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Abstract 
In order to improve the accuracy of price forecasting by Web extracting, a novel efficient improved 

Adaptive Sliding Window (ASW) that the coefficients of the window width can be auto adjusts is proposed 
in this paper. Agricultural products price based on ASW is utilized to verify validity of adaptive Back 
Propagation (BP) neural network and adaptive Radial Basis Function (RBF) neural network model 
respectively. Experiments demonstrated that the Mean Absolute Error (MAE) on ASW model can be 
getting 99.62 percent accuracy rate. Experiment results proved that the proposed ASW model and 
adaptive BP neural network model are meaningful and useful to analyze and to research products market, 
but the proposed ASW model is the best one because of its speed is the fast one which can save time 80 
percent than the adaptive BP neural network. 
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1. Introduction 

Forecasting is the process to make the statements about events whose actual 
outcomes that has not yet been observed. Predicts theory and method can be applied widely 
distributed in all kinds of areas of natural and social aspects. According to the areas covered, 
the different research objectives and tasks, forecasting can be classified with different areas of 
forecasting such as weather forecasting, scientific forecasting, military forecasting, technology 
forecasting, economic forecasting, and social prediction [1]. Price forecasting method can be 
find used widely scopes such as stock market [2], electricity market [3-5], old market [6], and so 
on. The price forecasting models usually include time series model [6], Sliding Windows Model 
(SWM) [4], various Neural Network (NN) [2,7-12], GM (1,1) [6], wavelet [13], support vector 
machine [3, 14], grey system theory [15], fundamental econometric model [5], fractal theory 
model [8], Fuzzy Multiple Attribute Decision [16] and  Uncertain Measure [17]. Depend on the 
reported results; the different model has itself advantages and application markets. 

Our team developed an application system to collect the agricultural products weekly 
price which is shown on bank service website. How to deal with those data and use it to forecast 
the agricultural products price and reduce the error as much as possible is a valuable work. 

Take a wide view for the research result of agricultural products, we can find the 
agricultural products forecasting is the same as the other price forecasting. Because of these is 
all nonlinear system analysis. For example, if the power market or stock market changing, the 
agricultural products will be changed followed. That is the economic market is the same 
expressly now days of global economic integration. From the reported, we can summarize the 
forecasting models which include ANN [11, 18], RBF neural network [12], Wavelet model, 
support vector machine [3, 13, 14, 19], generalized auto regressive conditional hetero-
skedasticity model [20, 21], probabilistic neural network model [9], linear moving average model 
[10], nonlinear genetic algorithm back propagation model [10], nonlinear autoregressive model 
[22], empirical mode decomposition model [11], DGM(2,1) model [15] and Markov model [21]. 

We use the ASW model, BP Neural Network (NN) and RBF NN model to build the 
agricultural products forecasting algorithm and verify the validity of the MAE rate on Web 
extracted data respectively. Furthermore, we research effect the results rely on the different 
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number neurons on the BP and the different spreads on RBF NN model and different window 
width on the ASW model. We find the MAE rate can be reduced very small that used the 
Adaptive BP (ABP) NN and used the Adaptive RBF (ARBF) NN. But how to select variables of 
spreads on the BP NN model and the width on the Sliding Window  Model (SWM) are very 
important. 
 
 
2. Notations and Theory 

Some definitions used in this paper are given as follows. 
Single errors of predicted value: 
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Mean Absolute Errors (MAE):     
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Mean Absolute Percentage Errors (MAPE): 
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3. Sliding Window Method 
The basic idea of the Sliding Window (SW) method is as follows: 
Setting the time sequence whose cycle is in the time observation period t as 

 ,,,, 21 txxx , and 
1,t

f  as the prediction value of the next time is 1t , and setting 
1,t

f   to 

be the newest forecasting mean, namely the average value of  ,,,, 11  Nttt xxx . 

The method of the moving average is：  


1,tf  the last observation average values = average value of  ,,,, 11  Nttt xxx . N 

is appointed parameter. 
N—The item of moving average (or called step size). 
N determines the forecasting accuracy, which is generally obtained from the 

experimental data based on experience. 
Forecasting value of the next time: 
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Through the data analysis according to different experimental sliding window value, it is 

obvious that under the slow and great change circumstance, a very good mean absolute error 
will be received when the value of the window width N is selected suitably.  

