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 The examination of neurological disorders and the monitoring of ataxic gait 

are major scientific topics that benefit from digital signal processing 

techniques and machine learning (ML) technologies. In this research, an ML 

approach is optimized with the use of Spatio-temporal data obtained from a 

kinect-sensor to differentiate between normal gait and ataxic. The current ML-

based approaches perform very poorly because they cannot build feature-

correlation among many gait characteristics. Furthermore, current ML-based 

techniques generate more false-positive whenever data is imbalanced in 

nature; especially for performing multi-label classification. This work 

presents a feature selection and ranking (FSR) based on extreme gradient 

boost (XGB) for ataxia severity classification. The FSR-XGB introduce an 

enhanced misclassification minimization error optimization and presents a 

novel feature selection and ranking to introduce feature importance using new 

cross-validation mechanism, both of which are aimed at solving the multi-

label classification research problems. Results from experiments demonstrate 

that the presented FSR-XGB approach outperforms other ML-based and deep 

learning-based approaches. 
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1. INTRODUCTION  

There are several fields, including physiology, rehabilitation, physiotherapy, orthopedics, arthritis, 

and neuroscience, in which movement abnormalities serve [1] as crucial diagnostic indicators [2]. 

Approximately 70% of neurological hospitalized patients have abnormal gait activity, Alsaif et al. [2], 

suggesting that the gait based evaluation method [3] can be used to make an earlier identification of 

neurological disease [4]. The primary goal of this study is to use gait analysis to diagnose ataxic neurological-

disorder [5]. Developing a gait based method capable of automated identification and monitoring of 

neurological conditions improves the effectiveness of the treatment, facilitates treatment strategies, and helps 

to ease the burden on the healthcare-management system [6]. Effective diagnosis and detection of neurological-

disorders require the use of appropriate tools and approaches [7]. Wearable gadgets [8], video, and thermal-

camera devices [9], microelectromechanical-sensor-units [10], as well as the kinect-sensor [11], are just some 

examples of the sensor technologies that have become increasingly common due to advancements in wireless 

technology as well as sensing technologies. Wearable-gait sensors, as recently shown in [12], are useful for 

https://creativecommons.org/licenses/by-sa/4.0/
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investigating scale-for-the-assessment and rating-of-ataxia (SARA) behavior. The significance of investigating 

the gait characteristics of ataxic patients [13] with multiple-sclerosis was also demonstrated in [14]. 

Flat-fall prediction [15], Parkinson's [16], and Friedreich's-ataxia [17] are just a few of the 

neurological-disorders for which machine-learning techniques have now been implemented for diagnosis and 

detection. Concerning cerebellar-ataxic human-identification [18] provided a deep learning-based solution and 

evaluated it to other machine learning (ML) models. Current deep-learning (DL)-based methods [19] are all 

applied to the problem of predicting motion disorders [20] by making sense of the spatio-temporal- 

kinematics [21] of a typical human normal movement; when applied to ML-based, DL methodologies helps 

with both feature-selection for spatio-temporal information and make decisions. The DL-based algorithms [22] 

have several drawbacks, including a prerequisite higher computational resource, a large number of training 

data, and poor results of prediction of ataxia type/severity (i.e., multi-label) classification and also when the 

ataxia-type classification data is imbalanced in nature. This fact serves as motivation for the proposed research, 

which seeks to develop a better feature selection optimization employing ML method for ataxia type 

classification utilizing spatio-temporal-kinematic gait characteristics. This paper introduces a feature selection 

and ranking (FSR) based on extreme gradient boosting (XGB). The FSR-XGB model first provides the working 

of XGB and then optimize the loss function to reduce the misclassification. Then, describes standard cross-

validation and provide a two-level cross validation (CV) for better selection of feature and ranking with high 

importance. Finally, the multi-label descriptor is constructed with maximum feature importance score and 

ataxia severity classification is done. The significance of FSR-XGB for ataxia severity classification is as 

follows: 

- The FSR-XGB is very efficient in reducing misclassification using new loss function; better specificity 

and sensitivity assures the efficiency of new loss function.  

