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 In wireless networks, link breaks, and restricted resources create fundamental 

challenges for maintaining network applications. Several wireless network 

routing techniques concentrate on power efficiency to expand the network 

lifetime, but the traffic and reliability parameters are not the primary concern. 

Though, these techniques are not capable of dealing with the wireless network. 

Hence, this paper proposes deep neural network (DNN) with a fuzzy 

algorithm to improve power and traffic-aware reliable reactive routing 

(PTAR) in wireless networks. The wireless network is formed by clustering 

by the node power and selects the cluster head (CH) based on a fuzzy 

algorithm. The wireless node power level, node buffer space, and node 

reliability to consider the input parameters of the fuzzy system. Then thefuzzy 

algorithm gives the output for CH round length. This selected CH improves 

the node reliability, power efficiency with minimized network congestion. 

Then we use a DNN algorithm to choose an optimal relay by applying an 

adaptive load balance factor in the network. DNN is a machine learning 

algorithm, and it provides high accuracy. From the simulation results, the 

PTAR approach improves the network performance, such as packet received 

ratio, delay, residual energy, and routing overhead. 
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1. INTRODUCTION 

Several applications and protocols used in wireless networks use connection quality estimations to 

improve the system's overall performance. However, accurately characterizing wireless connections in wireless 

networks is difficult since the links encounter regular channel changes and complicated interference patterns. 

But, it isessential to estimate the quality of the wireless connection to maximize the performance. In wireless 

networks, determining the quality of a link often involves evaluating the received signal intensity in addition 

to the error rates. Wireless networks have minimal access to resources, including energy, memory, and 
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bandwidth. Because low-battery-powered nodes are often not capable of recharging, the amount of energy used 

by each node impacts not only the node's lifespan but also the network's lifetime as a whole. Therefore, energy 

is a vital resource. Since the path that uses the least amount of energy may differ from the path with the best 

performance. In most cases, a longer distance between the sender and the receiving node results in a longer 

delivery delay [1]. On the other hand, the nodes with the fewest total hops are the ones that use the least amount 

of energy, but this only sometimes equates to high performance. Additionally, the algorithm needs energy-

efficient to increase the network's lifespan [2]. Congestion may have a significant effect on the performance of 

a wireless network. This manifests as a drastic fall in throughput and an increase in the energy used and the 

amount of time it takes for packets to be delivered. Congestion management is a vital topic in wireless  

networks [3]. Congestion might result in a buffer overflow since individual nodes have limited memory. As a 

consequence, this kind of buffer overflow issue may lead to the loss of essential information, which harms both 

the amount of time it takes and the amount of energy it uses [4]. As a result, considering buffer space while 

designing routing protocols is an absolute need [5]. The maximum power point tracking approach is widely 

used to enhance photovoltaic efficiency since it can produce maximum power under various weather  

conditions [6]. 

Problem formulation: using a wireless network makes it possible to ensure fast and reliable delivery 

of essential data. However, due to unreliable wireless connectivity and the fact that it is being implemented in 

hostile settings, the data transfer's dependability is reduced promptly. In that case, it may lead to the loss of 

essential data packets, an increase in energy wasted, and an extra delay. Thus, it is vital to cut down on packet 

loss to improve the network's performance. Accordingly, developing a routing method that can prioritize 

accurate data transmission is of the utmost importance. Table-driven routing methods use a lot of bandwidth 

and need a lot of storage space, reactive routing systems are intended to cut those costs. The dynamic path 

between a sender and a receiver may be constructed by these protocols using the on-demand applied processes. 

The power aware routing algorithm (PARA) objective is to enhance the routing established on the power level. 

This approach develops the details about routes to compute an essential power. It enhances the routing life. 

However, this approach increases the network traffic and can not provide reliable routing [7]. To solve these 

issues, deep neural network (DNN) with a fuzzy algorithm to improve power and traffic-aware reliable reactive 

routing (PTAR) is proposed.  

