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 Variational active contour seeks to segment or extract desired object 

boundaries for further analysis. The model can be divided into global 

segmentation and selective segmentation. Selective segmentation, which 

focuses on segmenting a particular object, is preferable to the global model. 

Recently, a number of selective segmentation models have been developed to 

precisely extract an object on grayscale images. Nevertheless, if the input 

image is vector-valued (colour), these models merely convert it to a grayscale 

image, resulting in data loss owing to the reduction in image dimension. 

Furthermore, they may have poor segmentation performance due to the 

intensity inhomogeneous images. Therefore, a new model on variational 

selective active contour for segmenting vector-valued images has been 

proposed that incorporates the concepts of local image fitting and distance-

based fitting terms into a variational minimization energy functional. 

Moreover, a Gaussian function was used as a regularizer to replace the 

computationally expensive Total Variation term. Then, the proposed model’s 

Euler Lagrange equation has been provided to solve the model. When 

segmenting an object in inhomogeneous intensity images, the result of the 

proposed model was about 30% more accurate based on the Jaccard value and 

about 3 times faster than other existing methods. 
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1. INTRODUCTION  

Image segmentation is one of the most complex and vital mathematical problems in image processing 

that is beneficial in many applications such as medical image analysis, biometric identification, object detection 

and classification [1]-[7]. Several segmentation approaches that have been established including learning-based 

approaches (machine and deep learning) and active contour method (ACM). The learning-based approaches 

although effective however required a huge amount of data which is not always available. For small amounts 

of data, they are less accurate. On the other hand, the ACM which is independent of amount of data is a 

variational mathematical model that has been ascertained as the most successful segmentation approach. Two 

https://creativecommons.org/licenses/by-sa/4.0/
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types of ACM exist: global segmentation and selective segmentation. Global segmentation requires the 

segmentation of the boundaries of all objects within an image. In contrast, selective segmentation extracts only 

the required object according to predetermined geometric constraints from an input image [2]-[3]. 

The C-V model by Chan and Vese [8] is the most widely used region-based global ACM. However, 

this C-V model is only applicable to grayscale images. This led Chan et al. [9] to propose the chan-sandberg-

vese (CSV) model, a vector-valued image segmentation model based on active contours that able to produce 

better results as more information is included. Despite this, the use of global image information in both C-V 

and CSV models makes them difficult to segment intensity inhomogeneous images. Intensity inhomogeneity 

refers to the presence of smooth variations in intensity across different regions of an image [10], arises due to 

the data acquisition process and external factors such as imperfection in the camera, inconsistencies in ambient 

daylight and artificial lighting. This problem poses difficulties during the image segmentation process, 

especially using an ACM that depends on the intensity homogeneity of the desired object in an image. In order 

to encounter the intensity inhomogeneity problem, Zhang et al. [11] proposed a new model namely the local 

image fitting (LIF) approach, which relies on the disparities between the original and the local fitting images 

in order to extract the local image information from a grayscale image. In addition, they also introduced a 

Gaussian function for variational level set regularization to speed up the processing time. Since then, many 

researchers have used the LIF and Gaussian function as the regularizer in segmenting intensity inhomogeneous 

images [12]-[16].  

All the approaches described above are immensely useful for tasks requiring the segmentation of all 

features in a single image. Thus, they are inapplicable in the case of selective segmentation. This study is 

concerned with the selective segmentation type to segment vector-valued or colour images. The integration of 

this method with medical imaging disciplines [17]-[18], biometric authentication [19] and text processing [20] 

has its own significant potential. Nguyen et al. [21]  introduced a robust interactive selective image 

segmentation model for vector-valued images that is state-of-the-art. We referred to this model as interactive 

image segmentation (IIS). Among other authors, this IIS model uses two geometric constraints to selectively 

segment the desired objects in an input image (foreground and background strokes). The implementation results 

have proven that their model was superior to other interactive state-of-the-art segmentation models that were 

stated in the paper. However, the model may give unsatisfactory result in segmenting fine shape.  

Recently, another selective type of variational ACM termed distance selective segmentation 2 (DSS2) 

model was proposed by Ghani and Jumaat [22]. A distance function with only a single geometrical constraint 

was used in the formulation of the DSS2 model with promising results for colour or vector-valued images. 