- The FSR-XGB is efficient in distinguishing different severity level of ataxia considering imbalanced data; 

this is due to adoption of new feature selection and ranking method using novel two-level cross validation 

methods.  

- The FSR-XGB achieves better accuracy, specificity, and sensitivity than existing ML and DL-based ataxia 

severity classificaon approaches.  

- The FSR-XGB provides higher weight in comparison with XGB-based method thus, aided FSR-XGB to 

attain better accuracy, specificity, sensitivity, precision, and F-measure than XGB-based ataxia severity 

classification approaches. 

The paper is organized as follows: in section 2, various existing ataxia severity and neurodegenerative 

disease identification using ML and DL method is given along with benefits and limitations. The section 3, the 

proposed method of FSR-XGB based ataxia severity classification is provided. The section 4, the outcome of 

FSR-XGB based ataxia severity classificaon method over various ML and DL-based ataxia severity 

classification method is provided. Lastly, the research significance is highlighted and future enhancement is 

provided. 

 

 

2. RELATED WORK 

This section studies various methodologies for detecting ataxia patient using gait characteristics.  

The purpose of [23] was to look at the feasibility of using gait to: i) identify people who have ataxia-related 

gait-characteristics (threat prediction) and ii) evaluate the degree of ataxia (severity-assessment). They gathered 

155 films of 89 individuals, 24 individuals who had controlled the spinocerebellar-ataxia (SCAs), and  

65 individuals with SCAs (or at risk for developing) doing the gait-task of the SARA at 11 clinical locations 

in eight states across the united states. In addition, they devised a strategy for isolating the subjects from their 

environment and built several features to record aspects of gait such as step-width, step-length, speed, swing, 

and stability. Their proposed method for predicting risk is 83.06% accurate and has an F1 score of 80.23%. 

Further, their proposed method for evaluating severity has an mean absolute error (MAE) of 0.6225 as well as 

a pearson's-correlation-coefficient-score (PCCS) of 0.7268, both statistically significant results. When tested 

on data from non-training sources, their proposed method maintained superior results. Moreover, the feature-

importance evaluation revealed that their proposed method correlates higher ataxia-severity with broader steps, 

slower walking speed, and more instability. Zhang et al. [24], ataxia is a symptom that arises whenever the 

human body experiences problems with balance and coordination. Although there are a variety of possible 

internal causes of ataxia, the condition is often diagnosed based on external characteristics and the physician's 

own clinical experience. Here, they employ a contactless sensing method to identify cases of sensory-ataxia 

and separate them from cases of cerebellar-ataxia. Using a microwave sensing system, they initially gather data 

on romberg's tests as well as gait-analysis; then, following some preprocessing, then training of the method is 

done using machine-learning techniques. Since time series parameters are taken into account for romberg's 

test, all three methods achieve an accuracy of 96% or better in this task; for gait identification, principal-
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component-analysis (PCA) is employed for reducing the dimension, as well as the accuracy rates of back-

propagation neural-network, support-vector-machine (SVM), as well as random-forest (RF) were 97.8%, 

98.9%, and 91.1%, correspondingly. 

Having trouble walking is a common symptom of a wide range of debilitating neurologic and 

orthopedic conditions, as demonstrated in [25]. The use of accelerometers makes accurate simulation of gait 

patterns possible. However, they generate a large amount of data that might be difficult to analyze. In this 

study, they evaluated various techniques for clinical-data reduction as well as the categorization of the resulting 

data. From data collected on 43 subjects (20 healthy subjects, 23 ataxic subjects), resulting in 418 sequences 

of normal gait pattern, the maximum accuracy of 98% was attained using an RF classifier pre-processed by  

t-distributed-stochastic-neighbor segmentation to distinguish among healthy persons and individuals with 

ataxic-gait. Researchers have used motion sensor information to analyze how individuals with neurological 

disorders, like hereditary-ataxias (HA), walk over time [26]. By collecting data across 14 HA participants and 

14 healthy individuals via iPhone motion sensors attached to their ankles, this study seeks to determine the 

minimum needed gait traits necessary for effective and less invasive HA patient recognition. To decrease the 

number of gait characteristics and sensor systems, two proposals were constructed: i) a local-minimum 

significant peak requirement to determine the beginning of every step, yielding a 10-stride frame from where 

56 features were derived; as well as ii) a searching method depending mostly on hill climbing algorithm.  

