
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 31, No. 3, September 2023, pp. 1803~1810 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v31.i3.pp1803-1810      1803  

 

Journal homepage: http://ijeecs.iaescore.com 

Identification and categorization of diseases in arecanut:  

a machine learning approach 
 

 

Ajit Hegde, Vijaya Shetty Sadanand, Chinmay Ganapati Hegde, Krishnamurthy Manjunath Naik, 

Kanaad Deepak Shastri 
Department of Computer Science and Engineering, Nitte Meenakshi Institute of Technology, Bengaluru, India 

 

 

Article Info  ABSTRACT  

Article history: 

Received Apr 4, 2023 

Revised Jun 10, 2023 

Accepted Jun 17, 2023 

 

 Arecanut is one of the prominent commercial crops that are grown worldwide 

for traditional medicines, furniture, cosmetics, food, veterinary preparations, 

and textile industries. It experiences a variety of diseases during its existence, 

from the bottom to the tip. The conventional method for detection of diseases 

is through visual inspection and it is also necessary to have properly designed 

laboratories to check these harvests. It is a time consuming and tedious task 

to inspect these crops across wide acres of plantations. The proposed system 

has been developed that uses convolutional neural network (CNN) to identify 

and categorize diseases in arecanuts, trunks and leaves also suggesting 

effective preventative measures. Proprietary dataset consists of 1,100 photos 

of healthy and diseased arecas. The ratio between the train and test data is 

80:20. Binary cross entropy is employed as the loss function for model 

construction, with accuracy serving as the metrics and Adam serving as the 

optimizing function. In identification and categorization of arecanut diseases, 

the suggested approach was shown to be efficient with 93.05% accuracy. 
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1. INTRODUCTION  

A widely known commercial palm arecanut grows in large portions of the Tropical Pacific, Asia and 

East Africa. Large, evergreen leaves on plants are spirally arranged at the apex of the stem and are either 

palmately or pinnately compound. The various factors including climatic conditions, soil conditions, diseases 

and more, have an impact on growth of the crops. Fruit rot, stem bleeding, yellow leaf spot and nut split disease 

are the common diseases that affect arecanut trees. The identification and categorization of diseases in arecanut 

plants is a challenging task as the symptoms can vary greatly depending on the type of disease and the stage of 

infection. Moreover, the lack of expert knowledge in this area makes it difficult for farmers to accurately 

identify and treat diseases. Timely and accurate diagnosis is crucial for effective disease management, but this 

is often hindered by the lack of appropriate technology and resources. 

Puneeth and Nethravathi [1] focused on diseases in arecanut through the classification of healthy and 

unhealthy arecanuts using image processing techniques. Dhanuja and Kumar [2] proposed on building a fully 

automated image classification system for the disease detection on multiple arecanut by using algorithms at all 

detection stages. Siddesha and Niranjan [3] presented detection of affected region from an infected arecanut 

image using K-means clustering and Otsu method. Anilkumar et al. [4] defined on detection of arecanut 

diseases such as fruit rot, yellow leaf spot and stem bleeding. Akshay and Hegde [5] divided the dataset into 

healthy and unhealthy classes. The decision tree method has been used to train the model. Guo et al. [6] took 
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all of inputs and process factors that is vegetable index, VI value, p-Value and mainly uses satellite images for 

recognition. A segmentation technique utilising the hue saturation value (HSV) colour model was presented 

by Dhanesha and Naika [7]. Irawan et al. [8] focused on expert system architecture and chaining method for 

detection which involves user interface (UI) features. 

Kanan and Kumar [9] proposed the method where comparison between the data values are done by 

using a regression algorithm to find similarities in the pattern of conditions using IoT sensors. Lei et al. [10] 

focused on using many machine learning algorithms like back propagation in neural network (BPNN), decision 

tree (DT), naive Bayes and k-nearest neighbors algorithm (KNN). A disease detection and classification system 

based on Android was proposed by Tlhobogang and Wannous [11]. The arecanut diseases can be prevented by 

using machine learning models, various techniques have been employed such as deep learning [12], 

convolutional neural network (CNN) [13], [14], image processing [15], [16], K-means [17], [18], support 

vector machine (SVM) [19], learning and machine perception (LAMP) [20] and real time identification of 

diseases [21]. Also, a simple practical architecture with three stages illumination normalization, feces detection 

and trait identification for CNN classification is proposed [22]. Automatic segmentation and classification of 

the region of interest are performed using the StoolNet [23] shallow convolutional neural network can be the 

feature. 