Work contribution: the wireless node power level, node buffer space and node reliability to consider 

the input parameters of the fuzzy algorithm [8], [9]. The fuzzy algorithm gives the forecasted output like the 

round length for selecting the cluster head (CH). The main purpose of this paper is to propose a DNN algorithm 

for solving the optimal relay selection problem by applying the adaptative load balance (ALB) factor that 

reduces the computational cost. This approach improves node reliability, power efficiency with minimizes 

network congestion. The remaining parts of the article is structured as described below. DNN with a Fuzzy 

algorithm to improve PTAR is discussed in section 2. The results of the simulations are presented in section 3. 

Finally, the conclusion is presented in section 4. 

Power is an essential need for the network at all times. Because of this, one of the key performance 

objectives of such networks is to cut down as much as possible on the amount of power needed by each 

message. It extends the period during which a gadget powered by a battery can work before the infrastructure 

has to be maintained. Developing the channels' active time is necessary to convey a complete data package. 

This is because the amount of time the channels are active is limited. Power-saving routing (PSR) algorithm is 

designed to reduce the amount of power consumed by a network by routing packets more efficiently. This 

decision was taken after considering the actual channel characteristics, which included multipath fading, in 

terms of the minimum amount of power used. However, even though the extended PSR approach is suitable 

for ordinary network situations, it could be better for usage in conditions that include hybrid networks. This is 

because hybrid networks present unique challenges. The minimal power cooperative routing technique 

(MPCR) [10] is used to build a lesser power path, whichensures throughput via an optimal path. This is done 

even though the path may take longer. Nevertheless, one of the potential drawbacks of the MPCR is that there 

is a certain amount of time before the optimal path to a specific location will be available. This is likely the 

case because of problems along the way, such as the exhaustion of the available power supply. 

An example of swarm intelligence algorithm to generate meaningful global behavior that cannot be 

done by each person working alone [11]. Richard Stallman is the one who invented the concept of "swarm 

intelligence". Ant colony optimization (ACO), is a process that imitates the actions of real-life ants as they 

search for food. It is an intriguing alternative for creating routing algorithms for wireless sensor networks 

(WSNs) since it has many helpful qualities. These characteristics include the following: To overcome 

difficulties with optimization, a significant number of research articles used ACO [12], [13]. This discovery 

has allowed these approaches to become more widely utilized. Particle swarm optimizer with crossover 

operation (PSOCO) [14] is an optimization approach that has been recommended because it employs not one 

but two different crossover processes. The ability of the PSOCO to pinpoint the most advantageous node is the 

source of its power. It considers the optimal route from various vantage points and angles. Power-aware 
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cooperative routing (PACR) algorithm as a method for determining the most effective route from the origin to 

the destination. This approach takes into account the power constraints of the network. This approach considers 

the power level necessary for effective cooperative communication to maximize the likelihood of success in 

accomplishing its objectives. On the other hand, this was constructed without considering the requirements for 

a minimal lifetime for this path. Furthermore, the PACR uses the next hop as a metric in its search for the most 

effective path, yet this strategy needs to generate routes with the greatest potential throughput [15].  

To characterize the fading influence of wireless networks in industrial contexts, a three-layer framework has 

been developed for the impulse response. Experiments that were carried out in a variety of different industrial 

settings showed that doing so significantly improved accuracy [16]. The Gilbert-Elliot two-state Markov model 

is used to carry out a study of the packet received rate (PRR). After that, thelink quality indicator (LQI) is 

converted into one of two distinct states according to the threshold established by the previous step. The Gibert-

Elliot model, developed in line with the LQI [17], is utilized to measure the PRR. 