However, the DSS2 model has a high computational cost because of the existence of total variation (TV) term 

in the formulation. In addition, the DSS2 model is not designed to segment a targeted object in vector-valued 

images having intensity inhomogeneity.  

Thus, this paper aims to develop a new model on variational selective active contour to segment 

vector-valued images with intensity inhomogeneity efficiently. The subsequent section of this study provides 

the methodology where it describes the suggested model's formulation and its solution by considering the local 

image fitting energy and distance function with Gaussian regularizer in the new models’s formulation. 

Following that, the experimental results and discussion are provided in section 3 before concluding in section 4. 

 

 

2. METHOD 

The idea of formulating the new model is achieved by integrating the LIF model [11] and distance 

function of DSS2 model [22] into a variational minimization energy functional. Furthermore, a Gaussian 

function is proposed as a regularizer to replace the computationally expensive TV term. The methodology of 

the proposed model will be explained based on the flow chart in Figure 1. 
 

 

 
 

Figure 1. Methodology of the proposed model 
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Based on Figure 1, the LIF energy and distance function (DF) fitting term of an input image are 

computed. After that, a total energy minimization functional that represents the new model is formulated to 

segment the input image by integrating the LIF and DF energies. Next, the Euler Lagrange equation is derived 

from the total energy minimization functional to obtain the segmented output image. In the next subsection, 

each step is explained in detail. 

 

2.1.  Input image 

This research involves the segmentation of test images which consist of a combination of synthetic, 

natural and medical images obtained from various image database in [23]-[29]. Their groundtruths which 

contained the segmented regions were obtained from the same database. The test images were vector-valued 

images with intensity inhomogeneity to test the ability of the proposed model. 

 

2.2.  Local image fitting  

Zhang et al. [11] invented LIF model to effectively segmenting image with intensity inhomogeneity. 

Assume that for an image 𝑢 = 𝑢(𝑥, 𝑦) in a domain Ω, the regularized local image fitting energy function in the 

level set formulation 𝐸𝜀
𝐿𝐼𝐹 is defined as follows: 

 

𝐸𝜀
𝐿𝐼𝐹(𝜙) =

1

2
∫ |𝑢 − (𝑛1𝐻𝜀(𝜙) + 𝑛2(1 − 𝐻𝜀(𝜙)))|

Ω

2

𝑑𝑥𝑑𝑦 (1) 

 

where 𝐻𝜀(𝜙) represents the Heaviside function such that 𝐻𝜀(𝜙) = 0.5(1 + (2/𝜋)𝑎𝑟𝑐𝑡𝑎𝑛(𝜙/𝜀)) while 𝑛1 and 

𝑛2 are the averages intensity of the interior and exterior in a local region. In this research, we extend the 

formulation in (1) into vector-valued framework to process colour images. Thus, the (1) can be transformed 

into the following new (2). 

 

𝐸𝜀
𝐿𝐼𝐹(𝜙) =

1

2
∫

1

𝑁
∑ [𝑢𝑖 − (𝑛1

𝑖 𝐻𝜀(𝜙) + 𝑛2
𝑖 (1 − 𝐻𝜀(𝜙)))

2

𝑑𝑥𝑑𝑦]𝑁
𝑖=1Ω

 (2) 

 

Here, 𝑢𝑖 = 𝑢𝑖(𝑥, 𝑦) is the 𝑖𝑡ℎ channel of a colour image on Ω with 𝑖 = 1,2, . . . , 𝑁 channels. For the vector 

valued (colour) image, the value of 𝑁 is three. The functions 𝑛1
𝑖 = (𝑛1

1, . . . , 𝑛1
𝑁) and 𝑛2

𝑖 = (𝑛2
1, . . . , 𝑛2

𝑁) are the 

intensity averages of interior and exterior in a local region that could be expressed in the following way: 

 

𝑛1
𝑖 (𝜙) = 𝑚𝑒𝑎𝑛 (𝑢𝑖 ∈ ({(𝑥, 𝑦) ∈ Ω|𝜙(𝑥, 𝑦) > 0} ∩ 𝐾𝜎(𝑥, 𝑦))) 

𝑛2
𝑖 (𝜙) = 𝑚𝑒𝑎𝑛 (𝑢𝑖 ∈ ({(𝑥, 𝑦) ∈ Ω|𝜙(𝑥, 𝑦) < 0} ∩ 𝐾𝜎(𝑥, 𝑦)))

 (3) 

 

here, a truncated Gaussian window 𝐾𝜎(𝑥, 𝑦) = 𝑒−(𝑥2+𝑦2)/2𝜎2
 is used with a standard deviation 𝜎 and a size of 

(4𝜔 + 1) × (4𝜔 + 1), where 𝜔 is the greatest integer smaller than 𝜎. Thus, in (3) which contains local image 

information is vital to segment intensity inhomogeneous images, where the global image information will 

ignore the small or local features of an image [30]. 