 
 
4. RBF Neural Network 

In a generic RBF NN is defined by an input vectors Xq and output as yq, the inter-neural 
is defined by a particular real number, a synaptic weight w1ij. The RBF NN’s architecture shows 
as in Figure 1 which includes its input and output of inter-neural. 
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The input of ith neurons in inter-neural is: 
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The input of ith neurons in inter-neural is: 
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The output of the RBF NN is: 
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Figure 1. RBF NN Architecture and Its Inter-neural 

 
 
5. BP Neural Network 

A BP NN like the RBF NN, it also has an input layer, a hidden layer and an output layer. 
It is an error back propagation error learning process of back-propagation algorithm consists of 
two processes of the information forward propagation and error back-propagation. Through the 
hidden layer, depend on the weight error of the output layer, the error gradient descent back-
propagation to the hidden layer and input layer, and so on. According to the layers of the weight 
adjustment process, the neural network is the learning and the training process. The BP NN’s 
architecture shows as in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. BP NN Architecture and Its Inter-neural 

 
 
BP NN always uses activation function show as follows. 
(1) Linear transfer function 
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( )f x x                                                               (9) 
 
The function string is “purelin”. 
(2) Logarithmic sigmoid transfer function 
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The function string is “logsig”. 
(3) Hyperbolic tangent sigmoid transfer function 
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6. Experiments Prepared 

We select the ten agricultural products price which extracted from 
http://www.abchina.com/cn/RuralSvc/Information/RealtimePrice/AgriculturalMarkets_Information
/ at 1 Jan. 2011 to 31 Dec. 2011. The extracted method is a Web-extracting method and others 
price forecasting methods based on the authors’ previous work [23-28]. The sample data show 
as the Figure 3. The experiment laptop configuration is ASPIRE 4738ZG (CPU Intel CPU P6200 
@2.13GHz, RAM 2 G), the OS is Windows 7, Matlab is V7.0. 

 
 

 
 

Figure 3. The Original Data of Agricultural Products Price Extracted from Web Page 
 
 
7. Experiments 

In order to get higher accuracy of agricultural products on price forecast, we select 
different window width for SW to forecast ten type agricultural products price. Then use the 
window width of the highest accuracy of agricultural products price as the SW model, so we 
called this model as ASW model. The Table 1 is the examples for MAPE of best and worst 
window widths using SW. When we use this model, we can train the window width as the 
forward period of time. As an example, we select N=28 (four weeks) and N=14 (four weeks) and 
using the Equation (1) to (5). The sample data use the Figure 3 from 1 Jan. 2011 to 30 Nov. 
2011.The agricultural products price forecast from 30 December 2011 to 17 February 2012 
(total 8 weeks). The ten types of agricultural products price forecasting results of MAE for the 
best window widths are show as Figure 4(a) to Figure 4(j) respectively. The accuracy rate for 
ten types of agricultural products price obtain 99.62 percent. Figure 5 shows the average MAE 
on price forecast using ASW, ABP NN and ARBF NN. 
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(a) Beef 

 
 

(b) Soybean oil 

 
 

(c) Egg 

 
 

(d) Peanut oil 

 
 

(e) Flour 

 
 

(f) Pork 

 
 

(g) Rice 

 
 

(h) Sugar 

 
 

(i) Blend oil 

 
 

(j) Mutton 
 

Figure 4. The Agricultural Products Price Forecast using ASW, ABP NN and ARBF NN 
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As the same way, we select different number of neurons for BP NN model and different 
spreads for RBF NN model to forecast same ten type agricultural products price. Then use the 
number of neurons for BP NN model and different spreads for RBF NN model of the highest 
accuracy of agricultural products price as the BP NN and RBF NN model, so we called these 
two models as ABP NN and ARBF NN model. The Table 2 is the examples for MAPE of best 
and worst number of neurons using BP; and The Table 3 is the examples for MAPE of best and 
worst spread using RBF. The ten types of agricultural products price forecasting results of MAE 
for the ABP NN and the ARBF NN are show as Figure 4(a) to Figure 4(j) respectively too. The 
accuracy rate for ten types of agricultural products price achieve 99.20 and 98.82 percent 
respectively. 