Monitoring link quality in the routing protocol for low-power and lossy networks (RPL), also known 

as the RL probe, offers an accurate assessment of link quality with minimal wasted overhead and energy. The 

RL probe uses synchronous monitoring tactics and asynchronous monitoring strategies to preserve the 

information it gathers on the link quality up to date and swiftly adjusts to any unforeseen changes that may 

occur in the topology. An RL model drives monitoring operations and reduces the overhead [18]. An approach 

to determining the quality of connections that extensively uses support vector machines and employs several 

different classes. The received signal strength (RSS) and LQI are estimation parameters, and the connection 

quality is segmented in line with the PRR. The model can accurately assess the current connection quality [19] 

by using only a few probe packets. It is usual practice for hardware-based link quality estimator (LQE) 

algorithms to make use of characteristics like the received signal strength indication (RSSI), the LQI, and the 

signal-to-noise ratio (SNR) [20], [21] methods for estimating connection quality use the RSS and information 

acquired from data packets received to evaluate link quality [22]. Despite this, experiments [23] have shown 

that RSS is not sensitive to fluctuations in the quality of connections when used in its intended manner. The 

LQI would be used as a parameter once the connection quality was found to be of a high standard. On the other 

hand, the LQI values that were acquired via quick links show a much higher degree of fluctuation. The signal-

to-noise ratio, often known as SNR [24]. The DNN algorithm can tackle various challenges because DNN can 

accurately estimate high nonlinear functions despite its relatively modest complexity, it has enabled various 

exciting applications in wireless communications [25]. The selection of the relay [26] and the assignment of 

the channel [27] are examples of some of these applications. Since relay selection has the potential to improve 

throughput [28], researchers have focused a significant amount of their attention on studying it over the past 

decade. A maximizing strategy is needed to choose the most appropriate relay selection, and accurate channel 

state information (CSI) is essential [29]. 

 

 

2. POWER AND TRAFFIC-AWARE RELIABLE REACTIVE ROUTING  

The wireless network contains a number of wireless nodes and these nodes move freely in the network 

field. The block diagram of the PTRA mechanism is depicted in Figure 1. Initially, the wireless nodes build 

the clusters based on node power, and these nodes select the CH by applying a fuzzy algorithm.  

 

 

 
 

Figure 1. Block diagram of the PTRA approach 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Deep neural network with fuzzy algorithm to improve power … (Radhakrishnan Murugesan) 

383 

Every node updates channel state information like power level, buffer space, and link reliability. The 

fuzzy algorithm produces the round length (RL) output. Then we use the DNN algorithm to select the optimal 

relay based on adaptive load balance factor to enhance the routing efficiency. 

Power level: absent of energy utilization management will affect the outcome of unbalanced residual 

energy allocation among wireless nodes, making origin holes in the receiver node region. Thus, power is 

essential since it minimizes energy expenditure and increases lifetime. The sender node checks the neighbor 

node's power level during route discovery based on the route request (RREQ) packet. The node power level 

(PL) computation is given (1). Where, IE designates an initial energy, the residual energy is depicted by RE, 

as well as TE refers the transmission energy.  

 

𝑃𝐿 = 𝑒𝑥𝑝 [
1

1+(𝐼𝐸−(𝑅𝐸−𝑇𝐸))

𝐼𝐸

] (1) 

 

Buffer space: in a wireless network, the node buffer size is restricted, and the buffer cannot extend 

size when presenting the highest data packet. For that reason, the node loses a particular amount of data packets; 

hence, it causes delay and packet retransmission. To avoid this issue, before data transmission, checks the 

buffer space. Normalized buffer space (NBS) denotes the ratio between the buffer's space and size. It evades 

the packets waiting for a long time in the queue. NBS computation is given (2). 

 

𝑁𝐵𝑆 =
𝐵𝑢𝑓𝑓𝑒𝑟 𝑆𝑝𝑎𝑐𝑒

𝐵𝑢𝑓𝑓𝑒𝑟 𝑆𝑖𝑧𝑒
 (2) 

 

Node reliability: node reliability (NR) is a significant component since time data forwarding suffers 

from disconnection of the link. It creates an additional delay, energy utilization and retransmits the data. Thus, 

link reliability-based data transmission to improve the routing efficiency. The NR computation is given (3). 