 

2.3.  Distance function  

The distance selective segmentation 2 (DDS2) model is a selective type of variational ACM for 

vector-valued images that was proposed by Ghani and Jumaat [22]. The DSS2 model integrated the idea of the 

distance function as a fitting term with the formulation of the CSV model [9]. Assume that on an image 𝑢 =
𝑢(𝑥, 𝑦), there are 𝑚1 geometrical points that must be near to the desired object boundary and form a marker 

set 𝐵 to be inputted by the user as follows: 

 

𝐵 = {𝑤𝑗 = (𝑥𝑗
∗, 𝑦𝑗

∗) ∈ Ω, 1 ≤ 𝑗 ≤ 𝑚1} ⊂ Ω (4) 
 

where 𝑚1 ≥ 3 will connect the markers and construct an initial polygon 𝐺 that drives its evolution towards a 

curve Γ. Then, the distance function 𝐹𝑑(𝑥, 𝑦) of point (𝑥, 𝑦) ∈ Ω from (𝑥𝑔, 𝑦𝑔) ∈ 𝐺 that can assist in capturing 

a targeted object in the segmentation process is given as (5). 

 

𝐹𝑑(𝑥, 𝑦) = √(𝑥 − 𝑥𝑔)2 + (𝑦 − 𝑦𝑔)2 = min
𝑔∈𝐺

||(𝑥, 𝑦) − (𝑥𝑔, 𝑦𝑔)||. (5) 

 

2.4.  Total energy functional and euler lagrange equation 

This study aims to develop a model that can selectively segment the vector-valued images having 

inhomogeneous intensity. As a result, we proposed a new selective segmentation model called the selective 
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local image fitting (SLIF) model. To achieve this, we incorporated the idea of the distance fitting term of the 

DSS2 model with the local image fitting energy of the LIF model into a variational energy functional in a 

vector-valued framework. Thus, the following (6) in level set framework [31]-[33] defined the SLIF model (6). 
 

min
𝜙

{𝐸𝜀
 𝑆𝐿𝐼𝐹

(𝜙) =
1

2
∫

1

𝑁
∑ (𝑢𝑖 − 𝑛1

𝑖 𝐻𝜀(𝜙) − 𝑛2
𝑖 (1 − 𝐻𝜀(𝜙)))

2

𝑑𝑥𝑑𝑦𝑁
𝑖=1Ω

                                 + ∫ 𝜃𝐻𝜀(𝜙)𝐹𝑑(𝑥, 𝑦)𝑑𝑥𝑑𝑦
Ω

}
 (6) 

 

Here, the segmentation curve Γ = {(x, y) ∈ Ω|𝜙(𝑥, 𝑦) = 0} and 𝑢𝑖 = 𝑢𝑖(𝑥, 𝑦) is the 𝑖𝑡ℎ channel of an original 

image on Ω with 𝑖 = 1,2, . . . , 𝑁 channels. In this research, the value of 𝑁 is three which represents the vector 

valued (RGB) image. To solve the proposed model, the Euler Lagrange equation is derived defined as follows:  
 

−𝛿𝜀(𝜙) [
1

𝑁
∑ (𝑢𝑖 − 𝑛1

𝑖 𝐻𝜀(𝜙) − 𝑛2
𝑖 (1 − 𝐻𝜀(𝜙))) (𝑛1

𝑖 − 𝑛2
𝑖 ) − 𝜃𝐹𝑑

𝑁
𝑖=1 ] = 0 (7) 

 

the popular gradient descent method [34]-[36] is used to solve (7) numerically. Then, we obtain the following 

gradient descent flow:  
 

𝜕𝜙

𝜕𝑡
= −

𝜕𝐸𝜀
𝑆𝐿𝐼𝐹

𝜕𝜙
= 𝛿𝜀(𝜙) [

1

𝑁
∑ (𝑢𝑖 − 𝑛1

𝑖 𝐻𝜀(𝜙) − 𝑛2
𝑖 (1 − 𝐻𝜀(𝜙))) (𝑛1

𝑖 − 𝑛2
𝑖 ) − 𝜃𝐹𝑑

𝑁
𝑖=1 ] (8) 

 

to ensure smoothness of segmentation curve, we convolve the result from (8) with a Gaussian function 𝐺𝜍 =

𝑒−(𝑥2+𝑦2)/2𝜍2
, with standard deviation 𝜍. This technique is less computational expensive than the traditional TV term. 