The primary outcomes were that the k-nearest neighbor (KNN) and multi-layer perception (MLP) methods 

both obtained a 96% classification performance utilizing two gait sequences, as well as that for the MLP 

method just the right ankle sensor variations were necessary, hence reducing the intrusion. 

Accelerometric data may help optimize DL convolution neural network (CNN) systems in [18], which 

might then be used to differentiate between normal and ataxic gait. There is a total of 860 signal segmentation 

from 16 ataxic subjects and 19 control subjects, with the average life expectancy of the two groups being 38.6 

and 39.6 years, correspondingly, inside the experimental dataset. The technique relies on decomposing 

accelerometric data captured at multiple body locations at once and sampling at 60 hertz into their frequency 

components. All of the parameters between 0 and 30 hertz are utilized by the DL algorithm. SVM, Bayesian 

methodologies, as well as two-layer neural networks having characteristics evaluated as that of the relative-

power in specified frequencies are among the conventional techniques whose results are contrasted with those 

achieved in this classification experiment. The outcomes demonstrate that picking the right spots for the sensors 

can boost accuracy from 81.2% at the foot to 91.7% at the spine. The accuracy was 95.8% achieved by 

integrating the input data using a five-layer DL algorithm. However, the model performs badly considering 

limited training sample considering imbalanced data; further, for performing multi-label classificaon require 

effective feature weight optimization and its importance for selecting during training; thus, the current 

approaches failed attain good accuracies. In addressing the research limitation, the following research 

methodology is presented. 

 

 

3. PROPOSED METHOD 

In this section a novel feature selection and ranking method is introduced for improving classification 

of ataxia severity prediction such as progressive ataxia (PA), chronic ataxia (CA), and healthy (H) participant. 

The architehture of proposed ataxia severity classification is provided in Figure 1. The classification task is 

said to be a multi-label classification problem. The ataxia severity classification dataset can be described  

as (1). 

 

𝐸 = {(𝑎1, 𝑏1), (𝑎2, 𝑏2), … , (𝑎𝑚 , 𝑏𝑚)} (1) 

 

 

 
 

Figure 1. Proposed ataxia type/severity classification model using FSR-XGB 
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In (1) 𝑗 = 1,2,3, … , 𝑚, which represent total participant size, 𝑏𝑗 ∈ {−1,1} defines 𝑗𝑡ℎ participant 

output, and 𝑎𝑗 defines observer participant 𝑗’s independent feature considering 𝑛 −dimensional vector. The 

ataxia severity classification dataset is smaller in size. Therefore, building ataxia severity prediction model �̂�, 

using ML model is challenging. In this work, the ataxia severity classification prediction model �̂� is used for 

predicting the actual class 𝐺 considering multi-label classification using XGB as expressed in (2). 

 

𝑔: 𝐴 → 𝐵 (2) 

 

3.1.  XGBoost prediction algorithm  

The XGB algorithm is very efficient in the field of classification task across different domain such as 

education, agriculture, and healthcare. The XGB takes the input 𝑦𝑗 and the corresponding actual label is defined 

using parameter 𝑧𝑗 and the initial prediction outcome prior to sigmoid is defined through parameter 𝑎𝑗 and the 

objective function of XGBoost algorithm is expressed in (3): 

 

𝑀(𝑢) = ∑ 𝑚 (𝑧𝑗 , 𝐴𝑗
(𝑢−1)

+ 𝑔𝑢(𝑦𝑗)) + 𝜌(𝑔𝑢) + 𝑑𝑜
𝑗=1  (3) 

 

where the loss function is defined through parameter 𝑚(. , . ), the parameter 𝜌 is used for penalizing the model 

complexities, 𝑢 defines respective tree, 𝜌(𝑔𝑢) defines regularization operation penalty parameter and constant 

are represented by parameter 𝑑. The second-order Taylor expansion are expressed using (4): 

 