 

𝑁𝑅 =
1

𝐹𝑇𝑅×𝑅𝑇𝑅
 (3) 

 

FTR indicates the forward transmission ratio that represents the feasibility of a packet effectively recognized, 

and the reverse transmission ratio (RTR) that means the feasibility in which the Acknowledgement packet is 

effectively identified. 

 

2.1.  Fuzzy algorithm-based CH selection 

The clustering concept is used to improve energy efficiency. Here, the CH nodes are chosen by the 

fuzzy algorithm based on node energy, NR, and node buffer size parameters. Here, NR and node energy and 

node buffer size values are specified as the input, giving the output is RL. The RL selection ratio calculation is 

specified (4). 

 

𝑅𝐿 = 𝐻𝑖𝑔ℎ𝑒𝑠𝑡(𝑟𝑜𝑢𝑛𝑑[𝑅𝐿ℎ𝑖𝑔ℎ𝑒𝑠𝑡 ∗ 𝐹𝑢𝑧𝑧𝑦(𝑁𝑅, 𝑁𝐵, 𝑁𝐸)], 1) (4) 

 

Every node has informed the value of RL highest, and the highest RL value node is selected as a CH. 

The fuzzy set reports the node reliability input variables are very high, high, middle, low, and very low. The 

node energy input variables are very high, high, middle, low and very low. Furthermore, the buffer availability 

fuzzy input variables are very high, high, middle, low, and very low. The RL output variables are very high, 

high, middle, low, and very low. 

ALB: the greatest data flow is insufficient to the link's capability, creating a bottleneck. Hence packet 

loss occurs. So, we select the route that equates the load based on the ALB factor. The ALB factor calculation 

assists in minimizing the clustering network traffic and enhances the network performance. The ALB factor 

for each route calculation is given (5).  

 

𝑁𝐴𝐿𝐵 = [𝐶𝑂𝐻 + 𝑃𝑂𝐻 +
𝑇𝐵

𝐷𝑇
]

1

1−𝛽𝑇𝑆
 (5) 

 

Where OHC denotes the channel overhead, OHP denotesthe protocol overhead, DT denotes the data 

transmission, TB represents the test frame bits and βTS denotes the calculatingtime of transmission state. For 

example, Figure 2 explains source B selects the route based on the ALB factor. In this figure, node B is a 

source, D is a destination, and X, Y, and Z nodes are intermediate nodes. 
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Figure 2. ALB factor illustration 

 

 
The node K to U builds the routes are KYU, BXU and KZU and these route whole 

ALB factor loads are 0.9, 0.7 and 0.6. In route KXU in whichXU is greater; accordingly, traffic will 

happen at node X, which makes the packet drop. Alternatively, the route KZU load is uniform; as a result, 

the packet drop is minimized. The load balance threshold can be defined as in (6). Where, THALB represents 

the threshold of adaptative load balance and NALB(i) represents the route adaptative load balance. 

 

𝑇𝐻𝐴𝐿𝐵 =
1

𝑚
∑ (𝑁𝐴𝐿𝐵(𝑖))𝑚

𝑖=1  (6) 

 

2.2.  DNN based relay selection 

The DNN algorithm measures the weight, which can be intended as the function of mapping. The 

features of input rearrange as a vector that is specified in (7). Then it computes the weight based on the adaptive 

load balance factor. The DNN algorithm obtains the modified input weights and then computes the output for 

selecting the relay nodes and this output calculation is specified in (8). 

 

𝑋(𝑚) = [𝑥𝑃𝐿 , 𝑥𝑁𝐵𝑆 , 𝑥𝑁𝑅] (7) 

 

𝑌 = 𝑁𝐴𝐿𝐵 > 𝑇𝐻𝐴𝐿𝐵 (8) 

 

Where, the Y value is introduced between 0 to 1 and the preset threshold value is 0.5. The DNN algorithm 

based relay selection to enhance the route dependability and and power level. 

 

 

3. SIMULATION ANALYSIS 

Here, the network simulator tool is used for evaluating the network performance. This section exists 

packet received ratio, routing overhead, delay, and residual energy parameters to demonstrate the achievable 

performance of the introduced PTAR approach. This research is performed by raising the wireless nodes from 

20 to 100 nodes. Table 1 illustrates the simulation parameters of the PTAR approach. 

