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Abstract 
Fishtail skeleton, muscles and nerves controlling body swinging were simulated using alloy sheet, 

giant magnetostrictive material (GMM) posted on this sheet and outside magnetic field in this study. Thus, 
the quick start of part natural fishes was simulated. The non-linear model related to large geometric 
deformation and non-linear damping was established after analysis and research. A recurrence formula is 
obtained using eigensolution, nonlinear dynamic equation and small parameter expansion method, and a 
numerical method for solving nonlinear problem is formed. The numerical analysis reveals the swimming 
mechanism of bionic robot fish, and the best start mode of this fish was designed. It also reveals the effect 
of material, geometric parameters, environmental factors, etc. on the starting of robot fish. The results 
show that there is an optimum frequency in the starting process of bionic robot fish. The optimum mode is 
a rapid transition from low order mode to high order mode, thus achieving the quick start of robot fish. 
These provide a theoretical basis and data support for designing the quick start of bionic robot fish. 
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1. Introduction 
Bionic robot can be divided into two categories: general type of robot and micro robot 

according to the size. The former needs to bring power system, while the latter can rely on vitro 
system to control. Miniature robot [1] technology has increasingly become the focus of 
researchers, including super magnetic robot fish [2-5], which has an important research value 
and broad application prospect. For example, it can safely enter the human body and will not 
adversely affect various organs in the medical field. It can also be used to work in the place with 
toxic substances or in contaminated duct and so on in industrial applications.  

first bends in C or S shape and then quickly bounces in the starting process to make the 
body present wavy line. Predatory fish more uses S-shaped starting, and herbivorous fish 
generally escapes through C-shaped starting. However, the current study on bionic robot fish 
focuses on the high efficiency features of parade. The studies on the mechanical propulsion 
mechanism of fish fast start [6] and its project application are very little. Therefore, the study on 
robot fish with a superior starting performance is very important to improve the high starting 
efficiency of robot fish. It can provide a theoretical basis and design ideas for the study on 
robotic fish with a high maneuverability.  
 
 
2. The Drive Control Equation of Robot Fish 
2.1. The Structure Model of Fishtail 

Super magnetic robot fish is composed of fish body and fishtail, and the fishtail consists 
of rectangular alloy sheet of pasted or plated GMM. Cartesian coordinate system was used, and 
the length, width and height of rectangular fishtail were L, b and h, respectively. Moreover, the 
pasted or plated thickness )(x  of GMM (uniform in the plate width direction) is thinner than 

alloy sheet: hx )( . The stretching of GMM has a certain relationship with the parameters of 

outside magnetic field by reference to Clark's (1980) research achievements [7]. The 
constitutive relation can be expressed as: 

H
σ Hε ε ε S σ dH            (1) 
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Where,  represents the total strain, HS  is the compliant coefficient,   is stress, d is dynamic 

magnetostrictive coefficient, H is the strength of outside magnetic field. Strain  H  caused by 

the outside magnetic field is:  
 

H

ΔL
ε λ dH

L
     (2) 

 
 represents the magnetostrictive coefficient. The strength of outside magnetic field is 

linearly proportional to the B. Assume that B changes in an exponential relationship:   
 

/ cos( ) (1 ) cos( )t
0H B B t B e t               (3) 

 
  is permeability. The expansion phenomenon of GMM plated on the elastic sheet 

occurs under the change action of outside magnetic field. Its effects on the sheet can be 
ultimately transferred into a bending moment distribution: 

 
( ) / 2

2/ 2
( , ) (1 ) cos( )

x h t
0A h

G x t ydA E dbB e t ydy



         (4)  

 
Where )/1()( 0 Lxx   , and 0   is a constant. Moment distribution can be expressed 

as a quadratic function of the coordinate x : 
 

0 2 0 0( , ) (1 )(1 / )( / )[cos( )] / 2t
0G x t E dbB e x L x L h t       

 
 