Identification and categorization refer to different but related stages of the detection process. 

Identification entails determining the precise class label of the arecanut plant based on the likelihood score that 

the machine learning (ML) model gives to each class label. Whereas, categorization entails classifying the 

many arecanut plant class labels according to the traits they have in common. The categorization stage is 

classifying the class labels according to the type of plant disease or condition. The objectives of the proposed 

system include: 

- Create the dataset that contains healthy and unhealthy images of arecanut, trunk and leaves. 

- Implementing an algorithm for detection and classification of diseases in arecanut. 

- Implementing an algorithm that would suggest remedies for the detected diseases. 

 

 

2. METHOD  

The methodology as shown in the Figure 1 for the proposed model is:  

- Dataset creation and pre-processing. 

- Training a neural network for the identification of arecanut diseases. 

 

 

 
 

Figure 1. Working design model 

 

 

2.1.  Dataset acquisition 

The proprietary dataset consists the collection of healthy and unhealthy images of arecanut, trunk and 

leaves. Some of the images from the dataset are shown in Figure 2, where Figure 2(a) is yellow leaf,  

Figure 2(b) is healthy leaf, Figure 2(c) is nut split, Figure 2(d) is stem bleeding, Figure 2(e) is fruit rot and 
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Figure 2(f) is healthy arecanut. Digital camera images were captured at half a meter from the source. The 

images of healthy and diseased arecanuts are gathered from the coastal and malnad regions of Karnataka. These 

images are shot with assistance of knowledgeable arecanut growers as well as researchers. The dataset 

collection has more than 1,100 photos in total which are stored in a defined hierarchy for further training. 

 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

 

Figure 2. Sample dataset (a) yellow leaf, (b) healthy leaf, (c) nut split, (d) stem bleeding, (e) fruit rot, and  

(f) healthy arecanut 

 

 

2.2.  Pre-processing 

Before training CNN model, images are reduced to 256*256 resolution by performing resizing and 

reshaping of the images. Resizing involves scaling the images to a standardized size, while reshaping involves 

converting the input images into a standardized shape. Each pixel's RGB value, which ranges from 0 to 255, is 

contained in an array. In this study, the pixel values of the arecanut leaf images were normalized to a range of 

[0, 1] by using the factor of 255. Data augmentation techniques were applied to the training dataset to increase 

its size and improve the performance. The data is randomly divided into two sets using the train-test split 

technique. According to the 80/20 split ratio, 80% of the data is utilized for training and 20% is used for testing.  

 

2.3.  Training model using CNN 

A CNN is a type of deep neural network that is designed to process and analyze the data that has a 

grid-like topology, such as an image [24], [25]. As shown in the Figure 3, the network consists of a series of 

convolutional layers that apply filters to the input data followed by pooling layers that down sample the output 

which completes feature extraction. The final layers of the network typically include one or more fully 

connected layers that perform classification.  

 

 

 
 

Figure 3. Sequential CNN model 

 

 

Feature extraction consists of, Input layer: This layer takes in the raw image data as input and prepares 

it for processing by the rest of the network, that is the input layer would take in an image of arecanut. The input 

image can be represented as a 3D tensor of shape (height, width, channels). Convolutional 2D layer: This layer 
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applies a set of 32/64/128 filters of size 3*3 to the dataset, which helps to extract features from the image. The 

resulting feature maps highlight important patterns and edges in the image that can be used for classification. 

The output of a convolutional layer can be computed using (1). 