𝑔(𝑦 + 𝛿𝑦) ≈ 𝑔(𝑥) + 𝑔′(𝑦)𝛿𝑦 +
1

2
𝑔′′(𝑦)𝛿𝑦2 (4) 

 

then substituting (4) into (3) we get: 

 

𝑀(𝑢) ≈ ∑ [𝑚(𝑧𝑗 + 𝐴𝑗
(𝑢−1)

) + ℎ𝑗𝑔𝑢(𝑦𝑗) +
1

2
𝑖𝑗 (𝑔𝑢(𝑦𝑗))

2

] + 𝜌(𝑔𝑢) + 𝑑𝑜
𝑗=1  (5) 

 

where ℎ𝑗 is computed as (6): 

 

ℎ𝑗 =
𝜕𝑀

𝜕𝑎𝑗
, (6) 

 

and 𝑖𝑗 is computed as (7): 

 

𝑖𝑗 =
𝜕2𝑀

𝜕𝑎𝑗
2  (7) 

 

in (5) the constant term is removed for simplifying the computation at instance 𝑢 as (8). 

 

𝑀(𝑢) ≈ ∑ [ℎ𝑗𝑔𝑢(𝑦𝑗) +
1

2
𝑖𝑗 (𝑔𝑢(𝑦𝑗))

2

] + 𝜌(𝑔𝑢)𝑜
𝑗=1  (8) 

 

In fitting the gradient boosting tree model the parameter such as ℎ𝑗 and 𝑖𝑗 need to be established.  

The standard loss function of gradient boosting tree in solving binary classification problem is obtained through 

cross entropy loss function as: 

 

𝑀 = − ∑ [𝑧𝑗log(�̂�𝑗) + (1 − 𝑧𝑗)log(1 − �̂�𝑗)]𝑜
𝑗=1  (9) 

 

in (9) the parameter �̂�𝑗 is computed as: 

 

�̂�𝑗 =
1

[1+exp(−𝑎𝑗)]
, (10) 

 

and for activation sigmoid function is used and we obtain (11). 

 
𝜕�̂�𝑗

𝜕𝑎𝑗
= �̂�𝑗(1 − �̂�𝑗) (11) 
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3.2.  Feature selection and ranking under multi-label imbalanced data 

In traditional ML model for feature selection uses iterative cross-validation as defined in (12). 

 

𝐶𝑉(𝜎) =
1

𝑀
∑ ∑ 𝑃 (𝑏𝑗 , �̂�𝜎

−𝑘(𝑗)
(𝑦𝑗 , 𝜎))𝑗∈𝐺−𝑘

𝐾
𝑘=1  (12) 

 

Using (12), the ataxia severity dataset is segmented randomly into 𝐾-subset of equal size. Then ataxia severity 

classification predictive model is constructed using reaming 𝐾 − 1 subset. Finally, by optimizing feature that 

minimized the validation error an taking average value of grid 𝑙 as defined in (13). 

 

�̂� = arg min
𝜎∈{𝜎1,…,𝜎𝑙}

𝐶𝑉𝑠(𝜎) (13) 

 

The above cross-validation model fails to establish feature correlation between different attributes and 

participant. The proposed model models a new cross-validation mechanism for better feature selection and 

ranking considering multilabel ataxia dataset. In proposed cross-validation encompasses two-level feature 

optimization. The level 1 considers the ideal features are feature subsets; in level 2, the ataxia severity 

classification prediction model is constructed using ideal feature subset obtained through level 1. The proposed 

two-level cross-validation is defined as:  

 

𝐶𝑉(𝜎) =
1

𝑆𝑀
∑ ∑ ∑ 𝑃 (𝑏𝑗 , �̂�𝜎

−𝑘(𝑗)
(𝑦𝑗 , 𝜎))𝑗∈𝐺−𝑘

𝐾
𝑘=1

𝑆
𝑠=1  (14) 

 

where, 𝑃(∙) defines loss function, �̂�𝜎
−𝑘(𝑗)

(∙) defines coefficient computation function, and 𝑀 are total size of 

ataxia severity classification dataset. The optimization process in choosing ideal �̂� is computed using (13).  