2.2. The Nonlinear Mechanics Model of Fishtail Swing  

The effect of the GMM layer ( hx )( ) on the bending rigidity of this structure was 

ignored to reveal the main mechanical behavior. Then, the problem is reduced to a cantilever 
beam model. Assume that the fishtail has no torsional deformation in the process of simplifying 
mechanical model. The fluid resistance to fish-tail swing is approximately equal to its resistance 
generated in the flow field [8, 9]. The resistance generated on micro-unit is dxCVtxFd ),(  

when the Reynolds number is low, and the fishtail swings according to the resistance
)()tan()( LengthVtConsLowRFd    given by Gerhart [10]. ttxyV  /),( in it, and the 

damping coefficient [10] can be approximated as  2ln5.0)/2ln(2/2
0  bLLC   where 0

is the viscosity coefficient of liquid.  
The linear mechanics model of fish-tail swing is [11]:  
 

4 2

4 2

( ) ( ) ( )
( )

y x,t y x,t y x,t
EI ρbh C t

x t t

  
  

  
   (5) 

 
The nonlinear control equation can be established because of taking into account the 

problems of nonlinear damping and large geometric deformation situation as follow: 
 
            

                             (6) 
 
Where,  is the density of alloy material, and moment of inertia: 12/3bhI  . C1 is the 

coefficient of linear damping. C2 is the coefficient of nonlinear damping )cos()1()( tet t    

and 2
002 )/)(1( LebdBE t   . The boundary conditions corresponding to the model are: 

 

0 0

2 3

2 3

( )
y( ) 0 ; 0

y( ) y( )
0 ; 0.

x x

x L x L

y x,t
x,t

x

x,t x,t

x x

 

 

   

     

  (7) 

4 2 2
2

1 24 2 2

( , ) ( , ) ( , ) ( , ) ( , ) 3 ( , ) ( , )
( ) ( , )

2

y x t y x t y x t y x t y x t EA y x t y x t
EI bh C C x t

x t t t t x x
       

    
      
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Initial conditions are: 0 0( ,0) ( ,0) ( ) 0y x y x y x   ；y  (8) 

 
 

3. The Method for Solving Control Equations 
3.1. Eigenvector Method  

The particular solution and general solution of linear Equation (6) were recorded as the 
following two formulas [12], respectively: 

 

1

( ) ( )p n n
n

y t Y x






                   (9)    

                      

 
1

( ) ( )c n n
n

y t Y x




   (10) 

 
The solution of nonlinear problem solution is ordered to be: 
 

*

1 1 1

( ) ( ) ( ) ( ) ( ) ( )c p f n n n n n n
n n n

y y y y t Y x t Y x t Y x  
  

  

          (11)  

 
Where, fy reflects the non-linear nature. If )(tn satisfies 0/)()( 00   tntn ttt  , 

then the Expressions (9) and (10) satisfy initial and boundary conditions. If the Expression (11) 
satisfies the non-linear Equation (6), then this expression is the solution of the problem. The 
Expression (11) is substituted into linear Equations (6) to obtain:   

 
4 2

1 2

2 2 2 2

( )

3
( ) ( ) 0

2

x f t f t f t c t p t f t c t p t f

x c x p x f x c x p x f

EI y bh y C y C y y y y y y

EA
y y y y y y

               

           
  (12) 

 
It can be seen that if  fy can be obtained from Equation (12), then the solution of 

problem can be obtained by Expression (11).  
 

3.2. Numerical Methods 
The small parameter method is used to commence within neighborhood  0 0,t t at t=0, 

by the time during a very short beginning time（ ）t<<1 . Then: 
 

1

1 1 1

* 1

1 1 1

1

1 1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

m
c n n nm n

n n m

m
p n n nm n

n n m

m
f n n nm n

n n m

y t Y x A Y x t

y t Y x B Y x t

y t Y x C Y x t







  


  

  


  

  


  

  



 



 


 

 

 

  (13) 

 
The Expression (11) is the solution of the problem in this period if Cnm can be 

ascertained because Anm and Bnm are known. The Equation (12) is as follows at this time: 
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(4) 1 3 2
1

1 1 1 1 1 1

2 2 2
2

1 1 1 1 1 1

2

1 1 1

( 1)( 2) ( 1)

[ ( 1) ( 1) ( 1) ]

( 1) ( 1)

m m m
nm n nm n nm n

n m n m n m

m m m
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m
nm n n

n m m

EI C Y t bh m m C Y t C m C Y t

C m A Y t m B Y t m C Y t

m A Y t m B


     

