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Abstract 
This article presents a method for fault detection and diagnosis of stator inter-turn short circuitin 

three phase induction machines. The technique is based on the stator current and modelling in the 
dqframe using an Adaptive Neuro-Fuzzy artificial intelligence approach. The developed fault analysis 
method is illustrated using MATLAB simulations. The obtained results are promisingbased on the new fault 
detection approach. 
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1 Introduction  
The induction machine is commonly used in all the industries. It is utilized in 90% of 

electrical motor applications [1]. The merits of the induction machine are its low price, ease of 
control and reliability. Investigating induction machines faults is crucial to minimize downtime 
and the cost of damages [1, 2]. 

Theinduction machine faults are classified as winding faults, unbalanced stator and 
rotor, broken rotor bars, Eccentricity and bearing faults. The failure due to stator winding 
breakdown is about 30~40% of total induction Faults [3]. The predictions of stator faults will 
save the high maintenance cost [3, 4].There are a lot of approaches to diagnose the stator turns 
fault. Some methods are based on the stator currents and fast Fourier transforms (FFT) while 
other methods use the torque profile analysis and vibration study [4, 5]. Recent research work 
investigated the use of intelligent control, Fuzzy logic (FL), Neural Network (NN), combination of 
FL and NN and adaptive control in fault analysis [6-8]. This article is organized as follows: 
Modelling of the three phase induction motor for both the healthy and faulty cases is presented 
in section II. An overview of the Adaptive Neuro-Fuzzy Inference System (ANFIS) is discussed 
in section III. The proposed fault analysis technique is investigated in section IV through 
MATLAB simulations of induction machines with inter-turn stator faults. The results and 
conclusion are discussed in section V. 

 
 

2 Modelling of A Three Phase Induction Motor 
A dq frame is used to reduce the complexity of differential equations. The original stator 

and rotor frames of reference are transformed to a common frame that rotates with arbitrary 
angular velocity [9]. 

 

3 Healthy Case 
The three phases of a healthy motor are symmetrical. Thus, all the phases have the 

same number of turns [8-12]. The rotor is balanced star connection cage rotor 
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Figure 1. 3ph stator winding 
 
 

The voltage equations of the motor can be written as below: 
 

V sabc= rs
abci

s
abc + pλs

abc, 
 
 0 = rr

abci
r
abc + pλr

abc (1) 

 
λs

abc= [λs
aλ

s
bλ

s
c]=L[iaibic] 

 
Where P=d/dt 
 
Converting to dq stationary frame 
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The voltage equations of stator and rotor arederived as: 
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The stator resistances in the dq frame depend on the stator resistance values for each phase. 
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The Rotor resistance 
 

Rr
dq0=rr I3x3 (5) 

 

The Motor flux equation 
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Based on a balanced Y 3ph induction motor, the neutral current has zero value Is0=Ir0=0. 
According to balanced stator condition, the turns of each phase are equal (Na = Nb = Nc = Ns). 
The supply voltage in the dq frame is: 
 

Vq
s=2/3[Va

s-0.5(Vb
s+Vc

s)], 
 
Vd

s=1/ 3 (-Vb
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The flux equations are: 
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The developed torque and speed are given by: 
 

Td= (3/2)(P)(λs
di

s
q- λ

s
qi

s
d) (9) 

 
Where P is number of pair poles  
 

Pwm=P/(2J) (Td-TL-Tdamp) (10) 
 
 
4 Inter-Turn Fault Case 

Under “a” phase inter-turn fault, the motor parameters (stator resistance, inductance 
and the mutual inductance between all phases and the faulty phase) change as shown in Figure 
(1). 

 
X(fault %)=Na2(fault turns)/Na (healthy phase turns) (11) 

 
rsh=X ra) healthy =ra)f , 
 
La1a1)f=(1-X) 2 Lasas)healthy=L'asas , 
 
La2a2)f=X2 Lm)healthy=Lshsh , 
 
La1a2)f=(1-X)X Lm)healthy   =Lassh , 
 
Lasr=(1-X)Lm)healthy, Lm)healthy=L'asr+Lshar (12) 
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Figure 2. 3ph Induction motor in dq frame with turn fault in q phase represent phase a fault 
 
 

The flux equation in the dq frame after taking the shorted turns in consideration is: 
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The stator resistance is given by: 
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The flux linkage derived from equation (3) is: 
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The equations (10-14) show the induction motor dq modeling with fault conditions and the effect 
of fault severity on the motor parameters. 
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5 Adaptive Neuro-Fuzzy Inference System 
The Adaptive Neuro-Fuzzy inference system (ANFIS) depends on two main systems 

fuzzy logic (FL) and artificial neural networks (ANN).The Fuzzy logic acts as the human logic 
thinking and theneural network acts as human brain [13]. Both the FL and ANN increase the 
system efficiency and decrease the mathematical equations compared to other detection 
methods [14]. The system is widely used for many applications of systems modelling, control 
systems and forecasting predictions [15]. The ANFIS consists of IF-then rules, training and 
learning algorithms [13]. 