 

ℎ [𝑖, 𝑗, 𝑘]  =  𝑓 (∑∑∑ 𝑘𝑒𝑟𝑛𝑒𝑙[𝑙, 𝑚, 𝑛]  ∗  𝑥[𝑖 + 𝑙, 𝑗 + 𝑚, 𝑛]  +  𝑏𝑖𝑎𝑠[𝑘])  (1) 

 

Where, h[i,j,k] is the output activation at position (i,j) for the k-th filter, f is a non-linear activation function, 

kernel[l,m,n] is the weight for the filter at position (l,m) and channel n, x[i+l,j+m,n] is the pixel value at position 

(i+l,j+m) and channel n in the input image, bias[k] bias term. Activation function rectified linear unit (ReLU): 

The output of the convolutional layer is subjected to an activation function known as the ReLU layer. Batch 

Normalization layer: It is a technique used to normalize the input to each layer of the network. Each mini batch 

of data is individually processed by calculating the mean and dividing by the input's standard deviation. Pooling 

2D layer (Max Pooling): This layer reduces the dimensionality of the feature maps with 2*2 or 3*3 by down 

sampling using maximum. The output of a max-pooling layer can be computed using (2). 

 

ℎ[𝑖, 𝑗, 𝑘]  =  𝑚𝑎𝑥(𝑥[𝑖: 𝑖 + 𝑝𝑜𝑜𝑙_𝑠𝑖𝑧𝑒, 𝑗: 𝑗 + 𝑝𝑜𝑜𝑙_𝑠𝑖𝑧𝑒, 𝑘]) (2) 

 

Where, h[i,j,k] is output activation at position (i,j), x[i:i+pool_size, j:j+pool_size, k] is the receptive field of 

the pooling operation with the position (i,j), pool_size the size of pooling window. Dropout layer: This layer 

randomly drops out a certain percentage of the neurons in the network during training which helps to prevent 

overfitting and improve the network's generalization ability. Classification consists of, fully connected layer: 

This layer takes the flattened feature maps from the previous layers and applies a set of weights and biases to 

produce an output which has been passed through one or more fully connected layers that is hidden layers such 

as dense layer for classification. Output of fully connected layer is obtained using (3).  

 

𝑦[𝑗]  =  𝑓 (∑ 𝑤[𝑖, 𝑗]  ∗  𝑥[𝑖]  +  𝑏[𝑗])  (3) 

 

Where, y[j] is the output activation for jth neuron in the fully connected layer, f is a non-linear activation 

function, w[i,j] is the weight for the connection between the ith input neuron and the jth output neuron, x[i] is 

the input activation for the ith input neuron, b[j] is the bias term for the jth output neuron. Output layer: This 

layer produces the final output of the network, which is a probability distribution over the different disease 

classes. Table 1 shows that the proposed CNN model consists of several layers beginning with a 2D 

convolutional layer with 32 filters of size 3*3, stride 1 with ‘same’ padding working on preprocessed image. 

Then comes a max pooling layer with a pool size of 3*3 and stride of 1 which is followed by an activation 

layer that employs ReLU, a batch normalization layer and a layer of max pooling. Having a dropout rate of 

0.25 the following layer is a dropout layer.  

 

 

Table 1. Parameters of CNN layers 
Layers Output shape Parameters 

Conv2d (256, 256, 32) 896 
Activation function (ReLu) (256, 256, 32) - 

Batch normalization (256, 256, 32) 128 

Pooling 2D (MaxPooling) (85, 85, 32) - 

Dropout (85, 85, 32) - 

Flatten (56448) - 

Dense (1024) 57803776 

 

 

Alternating 2D convolutional layers, activation layers, batch normalization layers, max pooling layers 

and dropout layers are used in the succeeding layers. The convolutional layers have more filters than before 

32, 64, and 128. The stride, padding and kernel sizes are kept 1 and ‘same,’ respectively. The last layers consist 

of a flatten layer to reshape the output from the preceding layer, a fully linked dense layer with 1,024 units, 

another activation layer, a batch normalization layer and a dropout layer. Seven units with a softmax activation 

function make up the last dense layer. The model comprises 58,094,471 parameters of which 58,091,591 are 

trainable. In a multiclass CNN before compiling the model, the binary cross entropy loss function is extended. 

To minimize the loss Adam has been used for optimizing bias and weights of the network during the training 

process. The dataset with a specified batch size is used to train the model for 25 epochs of 28 steps per epoch. 
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2.4.  CNN based classification 

The pre-processed image is passed through the trained model and the output is the probability 

distribution over the 7 classes. The SoftMax function is applied to the output to convert the probabilities into a 

probability distribution that sums to one. The predicted class is the class with the highest probability in the 

output of the model. This is the class that the model predicts the input image that it belongs to. The prediction 

and remedies are displayed along with the input image that can be used to make decisions. 