 

2.5.  Algorithm to implement the SLIF model 

In this study, MATLAB R2018a was used to run the experiments. The central processing unit (CPU) 

processor used was an Intel Core i5-8250U CPU running at 1.60 GHz with 8GB of installed memory (RAM). 

Two stopping criteria were used to stop the program automatically: a tolerance value 𝑡𝑜𝑙 = 0.005 and the 

maximum number of iterations, 𝑚𝑎𝑥𝑖𝑡 = 3000. The implementation process for our SLIF model is depicted 

in the following Algorithm 1. 
 

Algorithm 1. Algorithm for SLIF model 
1. Set the value of parameters 𝜃, 𝜎, and 𝜀. 
2. Define the marker set 𝐶 and determine 𝐹𝑑(𝑥, 𝑦) using Equation (5). 

3. Initialize 𝜙0 (when m= 0) such that Γ is the boundary of 𝐺. 

4. Compute 𝑛1
𝑖 (𝜙𝑚) and 𝑛2

𝑖 (𝜙𝑚) using equation (3). 
5. Evolve 𝜙 based on equation (8) to get 𝜙𝑚+1. 

6. Regularize 𝜙 by convolving 𝜙𝑚+1 with a Gaussian function 𝐺𝜍. 

7. If 
‖𝜙𝑚+1−𝜙𝑚‖

‖𝜙𝑚‖
≤ 𝑡𝑜𝑙 or maximum number of iteration (maxit) reached 3000, then stop the program. 

Otherwise, return to step 4. 

 

 

3. RESULTS AND DISCUSSION 

Three experiments were carried out. Firstly, we compared our proposed model, namely the SLIF 

model, with the DSS2 model by Ghani and Jumaat [22] in terms of segmentation accuracy and efficiency. 

Then, we are interested in comparing the accuracy of segmentation of our SLIF model with the IIS model by 

[21], which is considered a cutting-edge selective segmentation model for segmenting vector-valued images. 

Lastly, we performed the parameter sensitivity analysis on our SLIF model.  

The accuracy of our proposed model was evaluated by visual observation as well as by dice similarity 

coefficient (DSC) and jaccard similarity coefficient (JSC). The DSC and JSC values are graded on a scale from 0 

to 1, with 0 indicating that there is no overlap between the two data sets and 1 indicating that there is a complete 

congruence [37]. Meanwhile, the efficiency of the SLIF model was determined by utilizing the tic and toc built-

in functions in MATLAB to measure the time processing for both models. We repeated the experiments three 

times and the average time processing 𝜏 was determined to guarantee the consistency of the results. We set the 

parameters 𝜀 = 1, 𝜍 = 0.45, 𝜃 = [5,1500], 𝜎 = [5,25], the mask of the Gaussian function is 5 × 5, the size of 

test images is 128 × 128 pixels, the maximum iteration to 3000 and the value of tolerance 𝑡𝑜𝑙 to 0.005. 

 

3.1.  Experiment 1: Comparison of the SLIF model with the DSS2 model 

In this Experiment 1, we were compared the performance of the proposed SLIF model with the 

existing DSS2 model. There were 14 test images used in this experiment. The test images with markers and 

the associated results generated by the DSS2 model and the proposed SLIF model are shown in Table 1. 
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Table 1. Segmentation results between the SLIF and DSS2 models 
Test image  SLIF model DSS2 model Test image  SLIF model DSS2 model 

      
1a 1b 1c 8a 8b 8c 

      
2a 2b 2c 9a 9b 9c 

      
3a 3b 3c 10a 10b 10c 

      

4a 4b 4c 11a 11b 11c 

      

5a 5b 5c 12a 12b 12c 

      
6a 6b 6c 13a 13b 13c 

      
7a 7b 7c 14a 14b 14c 

 

 

Based on Table 1, the images in the first and fourth column were test images with initial yellow 

markers to indicate the selected object that needs to be segmented. They were medical test images in  

Table 1(1a-8a), natural test images in Table 1(9a-10a) and synthetic test images in Table 1(11a-14a). The 

images in the second column of Table 1 (1b-7b) and fifth column of Table 1(8b-14b) were the segmentation 

results for the SLIF model in binary form. The segmentation output for DSS2 model were displayed in the 

third column of Table 1(1c-7c) and the last column of Table 1(8c-14c).  