The process of feature selection and ranking for attaining better ataxia severity classification is given in: 

Step 1. The ataxia severity classification dataset 𝐸 is randomly segmented into 𝐾-folds of equal size. 

Let assume 𝑘 = 1 to 𝐾 we define parameter 𝐸−𝑘, where 𝑘𝑡ℎ ataxia sample data rows are removed for outer-

level training sets and 𝐸𝑘 with remaining ataxia dataset 𝑘𝑡ℎ segments are utilized for validating outer-level 

testing sets. Using pre-configured 𝑆, the below steps are repeated. Then, the ataxia severity classification 

dataset 𝐸−𝑘 is divided random manner into 𝐻-folds of equal size, ∀ ℎ = 1 to 𝐻. A). Conclude 𝐻 diverse ataxia 

severity classification dataset 𝐸−𝑘ℎ with ℎ𝑡ℎ part removed for inner-level training datasets and 𝐸𝑘ℎ with ℎ𝑡ℎ 

portion are utilized during inner-level testing dataset. ∀ 𝑙 = 1 defining size considered for grid formation during 

feature selection and ranking process. Ataxia severity classification prediction model �̂�𝜎𝑙
 construction through 

as shown in: 

 

�̂�𝜎𝑙
= �̂� (𝑏𝑗 , �̂�(𝐸−𝑘ℎ; 𝜎𝑙)). (15) 

 

then, using loss function estimate error using inner-level testing data through optimization of �̂�𝜎𝑙
 on inner-level 

testing data 𝐸𝑘ℎ through as shown in (16).  

 

ℰ𝜎𝑛
= ∑ 𝑃 (𝑏𝑗 , �̂�(𝐸−𝑘ℎ; 𝜎𝑙))𝑗∈𝐸−𝑘ℎ  (16) 

 

For every 𝑙 compute 𝐻-folds cross-validation errors; thus, each row of 𝑀ℎ in layer 1 for 𝑘𝑡ℎ part will 

have different cross-validation as (17).  

 

𝐶𝑉(�̂�; 𝜎𝑙) =
1

𝑀ℎ
∑ ∑ 𝑃 (𝑏𝑗 , �̂�(𝐸−𝑘ℎ; 𝜎𝑙))𝑗∈𝐸−𝑘ℎ

𝐻
ℎ=1  (17) 

 

In iterative manner considering 𝑆-times for different 𝑙 the cross-validation error is computed for 𝑀ℎ in layer 1 

for 𝑘𝑡ℎ part using:  

 

𝐶𝑉𝑆(�̂�; 𝜎𝑙) =
1

𝑀ℎ𝑆
∑ ∑ ∑ 𝑃 (𝑏𝑗 , �̂�(𝐸−𝑘ℎ; 𝜎𝑙))𝑗∈𝐸−𝑘ℎ

𝐻
ℎ=1

𝑆
𝑠=1  (18) 

 

the model obtain a more realistic optimized feature with different combination of 𝑙 as:  

 

�̂�𝑛 = arg min
𝜎∈{𝜎1,𝜎𝑙}

𝐶𝑉𝑆(�̂�; 𝜎𝑙) (19) 
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then, using gradient decent function the realistic optimization feature is selected through minimization goal. 

The final feature subset to build ataxia severity classification model is constructed employing feature ranking 

function 𝑟(∙) using: 

 

𝑟(𝑎) = {
0 𝑖𝑓 𝑛𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑐ℎ𝑜𝑠𝑒𝑛 

1 𝑖𝑓 𝑛𝑗 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑠 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙 𝑗 = 1,2,3, … , 𝑛
 (20) 

 

the total feature subset using above ranking function is established as:  

 

𝐹𝑠 = {𝑟(𝑛1), 𝑟(𝑛1), … , 𝑟(𝑛𝑛)}, (21) 

 

to provide effective accuracy, only feature that has higher rank/weights (i.e., higher importance) considering 

different 𝐾-folds are selected through (22). 