 

 

3. RESULTS AND DISCUSSION 

The proposed method was evaluated on the proprietary dataset of arecanut with 7 classes namely 

healthy leaves, healthy nuts, healthy trunks, fruit rot, stem bleeding, yellow leaf spot and also nut split disease 

[26], [27]. The CNN model was trained by the training set and the accuracy of the network was evaluated on 

the test set. As indicated in Figure 4 the graph plots the accuracy of the model on the y-axis and the number of 

epochs on the x-axis. The training accuracy vs epoch graph shows the model's performance on the training 

dataset over time. As the number of epochs increases, accuracy of the training should improve because the 

network is learning more about the dataset and becoming better at classifying it.  

On the other hand, the validation accuracy vs epoch graph shows the performance of the network on 

a validation data over time, this aids in avoiding overfitting. Ideally, both the training accuracy and validation 

accuracy should increase over the time and plateau as the model converges to an optimal solution as in the 

graph. If the training accuracy continues to increase while the validation accuracy plateaus or even decreases, 

it may indicate overfitting. In contrast, if both the training and validation accuracies are low and do not improve 

over time, it may indicate underfitting, which occurs when the model is too simple to capture the complexity. 

As indicated in Figure 5 the training loss vs epoch graph shows the loss function's value during each 

epoch of training on the training data. A decrease in the loss function over time indicates that the model is learning 

and improving. The validation loss vs epoch graph shows the loss function's value during each epoch of training 

on the validation data. A decrease in the validation loss function over time indicates that the model is not 

overfitting. Ideally, there will be a decreasing trend in both training and validation loss over the epochs. However, 

if the training loss continues to decrease but the validation loss starts increasing, it indicates overfitting. On the 

other hand, if both the training and validation loss functions are high, it indicates underfitting. Results show that 

the model converges over the epochs, the training and validation loss functions decrease steadily over time 

indicating that the model is learning and generalizing well to new data. As indicated in Figure 4, the test accuracy 

after model training was 93%. The trained model recognizes the condition of arecanut based on probability score 

of the classes and remedies for the predicted diseases are displayed for the end users. 

 

 

  
  

Figure 4. Accuracy v/s epoch Figure 5. Loss v/s epoch 

 

 

3.1.  Comparative analysis  

Table 2 exhibits the performance evaluation of different methods used for classification of arecanut 

diseases. For comparison we have chosen classification algorithms like nearest neighbors, convolutional neural 

network, decision tree, support vector machine. The Table 2 makes it abundantly evident that the proposed 

CNN model has produced a better result and performance. This precision can be linked to CNN's capacity to 

extract intricate features from images which makes it more effective at detecting diseases than other models 

that depend on less complicated feature extraction techniques. Convolutional layers of CNN also allow for the 

retention of spatial information improving the ability to recognize patterns and structures in the images. 
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Table 2. Comparison of performance evaluation 
Reference Model/method Accuracy 

Dhanuja and Kumar [2] Nearest neighbors (NN) 90.9% 

Anilkumar et al. [4] Convolutional neural network (CNN) 88.46% 

Akshay and Hegde [5] Decision tree 90% 

Balipa et al. [28] Support vector machines (SVM) 75% 

Zamani et al. [29] Random forest 92% 

Nanthakumar et al. [30] CNN- long short-term memory (LSTM) 92.55% 

Proposed work Convolutional neural network (CNN) 93.05% 

 

 

4. CONCLUSION 

The novel work demonstrated the potential of using CNN for the identification and categorization of 

diseases in arecanut. Through the development and testing of the model it was possible to achieve a high 

accuracy rate of 93.05% in classifying the different diseases affecting arecanut which includes fruit rot, stem 

bleeding, yellow leaf spot and newly spreading nut split disease. The results of the study can have significant 

implications for farmers and agricultural researchers who are looking for more efficient and accurate ways to 

diagnose and manage diseases in arecanut. However, future studies could benefit from the use of larger 

distributed datasets to increase the reliability of the model. Additionally, there may be other environmental and 

climatic factors that could affect the accuracy of the model in real-world. With further research and 

development, this technology could become a valuable tool for the management of crop diseases. 

Consequently, this approach helps in encouraging farmers to engage in intelligent farming and giving them the 

tools, they need to make better decisions regarding yields. 
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