In order to compare with each model’s efficiency, we use the different window widths as 
2, 4, 8, and 12 for SW model; the different number of neurons as 10, 15, 20 for BP NN model; 
and different spreads as 0.01, 10, 20 and 100 for RBF NN model. The averages time of 
forecasting for three models show in Table 4.  

Form the Table 4 we can find that for different agricultural products forecast price the 
best spread is different. The experiments show us that the ASW model is fast one. So the ASW 
model not only can get the best accuracy on price forecasting but also can save time. 

 
 

Table 1. The Examples for MAPE of Best 
and Worst Window Widths using SW 

Agricultural 
Products 

Best Worst 
N MAPE N MAPE 

Beef 2 0.26% 12 3.20% 
Soybean Oil 2 0.00% 12 0.15% 
Egg 2 0.70% 12 2.92% 
Peanut Oil 2 0.16% 12 0.81% 
Flour 12 0.11% 8 0.29% 
Pork 2 1.10% 8 2.99% 
Rice 4 0.00% 12 0.29% 
Sugar 8 0.18% 12 0.39% 
Soybean Oil 4 0.04% 12 0.27% 
Mutton 2 0.70% 12 4.11% 
Average 
MAPE 

 
0.33% 

 
1.54% 

 

Table 2. The Examples for MAPE of Best and 
Worst Window Widths using BP 

Agricultural 
Products 

Best Worst 
Neurons MAPE Neurons MAPE 

Beef 20 1.51% 15 3.22% 
Soybean Oil 15 1.45% 20 1.90% 
Egg 20 0.44% 15 1.77% 
Peanut Oil 15 0.84% 10 1.06% 
Flour 15 0.32% 20 1.48% 
Pork 15 0.64% 20 3.49% 
Rice 15 0.30% 10 3.12% 
Sugar 10 0.58% 15 1.73% 
Soybean Oil 20 1.01% 15 1.69% 
Mutton 20 1.51% 10 12.23% 
Average 
MAPE 

 
0.86% 

 
3.17% 

 
 

Table 3. The Examples for MAPE of Best and Worst Window 
Widths using RBF 

Agricultural Products 
Best Worst 

Spreads MAPE Spreads MAPE 
Beef 100 4.47% 10 28.47% 

Soybean Oil 100 0.11% 0.01 0.25% 

Egg 100 0.30% 0.01 6.93% 

Peanut Oil 20 3.23% 0.01 9.07% 

Flour 100 0.09% 0.01 0.18% 

Pork 0.01 1.72% 10 13.03% 

Rice 0.01 0% 100 0.11% 

Sugar 100 0.12% 0.01 7.52% 

Soybean Oil 0.01 0.11% 20 0.16% 

Mutton 0.01 7.55% 20 780.21% 

Average MAPE  1.77%  84.59% 
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Table 4. The Averages Time of Forecasting for 
SW, BP NN and RBF NN 

SW BP RBF 
N Time(s) Neurons Time(s) Spreads Time(s) 
2 18.36 10 42.25 0.01 18.44 
4 19.41 15 92.94 10 18.39 
8 18.32 20 144.82 20 18.52 

12 18.65   100 18.46 
  

 

Figure 5. The Average MAE on Price 
Forecast using ASW, ABP NN and ARBF 

NN 
 
 
8. Conclusion 

In this paper, the new idea for SWM, ABP NN and ARBF NN models are used for 
agricultural products forecasting is introduced. Furthermore this paper applies this method to 
agricultural products of the ten types of market which increases the accuracy rate. At the same 
time by the proposed model the adaptive parameter for the ASW model, ABP NN and ARBF NN 
model are introduced in detailed. Thus the three models demonstrated in this paper have a high 
practical value. 

Three proposed agricultural products forecasting methods not only can be applied to 
agricultural products market and sales areas, but also can be used for other types of other 
commodities to do price forecasting fields. 
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