For the Fuzzy inference system, considera system with two inputs (X,Y) and one output 
(Z).The fuzzy rules based on 1st order Sugeno type [16] are: 
 
Rule1: IF X is A1 and Y is B1 Then f1=p1X+q1Y+r1, 
 
Rule2: IF X is A2 and Y is B2 Then f2=p2X+q2Y+r2, 
 

Ai,Bi are the Fuzzy set, fi is the system outputs within the specified fuzzy rules and the 
pi,qi and ri are the design parameters based on the ANFIS training [7], [17-20] 
 
 

 
 

Figure 3. ANFIS structure for two i/p with three mmf and one O/P 
 
 
The adaptive neuro-fuzzy inference (ANFIS) network consists of five layers. A normalization 
layer more than the neuro-fuzzy network [21-34]. 
Layer 1 is the fuzzification layer adaptive nodes with bell membership function with equation of: 
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1 | |^2
X mA

bA
бA




, 

µBi(Y)= 1

1 | |^2
Y mB

bB
бB




 (16) 

 
Where the mA, mB, бA, бB, bA and bB are the bell function parameters = 1, 2, 3 [20] 
 

MF1,i= µAi(X) & MF1,i= µBi(Y),  for i=1,2,3       (17) 
 
The Ai and Bi are the linguistic variable of X and Y 
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Layer 2 is the rules layer where its output is considered as fire strength of each node  
 

Wi=µAi(X)*µBi(Y), i=1, 2, 3  (18) 
 
Layer 3 is the normalization layer and its output is the normalized fire strength  
 

iW i=
( 1 2 9)

Wi

W W W    

(19) 

 
Layer 4 is the consequent layer where each node is an adaptive node and its output is the 
product of the consequent polynomial of fuzzy rules and normalized firing strength 
 

__
Wi fi= 

__
Wi (piX+qiY+ri),i=1, 2, 3…9 (20)         

 
Layer 5 is the deffuzification layer which has only one node (output node) and its output is the 
overall ANFIS output, summation of the layer 4 output  
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_
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6 Simulation and Results  

The developed fault analysis technique is investigated through MATLAB simulations. An 
induction motor with inter-turn stator faults is modelled in SIMULINK based on the equations 
presented in section II. Figure (4) illustrates the fault analysis system procedure. 

 

 
 

Figure 4. The fault analysis system for induction motor with dq modeling 
 
 
The qd current indicate better resolution for fault detection. It increase as the fault percentage 
increases as per Figure (5) 
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Figure 5. The d CurrentVS Fault Percentages (X %) At Different Loading 
 
 

The fault detection technique uses an ANFIS network to estimate the inter turn fault 
percentage. Training and testing data are generated from the SIMULINK induction motor model. 
The motor loading condition was varied to simulate no-load, 25%, 50%, 75%, full-load and 
110% loading. The inter turn fault percentage was varied to span the range of 0~16% with steps 
of 0.005. The total points are 199. 

The ANFIS network was trained with 66% of the total data and checked/tested with the 
remaining 34%. The design is based on threeinput fuzzy membership functions. It was noticed 
that the learning phase was completed in the first 120 Epochs out of 300 iterations.  

Figure (6) views the ANFIS error for the different loading cases and fault percentages 
estimating. 

 
 

 
 

Figure 6. % Error VS fault percentages at different loading 
 
 

The fault percentage at the 25% loading case gives the highest error as the ANFIS 
network was not trained with this fault data. The maximum % error is 6.83% at 25% loading and 
16 % fault. The results illustrate the ANFIS accuracy for fault detection even for cases that were 
not included in the training data. 
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The network initial configure ration has an effect on the performance and accuracy of 
the fault diagnosis system. Table (1) shows the errors for a two input and three input 
membership functions.The three inputmembership function has lower error for testing and 
checking data. 
 
 

Table 1. The error comparison for thetwo and three membership 
Error Two MMF Three MMF 

Training data 9*10-4 6*10-4 

Testing (75%) 6*10-3 4*10-3 

Checking (25%) 9*10-3 3*10-2 

 
 
The fault severity wasvaried from 0% till 16%. However,an actual fault will be limited to 10% 
fault only at 110% loading based on the induction motor over load protection setting Io.l=1.5*Irated 

 
 
7 Conclusion  

This paper shows the fault diagnosis of inter turn fault of induction motor based on an 
artificial networksystem using ofthe stator dq currents. Thedq stator currents give better 
resolution for inter-turn fault diagnosis. The ANFIS network detects the inter turn stator faults 
with high accuracy even for low fault percentages. The average ANFIS error is 1% among all 
the data training, testing and checking. The ANFIS initial structure has an effect on the fault 
detection system accuracy. 
 
 
APPENDIX 

The motor parameters are given in Table 2. 
 
 

Table 2. Motor Parameters 
parameter Value 

power 2hp~1.5kw 
no. poles 4 

Rs 4.05 ohm 
Lls 0.014H 
Rr 2.6 ohm 
Llr 0.014H 
Lm 0.5387H 

Irated 2.81A 
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