  

     

     
  

     

  


  

    

     

  

  

  
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1 1 1

1 1 1 2

1 1 1 1 1 1

1 1 1

1 1 1 1 1 1

( 1)

3
( )

2

( ) 0

m m
m n nm n

n n m

m m m
nm n nm n nm n

n m n m n m

m m m
nm n nm n nm n

n m n m n m

Y t m C Y t
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A Y t B Y t C Y t

A Y t B Y t C Y t
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 

  

     
  

     

     
  

     

 

    

    

 

  

  

             (14) 

 
(4) 1 1 1

2 1 1
1 1 1 1 1 1

1 1
2

1 1 1 1

( 1)

3
0

2

m m m
nm n nm n nm n

n m n m n m

m m
nm n nm n

n m n m

EI C Y t ρbh m mC Y t C mC Y t

EA
C D Y t F Y t

     
  

 
     

   
 

   

  

  

  

 

        (15)  

 
1 1 2 1

1 1 1 1 1 1

[ ( ) ] [ ( ) ]m m m
nm n nm nm nm n nm nm nm n

n m n m n m

F Y t A B C Y t A B C Y t
     

  

     

               (16) 

 
1 1 2

1 1 1
1 1 1 1

( , )[ ( ) ]m m
nm n nm nm nm n

n m n m

D Y t x t m A B C Y t
   

 
  

   

                      (17) 

 

Where, ( , ) /x t y y    and 1
1 1 1

1 1

( ) m
nm nm nm n

n m

y m A B C Y t
 


  

 

   . The coefficient Equation 

(15) is compared to obtain: 
 

(4)
2 1 1 2

1 1 1 1 1

3
( 1) 0

2nm n nm n nm n nm n nm n
n n n n n

EA
EI C Y bh m mC Y C mC Y C D Y F Y

    

 
    

                   (18)   

 
Equation (18) is multiplied by ( ) ( 1,2, )iY x i   , and then the following equation can 

be obtained by integrating and using orthogonality relationship: 
 

4
2 1 1 2

1 3
( ) ( , 1,2, )

( 1) 2nm nm n nm nm nm

EA
C F EIk C C mC C D n m

bh m m     


             (19) 

 

Where, 1 2 0n nC C  , and thus ( 3)nmC m   can be got through the Equation (19).  

 
The Equations (16) and (17) are multiplied by ( ) ( 1,2, )iY x i   , respectively. Then, 

the following equations can be obtained similarly by using the orthogonality relationship and 
comparison coefficient. 

 

1 2 3 1 2 3

1 2 3

1 1
1 1 1 1 1

( , 1, 2, )
m k

nm nn n n n j n k j n m k
n n n k j

F E n m  
  

   
    

     (20)   

 

1 2 1 2

1 2

1 2
1 1 1

( 1 ) ( , 1, 2, )
m

nm nn n n k n m k
n n k

D G k m k n m 
 

  
  

        (21) 

 

Where,
1 2 3 1 2 30

( ) ( ) ( ) ( )
l

nn n n n n n nE Y x Y x Y x Y x dx    , 
1 2 1 20

( , ) ( ) ( )
l

nn n n n nG x t Y x Y x Y dx    and 

ij ij ij ijA B C     ( , 1, 2, )i j   . and the N and M may be assigned to n and m, respectively. 
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( 1)nkC k m   is recursively obtained by the former known conditions in discussing ( , )x t  and 

equation (19), and assume
1

1 2
1 1

1 1 1

( , , ) [ ( ) ( 1) ]
N M m

k k
n nk nk nk

n k k

y x t m Y k A B t k C t


 
 

  

      .  

The average driving force can be expressed as: 
 

1 20 0 0

1 1
( ) [ ( , ) ( , ) ( , ) ] '( , )

t t l

adF F t dt C y x t C y x t y x t y x t dxdt
t t

          (22) 

 
Thus, the solution y and the F have been solved in some small neighborhood  0 0,t t  

at t=0. Then, the solution was sequentially solved in some tiny neighborhood  0 0,t t  at 0t t . 