 

𝐹𝑠𝑘
= {𝑟(𝑛1), 𝑟(𝑛1), … , 𝑟(𝑛𝑛)} (22) 

 

Step 2. The work further computes number of instances a particular feature is selected within 𝐾 feature 

subsets with higher weights based on which the final good quality feature subset are selected as defined: 

 

𝐹𝑠𝑓𝑖𝑛𝑎𝑙={𝑓𝑠(𝑝1),𝑓𝑠(𝑛2),…,𝑓𝑠(𝑛𝑛)}, (23) 

 

where 𝑓𝑠(∙) defines if 𝑛𝑡ℎ feature is selected or not; the process is given in (24). 

 

𝐹𝑠(𝑎) = {
0 𝑖𝑓 𝑞𝑗  𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 𝑙𝑒𝑠𝑠𝑒𝑟 𝑡ℎ𝑎𝑛 

𝐾

2
 𝑡𝑖𝑚𝑒𝑠, 𝑗 = 1,2,3, … , 𝑛

1 𝑖𝑓 𝑞𝑗  𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 
𝐾

2
 𝑡𝑖𝑚𝑒𝑠, 𝑗 = 1,2,3, … , 𝑛

 (24) 

 

Using (24), the model establishes subset of 𝑛′ selected features, where 𝑛𝑡ℎ represent total feature selected 

considering providing feature importance for building ataxia severity classification prediction model. In the 

next section, the process involved in multi-label classifier construction for ataxia type classification. 

 

3.3.  Multi-label classifier cosntruction 

The steps involved in ataxia severity classification prediction model are as follows: Step 1. In this 

work ataxia severity classification dataset 𝐸 is reduced to 𝐸′ by retaining feature selected in stage 1 as defined: 

 

𝐸′ = (𝐸; 𝑛′) (25) 

 

Step 2. In similar manner with respect to stage 1, the 𝐾-folds is used ∀ 𝑘 = 1 to 𝐾. 1). Provide detail 

information of ataxia severity classification dataset 𝐸′(−𝑘)
with 𝑘𝑡ℎ part removed for performing the training 

process and 𝐸′(𝑘)
part remaining are utilized for testing purpose. Next, in iterative manner considering 

configured 𝑆, the below steps are executed ∀ 𝑙 = 1 to 𝐿, where 𝐿 represent the grid size used during 

optimization process. Ataxia severity classification prediction model construction through (26); 

 

�̂�𝜎𝑙
= �̂� (𝐸′(−𝑘)

; 𝜎𝑙) (26) 

 

then, for inner-level testing data 𝐸′(−𝑘)
 applies �̂�𝜎𝑙

 and compute error for different 𝑙 using (27); 

 

ℰ𝜎𝑙
= 𝑃 (𝑏𝑗 , �̂� (𝐸′(−𝑘)

; 𝜎𝑙)) (27) 

 

then, for different 𝐿 compute the 𝐾-fold cross-validation error for optimization process using (28): 

 

𝐶𝑉(�̂�; 𝜎𝑙) =
1

𝑀
∑ ∑ 𝑃 (𝑏𝑗, �̂� (𝐸′(−𝑘)

; 𝜎𝑙))
𝑗∈𝐸′(−𝑘)

𝐾
𝑘=1  (28) 

 

In iterative manner the cross-validation error is computed as (29). 
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𝐶𝑉𝑆(�̂�; 𝜎𝑙) =
1

𝐾𝑆
∑ ∑ ∑ 𝑃 (𝑏𝑗 , �̂� (𝐸′(−𝑘)

; 𝜎𝑙))
𝑗∈𝐸′(−𝑘)

𝐾
𝑘=1

𝑆
𝑠=1  (29) 

 

Step 3. Then, considering different 𝑙 the realistic optimizations parameter is obtained as (30).6 

 

 

�̂� = arg min
𝜎∈{𝜎1,…,𝜎𝑙}

𝐶𝑉𝑆(�̂�; 𝜎𝑙) (30) 

 

Step 4. Using gradient decent the realistic value is optimized through minimization function. In reducing 

randomness of proposed ataxia severity classificaon predictive model in level-1, 𝐻-folds are built and iterated 

𝑆 times; further, the layer-2 only utilizes feature subset for ataxia severity classification prediction model; thus, 

the FSR-XGB attain better performance than existing ML-based ataxia severity classification. 

