration Based Task Scheduling
 Streaming server always has a kind of storage ability, but limited. So its service capacity
is restricted. Based on pipeline-parallel hybrid architecture on multi-core platform, we introduced
the service migration based task scheduling strategy, which is used for system load balancing
and video server fault tolerant. Table 1 is the summary of key variables.

Table 1. Key Variables
symbol description
M Total number of content
N Number of streaming server
L Service capacity of a streaming server
R(j) Request for content j
li Current load of server i

L Average load of all streaming server

Lth Service load threshold of service migration
H Content distribution matrix

 Streaming server connection matrix
p Migration possibility
 Request success rate

iT Service delay of request i

 Handle time per request on streaming server

 Length of migration path

 Maximum of migration path length

)(i Set of migration path which starts from server i

while(1)
{ if(receive new data transmission task)
 { create new data transmission task;
 add new task to data transmission task list;
 apply data from CDN or local disk;
 }
 if(receive data task parameter update)
 { update task parameter;}
 if(data received)
 add data to task_data_cache;
 iterator(task in data transmission task list)
 { sending data to STB using funnel method;
 update task parameter;
 }
}

task execution procedure
{ if(receive new signaling)
 { if(is SETUP)
 { //extract parameter from signaling
 signaling_handle(signaling);
//establish video streaming task by allocating
resources
 streaming_task = task_construct();
 //add streaming_task to task_list on current
core
 task_add(streaming_task);
 }else{ streaming task parameter update;
 }
 //iterator every task in task_list, doing streaming
job
 for each task in task_list
 { apply_data;//from CDN or local disk;
 if data recved,
 add data to task_data_cache;
 sending_data, using funnel method to
ensure stability of rate;
 }
 }}

TELKOMNIKA ISSN: 2302-4046 

Architecture and Task Scheduling of Video Streaming on Multi-core Platform (Jun Li)

2231

thL L
Figure 6. Releationship between Migration Possibility and Service Load in Our Apporach

When the scheduler receives a new request, it decides which video server the request
will be assigned to based on current system service load. If loads of the servers that contains

requested content are lager than thL , service migrates out with the possibility of ip , and path

length ( <) is limited. Calculation of ip is shown in Equation (1).













 LlL
LlB

Ll
p

ithn
thi

thi

i

)(1

1
0

 (1)

Where B and n are system related parameters, we will discusse later.

 When load of current video server il < thL , it is means that current server is in light load,

and can continue to service. If il > thL , it indicates that current server is serving many request.

In this case, service migration is needed for system load balance. Since migration not only
affects the requests in service, but also increases the service delay of new request. We migrate

request out with a possibility when il > thL by using modified sigmoid curve. From Figure 6, it is

obvious that the ip is much litter when load is less than thL , and ip grows quickly if il > thL ,

which means that migration happens with much higher possibility at high load. If ip is grater

than generated random p , service migration happens. Long migration path implies higher
service delay. We limit migration path length to ensure the quality of service. If path length is
longer than the longest tolerant length , new request will be rejected without service migration.
 Grater n is, much faster the improved sigmoid curve trends to 1. In our approach, n is a
function of migration path length, and it decrease rapdly with  grows up. The negative

exponential function has been used to deliver the releationship between n and , shown in
Equation (2).

 eBn (2)

 Because of migration path length directly affects user experience in service; migration
path length should be limited in practice to guarantee quanlity of service.
 For the calculation of migration path, every possiable path can be computed before
system beginning service under the situation that the multimedia content distribution and video
server connection are fixed. Video server is taken as a node, servers containg the same content
have a path connected each other, which shapes a graph. We assuming that the system is
stable, that is content distribution and server connection never change after system is running. By
using Dijkstra algorithm [14], we can get the shortest path to all others nodes in the connection
graph, and recursive operate for each node. During service migration, we only need to find the
optimal path in existed set without recalculation.
 Based on pipeline-paralle hybrid architecture, when the scheduler receives a new
request)(jR , it will run the following steps to dispatch the request.