 

 

Table 1. Simulation parameters of the PTAR approach 
Parameters values 

Time for simulation 200 seconds 

Channel Wireless 
Wireless nodes  100 

MAC 802.11 

Transmission range 180 meter 
Range of transmission 150 meter 

Simulation region 800×900 m2 
Size of the packet 1024 bytes 

Bandwidth 11 Mbps 

Rate of flow 128 kbps 

 

 

Packet received ratio is the ratio between the number of packets effectively obtained by the receiver 

and the overall amount of data packets forwarded by the sender nodes. Routing overhead is defined as the ratio 

of control packets created to the number of effectively obtained data packets. The network is realistically 

congested because of the highest load and the reasonably high wireless nodes. Figure 3 illustrates the packet 

received ratio of PARA and PTAR approaches based on wireless node count. The routing overhead of the 

PARA and PTAR approaches is shown in Figure 4. 
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Figure 3. Packet received ratio of PARA and PTAR 

approaches 

 

Figure 4. Routing overhead of PARA and PTAR 

approaches 

 

 

From Figure 3, when the wireless node count increases, the packet received ratio of the PARA 

approach is highly decreased; however, the PTAR approach is slightly reduced since the proposed mechanism 

chooses the best relay node by node reliability, node power level, and node buffer space. From Figure 4, the 

fuzzy algorithm-based CH selection is minimized the network load. The DNN algorithm predicts the relay is 

minimized the network traffic since it selects the relay by the ALB factor. As a result, the PTAR approach 

minimized the routing overhead. But, the PARA approach only concentrates on energy efficiency. The delay 

metric is a significant since it minimizes network congestion. Figure 5 explains the simulation result of the 

delay with various wireless nodes, and it is measured by the millisecond. Figure 6 displays the residual power 

level of PARA and PTAR mechanisms versus the wireless node count. 

 

 

  
 

Figure 5. Delay of PARA and PTAR 

approaches 

 

Figure 6. Residual power level of PARA and PTAR 

approaches 

 

 

Here, raising the wireless nodes initiating from 20 to 100 nodes. The Figure 5, illustrates that the 

PARA approach delay rises when the wireless node count increases. Although the PTAR mechanism 

minimized the packet delay than a PARA mechanismsince the PTAR mechanism utilizes a DNN machine 

learning algorithm to select the relay, fuzzy-based CH selection reduces the delay in the network. The amount 

of power residual in the present time is known as the residual power level. From Figure 6, the wireless node 

count rises from 20 to 100 nodes; the PARA and PTAR approach minimizes the power level. Figure 6 

obliviously demonstrates that the PTAR approach increases the power levelthan a PARA mechanism because 

the DNN algorithm picked out the relay based on the power level. Furthermore, the clustering concept 

minimizes the utilization of power level. Hence, the PTAR approach increases the power level in the network. 

 

 

4. CONCLUSION 

Several issues, for example, power-aware routing, traffic-aware routing, and reliability-aware routing, 

cause vast challenges in maintaining routing in wireless networks. DNN-based evaluator to solve the optimal 

relay selection issues by rapidly arriving at the optimal solution. In this article, we introduced PTAR using the 

DNN algorithm to improve the routing efficiency. The main aim of the DNN methodis to select the best relay 

and minimize the computational cost based on the adaptive load balancing factor. The fuzzy algorithm gives 
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the input for choosing the CH by applying parameters like power level, buffer space, and node-link reliability 

that compute the fuzzy output, such as round length. The highest round length node is selected as a CH; as a 

result, it minimizes the utilized power. The simulation results demonstrate that the proposed PTAR approach 

increased the packet received ratio and enhanced the power level. Moreover, it reduced both the network delay 

and the routing overhead. The wireless network is heavily attacked due to wireless is unreliable. So, we will 

identify several types of attacks in the future. 
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