 

 

4. RESULT AND ANALYSIS 

This section studies the performance achieved using proposed FSR-XGB based ataxic severity 

classification model over standard XGB-based classification model. Further, the model is compared with 

existing ML [25] and DL-based [14], [18] ataxia severity classification model. The proposed and other existing 

ataxic severity classification model is implemented using Anaconda Python framework. The experiment is 

conducted using dataset collected from [27], [28]. The experiment is conducted using ataxia severity 

classification dataset [29] collected from [28] which has three classes such as healthy, PA, and CA; thus, 

classificaon task becomes a multi-label classificaon problem. The gait characteristic dataset is generated using 

kinect v2, tripod, microsoft kinect software devolopemnt kit and more detail of dataset can be obtained from [28]. 

The accuracies, sensitivity, specificity, precision, and F-measure are metrics used for validating the 

classification algorithm performance.  

 

4.1.  Specificity vs sensitivity measure 

This section provides performance study of specificity and sensitivity metrics in classifying whether 

a person is ataxic or healthy. The proposed FSR-XGB is compared with a total of five existing ML algorithm [25] 

such as random forest (RF), ADABoost, radial basis function (RBF) support vector machine (RBF-SVM), 

linear regression (LR), and XGB and one DL algorithm [14], [18]. The graphical outcome of specificity and 

sensitivity is given in Figure 2. From Figure 2 we can interpret that FSR-XGB outperforms all existing ML 

and DL-based ataxic person identification methods. 

 

4.2.  Accuracy performance 

This section provides performance study of accuracies metrics in classifying whether a person is ataxic 

or healthy. The proposed FSR-XGB is compared with a total of eight existing ML algorithms [25] such as RF, 

ADABoost, RBF-SVM, LR, XGB, Bayes, SVM, two layer neural network (TLNN), and one DL neural 

network algorithm [14], [18]. The graphical outcome of accuracy is given in Figure 3. From Figure 3 we can 

interpret that FSR-XGB outperforms all existing ML and DL-based ataxic person identification methods. 

 

 

  
  

Figure 2. Specificity vs sensitivity performance of 

different ML and DL algorithms 

Figure 3. Accuracy performance of different ML and 

DL algorithms 
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4.3.  Classification performance and feature importance analysis 

This section provides performance analysis of feature importance i.e., selection and ranking of both 

XGB and FSR-XGB and their role in multi-label classification outcomes. Figure 4 shows the graphical study 

of feature selection and ranking and their importance score of both XGB and FSR-XGB. The figure shows the 

proposed FS-XGB provides a higher feature importance score in comparison with XGB. Figure 5 shows 

graphical representation of classification performance of XGB and FSR-XGB. From Figures 4 and 5 we can 

interpret that FSR-XGB outperform standard XGB-based ataxic person identification methods. 

 

 

  
  

Figure 4. Feature importance analysis of XGB and 

FSR-XGB 

Figure 5. Classification performance for different 

ROC metrics 

 

 

5. CONCLUSION 

This research aims to use ML to identify ataxic individuals and compare them to control groups by 

analyzing gait characteristics. This paper conducted an in-depth analysis of the advantages and disadvantages 

of several ML and DL approaches used for ataxic-person-identification based on gait characteristics.  

The research indicates that more extensive data sets are needed for the DL approach to obtain optimal accuracy. 

However, when data is imbalanced, ML-based algorithms produce inaccurate results due to an increase in false 

positives. This paper introduces a novel feature weight optimization method for XGB to decrease false 

positives, and it also introduces a novel feature selection process by changing the cross-validation mechanism 

that is effective even with data that is imbalanced in its true form. In comparison to traditional XGB-based 

ataxic person identification, the FSR-XGB achieves higher levels of accuracy, sensitivity, specificity, 

precision, and F-measure performance by efficiently identifying which features affect classification accuracies 

by decreasing objective error. In future additional classes of ataxia will be considered and perform classificaon; 

Further, other nondegenerative like Parkinson will be considered and perform classification and validate the 

performance of FSR-XGB. 
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