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 3, March 2014: 2227 – 2235

2232

Step 1: The scheduler decides whether service migration is needed for)(jR according

current content distribution matrix H and each server load il :

a. If iS contains content j and thi Ll  , then iS will service)(jR , update load of iS ,

goto step 6;

b. If each servers iS which contains content j has thi Ll  :

a) If there is at least on path in set)(i in which the load of the node that after

iS is less than L, then computer every possiable path length and migration

possibility ip according formula 1 and 2;

b) else goto step 5；

Step 2: The scheduler generates a random p ， 10  p . If ppi  , then goto step 3,

else goto step 4.
Step 3: The scheduler send migration message to each server in migration path, and

service migration implemented along the path while)(jR is hold at scheduler.

Step 4: iS begin service new request. Update load status of each server, goto step 6.

Step 5: Reject)(jR .

Step 6: The scheduler waiting for next new request.
 In our algorithm, the optimal path should be found before each migration. Since the new
request in hold in scheduler, the migration path must be able to minisize service delay. We
define variance of load balancing as formula 3 in following:

N

Ll
N

i
i




 1

2)(
 (3)

Where, 



N

i
ilN

L
1

1 , is the average load of all video servers. When
L

l

L

l

L

l N 21 in a

determinated VoD system,  is minimum, which means system is in a good load balancing.
 In this paper, linearity weighted aggregation method is used to poise migration
path length and variance of load balancing, as shown in formula 4.

 )1(mp (4)

In which  is the length of each possiable migration path, and  . The path with smallest
mp will be chosed for migration.

3. Results and Analysis
3.1. Experiments of Pipeline-parallel Hybird Architecture

We take Cavium OCTEON CN5860 [13] series multi-core processor as our target
platform. Cavium OCTEON CN5860 multi-core processor has 16 cores, with 800MHz per core.
It has a 10GB SPF+ port, and its memory can be configured as 4GB or 8GB. In order to test the
performance of the proposed architecture, we implement pipeline-parallel hybrid architectures
using C, and compared it with full parallel architecture using openMP [7].

Figure 7 displays the inter-core communication overhead between control-plane and
data-plane in pipeline-parallel hybrid architecture. Based on Cavium OCTEON CN5860 multi-
core processor, an interactive operation among different core cost increases with growth of the
load on the core. Where the concurrency rises up to 3500, inter-core communication cost is
almost three times of light load.

TELKOMNIKA ISSN: 2302-4046 

Architecture and Task Scheduling of Video Streaming on Multi-core Platform (Jun Li)

2233

Figure 7. Inter-core Communication Overhead

The performance of control-plane and data-plane in pipeline-parallel hybrid architecture

is shown in Figure 8. For data-plane, each core can handle 230 data transmission task, with
bitrate of 3.75Mbps per each task. And the concurrent performance of control-plane on a single
core up to 2300 streaming tasks. So, the situation of one core executing control-plane can work
with 10 cores running data-plane, and the total throughput of video streaming reaches to
10Gbps, the top capacity of the platform. Figure 9 shows performance comparison between
pipeline-parallel hybrid architecture and full parallel architecture, which implemented by using
openMP, and it is clear that the prior method outperformance 48% than the later one.

Figure 8. Task Number per Core Using
openMP

Figure 9. System Concurrent Performance
Pared with Full Parallel Architecture

3.2. Task Scheduling Experiments
 We implemented the proposed task scheduling alogrithm on pipeline-parallel hybird
architecture. In experiments, we simulated 140 video contents and 12 video servers. Each
server has 20 content storage capacity and service capacity is 120 concurrent requests. The
user request pattern is a Poisson process with an arrival rate of  request/minute, where

varies from 36 to 44. The access possibility of each of 140 video contents is modeled by Zipf-
like distribution [15] with 27.0 .Besides, we set  =0.5, which means that load balancing
and service delay have the same weight in migration path selection. At the same time, after a lot
of testing, B is set to 2500, in this case, the improved sigmoid curve changes most close to real
VoD system. In order to prove the effectiveness of service migration based task scheduling
strategy, we compared it with REM algorithm, Figure 10 shows the request success rate in the
simulation period for service migration based task scheduling method and REM, and the prior
performance better than REM algorithm. Figure 11 demostrates differnecy of the service delay
between our proposed task scheduling strategy and REM. Since the precomputation of
migration path, service migration based task scheduling algorithm has much lower service delay
and with smaller delay jitter.