By visual observation, all the targeted objects could be segmented well by our SLIF model indicated in 

Table 1(1b-14b) compared to the DSS2 model which are indicated in Table 1(1c-14c). The DSS2 model unable 

to capture some important features especially for test images in Table 1(11a-14a) where the respective segmented 

results of the DSS2 model as shown in Table 1(11c-14c) are incomplete. This is not the case for the proposed SLIF 

model where it capable to capture the shapes of the targeted objects successfully as indicated in Table 1(11b-14b).  

Even though the DSS2 model has a constraint distance function defined in the formulation to capture 

only the targeted object, there is no local intensity information contained in the DSS2 model, which is vital for 

the segmentation of images with inhomogeneous intensities. The optimum intensity constants in the DSS2 

formulation that approximates the global average of inner and outer intensities of the contour Γ could be very 

different from the original image 𝑢𝑖 if the intensities within the internal and exterior of the contour Γ are not 

homogeneous. As a result, the DSS2 model cannot segment intensity inhomogeneous vector-valued images. 

For our SLIF model, the extraction of intensity information from the local region was used to govern 

the motion of the contour Γ and keep it within the borders of the targeted object. The local averages 𝑛1
𝑖  and 𝑛2

𝑖  

in the SLIF formulation locally approximated the average inner and outer intensities of the contour Γ in a 

Gaussian window, which is more effective than the global averages intensity constants used in the DSS2 model 

to cope with inhomogeneous intensity images. In addition to visual observation, the average of segmentation 

accuracy and efficiency between the SLIF and DSS2 models were provided as well as shown in Table 2. 
 
 

Table 2. Comparison of average accuracy and efficiency between the SLIF and DSS2 models 
SLIF Model DSS2 Model 

DSC JSC 𝜏 Iteration DSC JSC 𝜏 Iteration 

0.94 0.90 3.07 94 0.81 0.69 9.68 201 

 

 

Based on Table 2, we can see that the average DSC and JSC values for our SLIF model were 0.94 and 

0.90, respectively, which were about 16% and 30% higher than the DSS2 model respectively. Additionally, 

the SLIF model only required about 3.07 seconds to converge, which was about three times faster than the 

DSS2 model. Our SLIF model also only needs a small number of iterations to converge than the DSS2 model. 
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The DSS2 model has a TV term, which is difficult to solve numerically. However, our SLIF model utilized a 

Gaussian function to replace the traditional TV term in the level set regularization which makes the 

segmentation process faster. Overall, we may conclude that our SLIF outperformed the DSS2 model in terms 

of accuracy and efficiency in segmenting the region of interest (ROI) on the test images with intensity 

inhomogeneity. 

 

3.2.  Experiment 2: Comparison of the SLIF model with the IIS model 

In this Experiment 2, we were interested in investigating the accuracy of our SLIF model by 

comparing it with one of the state-of-the-art models, which was the IIS model by Nguyen et al. [21]. There 

were seven test images used in this experiment. The test images with markers and the correlated results 

generated by the IIS model and the proposed SLIF model are shown in Table 3. 

 

 

Table 3. Segmentation results between the SLIF and IIS models 
Test image with markers SLIF model Test image with markers IIS model 

    
15a 15b 15c 15d 

    
16a 16b 16c 16d 

    
17a 17b 17c 17d 

    
18a 18b 18c 18d 

    
19a 19b 19c 19d 

    
20a 20b 20c 20d 

    
21a 21b 21c 21d 

 

 

Based on Table 3, the test images were synthetic images as shown in Table 3(15a-16a), medical 

images in Table 3(17a-18a) and natural images in Table 3(19a-21a). The yellow marker sets used by the 

proposed SLIF model were indicated in the first columns of Table 3(15a-21a) while the third column of  

Table 3(15c-21c) indicated the IIS model’s foreground (red) and background (blue) labels regions with two 

types of markers, which are different from a marker set used in our SLIF model. To keep the comparison fair, 

we place both models’ foreground markers inside or relatively close to the targeted object, while the IIS 

model’s background marker is placed outside the targeted object. The generated results for the SLIF model 

were demonstrated in the second column of Table 3(15b-21b) while the results delivered by the IIS model were 

displayed in the last column of Table 3(15d-21d). 