Therefore, Equation (6) can be written as: 
 

4 2
0 0 0 0 0

1 24 2

2
20 0

02

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , )3
( ) ( , , )

2

y x s t y x s t y x s t y x s t y x s t
EI bh C C

x s s s s

y x s t y x s tEA
x s t

x x





    
  

    

 
 

 

  (23)  

 

The initial condition is 
0 00 0 0 0 0 0( , ), ( , )t t s t t sy y y x t y y y x t           at this time,  

 

0 0 1 1 1
1

0 0 2 2 2
1

( , ) ( ) ( )

( , ) ( ) ( )

N

n n n n
n

N

n n n n
n

y x t A B C Y x

y x t A B C Y x






  


   










  (24) 

 
They are substituted into the linear Equation (5) to get: 
 

       

       

0 0
1 1

0 0
1 1

0 0 ) , )

, )

i i i i
i i

i i i i
i i

Y x Y x dx y x t

t Y x t Y x y x t

 

 

 


 

 


 


 


  


 

 



  

（

（

  (25) 

 
The both sides of above Equation (25) were multiplied by Yj(x) at the same time and 

then integrated along the beam. Then, equations were got by using orthogonality relationship 
between mode shape functions: 

 

   

   

2
00 0

1

2
00 0

1

( ) ( 0 0 ) ( )

( ) ( ) ( )

l l

i i i j
i

l l

i i i j
i

Y x dx y Y x dx

Y x dx t t y Y x dx

 

 












 


  


 

 



  

  (26) 

 

   

   

0 0 i
i i

i

i
i i

i

z

B

g
t t

B

 

 





  

  




 

  (27)    

 

Where, 
00

z ( )
l

i jy Y x dx   ,
00

g ( )
l

i jy Y x dx    . Thus, the unknown coefficients c1 and c2 can 

be obtained: 

2 2

1
2 1

1 1

2
1 2

-

0

-

i i
i i

i i
i

i
i i

i i
i i

i

z g
r a r b

B B
c

r r
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r a r b

B B
c

r r

   
 


 

   


 




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2

0

i
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i

i
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z
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B
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
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           



 
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i
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B

g z
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B B
c




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

 
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Then, the general solution cy  has been solved. The particular solution and general 

solution of similar linear Equation (5) are recorded as: 
 

0
1

( ) ( )p n n
n

y t s Y x






               (28)  

               

0
1

( ) ( )c n n
n

y t s Y x g




    (29) 

 
It can be verified that c py y  satisfies the linear Equation (5) and the initial and 

boundary conditions.  

The case 0( )t t  was studied at any time in the following study. 0s t t  was ordered, 

and 0 1t t �  or 1s � , thus the following equation can be obtained by expanding by s:  
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

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 

 
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  (30) 

 

Assume that the displacement and velocity distribution at 0t t  are known, 
nmA  and

nmB  

are also known. If 
nmC  can be determined, then Formula (11) is the solution of problem in this 

period of time. Equation (12) can similarly be simplified to: 
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  (31)  
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Where, ( , ) /x t y y   and 1
1 1 1

1 1

( ) m
nm nm nm n

n m

y m A B C Y t
 


  

 

   . The coefficient 

Equation (15) is compared to obtain: 
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2 1 1 2
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3
( 1) 0

2nm n nm n nm n nm n nm n
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EI C Y ρbh m mC Y C mC Y C D Y F Y
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 
    

           ( 1,2, )m    (34) 

 
Equation (18) is multiplied by ( ) ( 1,2, )iY x i   , and then the following equation can 

be obtained by integrating and using orthogonality relationship: 
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Where, 1 2 0n nC C    and ( 3)nmC m   can be got through Equation (35). The 

Equations (16) and (17) are multiplied byYi(x), respectively. Then, the following equations can be 
obtained similarly by using the orthogonality relationship and comparison coefficient: 

 

1 2 3 1 2 3

1 2 3
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( , 1, 2, )i j    respectively. ( 1)nkC k m  was known when ( , )x t  and Equation (36) were 

discussed, and 
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       was ordered. Therefore, the 

mean force can be expressed as: 
 

1 20 0 0

1 1
( ) [ ( , ) ( , ) ( , ) ] '( , )

t t l

adF F t dt C y x t C y x t y x t y x t dxdt
t t

          (38) 

 

The small parameter expansion continued in some small neighborhood  0 0,t t  of 

02t t , and the things like this were done in turn ... Thus, the swing vibration mode y and the 

average driving force adF  of fishtail can be got under the non-linear model.  