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 3, March 2014: 2227 – 2235

2234

Figure 10. Success Rate as a Function of
System Load

Figure 11. Service Delay as a Function of
System Load

 4. Conclusion

The widespread use of multi-core processor is pushing explicitly parallel high-level
programming models to the forefront. In this paper, we proposed a multi-core architecture for
video streaming system combined pipeline with concurrent modules. One of the main issues of
getting an even distribution of computation across processors is dealt in an integrated fission
and partitioning step that breaks up computation units just enough to span the available
processors. The issue of signaling control overhead is overcome by an intelligent assignment,
which overlap all communication with computation. Total video streaming task is split into
control-plane and data-plane. High performance requires much more core resources; both
control-plane and data-plane can be allocated more cores to satisfy system requirements. We
compared the performance of our architecture with full parallel ones, and the experiment results
show that hybrid architecture gains much higher concurrence than the compared one.
Meanwhile, the proposed service migration based task scheduling algorithm achieved higher
request success rate and smaller service delay jitter than REM.

Acknowledgements
 We thank the team leader, my supervisor and other members for their continuous help
in discussion and suggestion on the task scheduling strategy in this paper. We are indebted to
members of the National Network New Media Engineering Research Center for their
contributions to this work. This work is supported by National High-tech R&D Program of China
(2012AA011703), National Key Technology R&D Program of China (2012BAH02B01) and the
Key Program of Chinese Academy of Sciences (KGZD-EW-103-4, KGZD-EW-103-2).

References
[1] Ellis, Leslie. Inside Time Warners's Interactive-Services Architecture. Time Warners. Report number:

22. 2001.
[2] Comcast Corp. 2.0. NGOD Overall Architecture. Philadelphia. Comcast Corp. 2006.
[3] Thies W, Karczmarek M, Amarasinghe S. StreamIt: A language for streaming applications. 11th

Conference on Compiler Construction. London. 2002: 179-196.
[4] Buck I, Foley T, Horn D. Brook for GPUs: stream computing on graphics hardware. ACM Transactions

on Graphics (TOG). ACM. 2004; 23(3): 777-786.
[5] David Kirk. Nvidia cuda software and gpu parallel computing architecture. In Proc. of the 6th Intl.

symposium on Memory management (ISM). New York. 2007: 103-104.
[6] Pheatt C. Intel® threading building blocks. Journal of Computing Sciences in Colleges. 2008; 23(4):

298-298.
[7] Chapman, Barbara, Gabriele Jost, Ruud Van Der Pas. Using OpenMP: portable shared memory

parallel programming. Cambridge: The MIT Press. 2008.
[8] Cole C, Herlihy M. Snapshots and software transactional memory. Science of Computer

Programming. 2005; 58(3): 310-324.
[9] Vo HT, Osmari DK, Summa B. Streaming-Enabled Parallel Dataflow Architecture for Multicore

Systems. Computer Graphics Forum. Blackwell Publishing Ltd. 2010; 29(3): 1073-1082.

TELKOMNIKA ISSN: 2302-4046 

Architecture and Task Scheduling of Video Streaming on Multi-core Platform (Jun Li)

2235

[10] Aldinucci M, Danelutto M, Kilpatrick P. Fastflow: high-level and efficient streaming on multi-core.
Programming Multi-core and Many-core Computing Systems. Parallel and Distributed Computing.
2012.

[11] Mundur P, Simon R, Sood AK. End-to-end analysis of distributed video-on-demand systems.
Multimedia, IEEE Transactions on. 2004; 6(1): 129-141.

[12] Zhao Yingqing, Kuo CCJ. Video server scheduling using random early request migration. Multimedia
systems. 2005; 10(4): 302-316.

[13] Cavium OCTEON CN58XX. http://www.cavium.com/OCTEON-Plus_CN58XX.html. (2013).
[14] Dijkstra EW. A note on two problems in connexion with graphs. Numerische mathematic. 1959; 1(1):

269-271.
[15] Jiang Q, Tan CH, Phang CW. Understanding Chinese online users and their visits to websites:

Application of Zipf's law. International Journal of Information Management. 2013; 33(5): 752-763.