Visual inspection shows that the IIS model performs just as well as our SLIF model in almost all 

problems. We recognize that the IIS model produces promising results when segmenting objects with intensity 

inhomogeneity. Nonetheless, there are a few circumstances where the IIS model could not segment 

appropriately where we found that the IIS model could not segment the jagged part of the targeted object for 

test images 16a and 19a clearly and concisely. The main reason is because the model is a hard segmentation 

which assumes the object to be segmented is smooth. Therefore, the IIS model cannot cleanly segment the 

targeted object with sophisticated shapes. In our SLIF model, the inclusion of the constructed polygon's 

Euclidean distance in the SLIF formulation is meant to confine the solution by enclosing values associated 

with a polygon region generated by the initial markers within the targeted object. As a result, the SLIF model 

outperforms the IIS model for test images 16a and 19a. The average segmentation accuracy between the SLIF 

and IIS models on the tested images is tabulated in Table 4. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Local image fitting-based active contour for vector-valued images (Akmal Shafiq Badarul Azam) 

233 

Table 4 shows that the SLIF model's average DSC and JSC values were slightly higher than the IIS 

model. As a result, we can conclude that the segmentation accuracy of our SLIF model is comparable to that of the 

IIS model. We clarify that the interactive software provided by Nguyen et al. [21] lacks a time recording tool for 

implementing their IIS model. Thus, the time processing comparisons with our proposed models are not possible. 
 

 

Table 4. Comparison of accuracy between the SLIF and IIS models 
SLIF Model IIS Model 

DSC JSC DSC JSC 

0.96 0.92 0.95 0.90 

 

 

3.3.  Experiment 3: Parameter sensitivity analysis 

In this Experiment 3, we shall test the parameter sensitivity for our SLIF model. We focus on the area 

parameter 𝜃 which is the most important parameter that influence the segmentation result significantly. The 

main limitation of our proposed SLIF model is that this parameter must be manually tuned through trial and 

error in order to obtain meaningful and effective segmentation results. Table 5 illustrates the segmentation 

results of a test image with different parameters 𝜃. 
 

 

Table 5. Segmentation results with different values of parameter θ using the SLIF model 
Test Image with Markers Parameter Setting Segmentation Result 

 

𝜃 = 1 

 
𝜃 = 200 

 
𝜃 = 2000 

 
 

 

The test image with markers located at the targeted region which is only the head of the large sperm 

was displayed in the first column of Table 5. In the second column, the values of 𝜃 were varied to test the effect 

on the segmentation results generated by the proposed SLIF model where we test with three values of  

𝜃 = 1, 200 and 2000. The respected segmentation results were demonstrated in the last column of Table 5. As 

shown in Table 5, the segmentation result would be over-segmented if the parameter 𝜃 was too small (𝜃 = 1). 

As we can see, the tail of the targeted sperm and other nearby objects were segmented too. Meanwhile, the 

segmentation result could be just an undesirable polygon if the parameter 𝜃 was too large (𝜃 = 2000). The 

successful segmentation result was obtained if the parameter 𝜃 = 200. Thus, to achieve an accurate 

segmentation result, the parameter must be determined by trial and error.  

 

 

4. CONCLUSION  

The primary purpose of this research is to segment a targeted object selectively in vector-valued 

images with intensity inhomogeneity using a variational active contour approach. As a result, we developed a 

new model called the SLIF model, which is formulated by incorporating the idea of the distance fitting term, 

local image fitting energy and Gaussian regularization term into a variational energy functional. In addition, 

we provided the proposed active contour model's Euler Lagrange equation to solve the SLIF model. Numerical 

experimentations demonstrated that the proposed SLIF model successfully segmented the object of interest in 

vector-valued images with better segmentation results compared to the existing models. The limitation of our 

proposed SLIF model is that the area parameter 𝜃 must be manually modified through trial and error to achieve 

significant and effective segmentation results. In the future, we will extend the work on formulating a convex 

3-dimensional active contour model for both grayscale and vector-valued digital images. 
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