 
 
3.3. The Swimming Speed of Robot Fish 

Suppose that displacements of mass center are xu and yu  in x and y directions when 

robot fish swims forward, respectively, and rotation angle is θ. The driving force is divided into 

the component forces xF  and yF  in two directions, respectively. Then, the equation of motion 

can be expressed as Equation (39):  
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  (39) 

 
 

4. Numerical Results and Analysis 
The selected parameters are as follows: 5

0 1.0 10 [m]   , 21.0 10 [m]b   , 41.0 10 [m]h   . 

0 2.0[Pa s]   . 97.0 10 [Pa]E   , 3 32.0 10 [kg/m ]   , the selected GMM [10] is 2TbFe  (
10

2 9.4 10 [Pa]E   , 63.77 10 [m/A]d    and 
0 10[T]B  ), and the first five orders of modal superposition 

is chosen. L=0.09 is selected as the fishtail length [11]. The time required by fishtail swing for 
three times under the second order frequency is ordered to be start time. Figure 1 shows the 
relation curve of mean force and the frequency of outside magnetic field. This figure also shows 
that the curve has a maximum, and the frequency of outside magnetic field at this point is 40. 
These indicate that there exists an optimal frequency of outside magnetic field, and the average 
driving force inspired at this frequency is largest.  

The swing shape of fishtail is shown in Figure 3 at the optimum frequency of outside 
magnetic field. This figure shows that fishtail is initially bent into C shape and then transited to 
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the S shape. The swinging shape of S-shaped fishtail is the gesture of quick start [2-4]. This 
conclusion explains the quick start mechanism of bionic robot fish.  

Figure 2 shows the vibration modes corresponding to the first three orders of natural 
frequencies to further illustrate the swing shape of fishtail. The comparison between Figure 4(a) 
and (b) shows that the first-order vibration mode is the major component in the early period of 
robot fish starting. Then, the second-order natural vibration mode becomes the major 
component. Figure 4 shows the coefficient change rule of each-order natural vibration mode 
with time in Solution (14) of variation shape to more clearly show the process. Figure 4(b) 
clearly shows that the first-order vibration mode coefficient shows an attenuation trend, and the 
second-order and third-order vibration mode coefficients play a dominant role. Swing shape is 
mainly changed to the high-order natural vibration mode. This starting can be considered as S-
shaped starting.  

 
 

 
 

 

Figure 1. Relationship between External 
Frequency and Average Driving Fore 

Figure 2. First Three Orders of Vibration 
Modes 

 
 

 
(a) 

 
(b) 

 
Figure 3. Swing Vibration Modes of Fishtail under the Excitation of External Magnetic Field 

 
 

 
(a) 

 
(b) 

 
Figure 4. Coefficients of Vibration Modes 
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Figure 5 shows the entire starting process of bionic super-magnetic robot fish. It is 
noted that the starting trajectory of robot fish is along an arc. There is an angle between it and 
the initial starting of fish body. This is caused by the inconformity between the resultant direction 
of driving forces and the direction of fish body. The angle is relevant to the strength of outside 
magnetic field, frequency and other factors: the initial degree of bend and the speed of 
backswing. Therefore, these factors should be considered in the quick start design of robot fish.  

 

 
Figure 5. Starting Process of Robot Fish 

 
 

5. Conclusion 
The starting speed of GMM robot fish can be controlled by adjusting the frequency and 

intensity of the outside magnetic field. How fast GMM robot fish starts is related to geometric 
parameters, liquid environment, material constants and the frequency and intensity of the 
outside magnetic field. Fishtail is first bent to C-shape in the starting process of robot fish and 
then transited to C-shape, S-shape or S+C-shape and so on. The proportion of natural vibration 
mode in the solution determines the starting form of GMM bionic fish. There is an angle 
between the trajectory in the starting process of bionic fish and fish body. This angle is closely 
related to the frequency and intensity of outside magnetic field. The research results verify the 
rationality of fish S-shaped starting and also provide a theoretical basis for the design of bionic 
robot fish with quick start. 
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